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Abstract: The abnormal and anomalous observations even in the advanced technological era proves to be the 
biggest jolt to the concerned industry. To reduce and eliminate the outliers from the massive data streams, it is 
important to accurately highlight them from the higher dimensional data which is itself very challenging. In this 
study, a Scalable outlier detection model is proposed which is robust enough to resist and detect the projected 
outliers that are lying at some lower dimensional subspaces. This model exploits the problem of curse of 
dimensionality which is very frequent in large data streams and massive datasets. Rapid distance and density based 
approaches are used and then the probability density is measured by Gaussian Mixture Model. Baye's Probability is 
applied to the final observations so as confirm them as the projected outliers. 
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INTRODUCTION 

 
Outlier detection aims at finding out the peculiar, 

considerably dissimilar, exceptionally and markedly 
different data items from the massive oceans of the 
datasets, data streams and databases and hence an 
important aspects of the data Mining. Detection of 
outliers is very common and obvious while dealing with 
lower dimensional data but the major problem of curse 
of dimensionality arises while dealing with higher 
dimensional datasets because as soon as the 
dimensionality of the data goes higher, the prominence 
of outliers is hidden as the outliers is hidden as the 
outliers are embedded in some lower dimensional 
subspaces. As the large and the massive amounts of the 
DataStream and data are stored in the large databases 
and datasets, there is a requirement and a need of 
employing an effective and an efficient methodology 
for analyzing it to make the information useful that are 
contained implicitly in the data. 

Knowledge Discovery Data or KDD is actually a 
non trivial process in identifying valid, novel and 
potentially useful and ultimately understandable 
knowledge from the data. Usually the research done on 
KDD includes and focuses on finding out the patterns 
that are considerably applicable to the portions of the 
datasets. However, in order to detect the malicious 
activities like fraud detection, network sensors, spam 
detection, intrusion detection etc. To find out the 
anomalous observations among the various data points 

is the basic notion to find out the outliers but at the 
same time it should be crystal clear that it is not always 
the case, as sometimes they are very much interesting to 
us, so an occurrence of an event depending upon the 
situation decides its outlierness, for example, if a data 
item has the probability of occurrence is 0.0001 and it 
happens, it’s an outlier but if the data item has the 
probability of occurrence say, 0.998 and it does not 
occur, it’s again an outlier. So, probability density as 
well as the likelihood of data item decides it’s 
outlierness. Similarly, there are many factors and 
existing methodologies that helps to find out the 
outliers from the large datasets and databases in lower 
dimensional subspaces, but as soon as the 
dimensionality of the data goes higher, the data points 
or the data items are almost equidistant from each other 
due to which the higher dimensional outliers or the 
projected outliers are hidden in the lower dimensional 
subspaces and they are not highlightened. This problem 
is usually known as the curse of dimensionality. 

One of the solutions to this kind of problem is 

SPOT i.e., Stream Projected Outlier Detection model 

(Zhang, 2009) which employs a new window based 

time model and decaying data summaries to capture 

statistics from the data streams for outlier detection. 

Actually to find out the projected outliers from the 

higher dimensional data is quiet challenging. So, it is 

utmost important to build the Robust model under the 

following characteristics or parameters: 
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• Scalable: The system performance should not 
substantially degrade as the no. of the sequences. 
Thus there should be an optimized space and Time 
Complexity. 

• Unique: The system model should find a unique 
solution. 

• Comprehensible: If the system model highlights 
the set of the projected outliers, it must give the 
proper explanation that why the particular data 
objects are termed as anomalous.  

• Robust: The performance of the model should not 
be completely dependent on the input provided by 
the experts. The initial solution should be very 
rigid and capable enough to handle the adverse 
conditions.  

• Repeatable: The model should be capable enough 
to provide the repeatable solution. Thus the each 
time when the system is run, it should identify the 
exactly same amount of outliers. 

 
Clustering is a major aspect to detect the projected 

outliers in a sense that clustering and its anomalies are 
complement to each other in a way that the 
observations which are not included in a cluster are 
treated as noise, exceptions, novel data items w.r.t that 
cluster. To make the effective and efficient clusters the 
outliers must be removed from them which may be 
sometimes regarded as noise. The presence of outliers 
may have an adverse effect on the reliable clusters so it 
is desirable to remove the outliers from the prominent 
clusters but at the same time one cannot say completely 
that the outliers are the byproduct of clustering although 
some of the researchers have agreed to it, that’s why 
there are lots of algorithms and research work that is 
done which emphasis only on clustering but not on the 
outlier detection and analysis. So, clustering is a very 
important technique of anomaly detection. The popular 
clustering algorithms in context of KDD are 
CLARANS (Ng and Han, 1994) DBSCAN (Ester et al., 
1996),  BIRCH  (Zhang  et  al.,  1996),  STING (Wang 
et al., 1997), WAVECLUSTER (Sheikholeslami et al., 
1998), DenCLUE (Hinneburg and Keim, 1998), 
CLIQUE (Agrawal et al., 1998) are somehow helpful in 
detecting the anomalous observations or outliers, but 
their main objective is to do the clustering instead of 
outlier detection, so, there is a requirement of a model 
to optimize the outlier detection in an effective and an 
efficient way from the higher dimensional outliers. In 
this study we are trying to build a robust scalable 
clustering model using the hybrid approach and then to 
evaluate various parameters against it to prove its 
validity. 

 

LITERATURE REVIEW 

 

There are many outlier detections methodologies 

already proposed by so many researchers. Distance 

based outlier detection techniques were first of all 

introduced by Knorr and Ng (1998). According to them, 

"An object p in the data set DS is a DB(q, dist) outlier if 

at least fraction q of the objects in DS lie at the greater 

distance than the distance from p. "This definition can 

be further generalized and used in various statistical 

outlier   detection   methodologies. Then Ramaswamy 

et al. (2000) extended the above definition by providing 

the proper ranking or the outlier score to all the data 

points. According to the def, given by them " If there 

are two integers kn and w, an object p is said to be an 

outlier if less than w objects have higher value for D
K
 

than p, where D
k
 denotes the distance of the kth nearest 

neighbor of the object p. The concept of considering the 

whole neighborhood of the objects to determine the 

outliers was given by Angiulli et al. (2006) in which all 

the points were ranked based upon the sum of the 

distances from the k-nearest neighbors rather than 

considering individually the distance to the kth nearest 

neighbor. Breunig et al. (2000) proposed a very crucial 

method Local Outlier Factor (LOF) for each data object 

in a particular data set that quantifies how outlying an 

object is by indicating the degree of outlierness. Zhang 

et al. (1996) proposed a method named as Local 

Distance based outlier detection method for detecting 

outliers. LDOF of an object determines the degree of 

the detection of an object from its neighborhood. There 

are many clustering methods like CLARANS, 

DBSCAN, BIRCH, CURE to detect the outliers. 

Moreover Aggarwal and Yu (2000) studied the impact 

of high dimensionality on the distance based outlier 

detection but most of these approaches are less 

meaningful  in  the  higher dimensional data. Lazarevic 

et al. (2013) proposed a feature bagging approach to 

handle higher dimensionality in which various multiple 

outlier detectors are combined and then built on 

arandomly selected subset of features. Moreover, the 

statistical literature (Rousseeuw and Leory, 1987; 

Rocke and Woodruff, 1996; Atkinson, 1994) 

extensively includes the various outlier detection 

methods based on Mahalanobis distance. To provide the 

robustness, the scattered matrix and locations are used. 

Rousseeuw and Van Driessen (1999) provide more 

robustness to the MD based methods feasible for large 

sample size data. Danuser and Stricker (1998) provided 

the framework of least squares fitting of multiple 

parametric models. The classification algorithm for the 

projected outliers which was developed on the basis of 

the robust dimensionality reduction technique was 

introduced by Fidler et al. (2006). Time series using an 

autoregression model was proposed by Takeuchi and 

Yamanishi (2006). Pearson was first who introduced 

the case of Gaussian mixture with two components and 

also focussed various methods to estimate the mixture 

parameters (Dempster et al., 1977) then provided the 

theoretical framework of EM algorithm. Hasselblad 

(1966), Day (1969), Wolfe (1970) and Duda and Hart 

(1973) also provided the detailed treatment of mixture 
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densities and EM algorithm. Roeder and Wasserman 

(1997) provided the detailed illustration of the Bayesian 

perspective on density estimation using 

GaussianMixtures. Richardson and Green (1997) 

provided the extension of Bayesian sampling to be 

cases where the no. of Gaussian components are 

unknown.  

 

AN OVERVIEW OF THE PROPOSED 

APPROACH 

 

The proposed method has been made up after 

concluding the literature survey. It utilizes the basic 

notion of Distance based outlier detection and then to 

detect the degree of outlierness, density based outlier 

detection used. To provide the robustness to the model, 

Gaussian Mixture Model is used which calculates the 

probability density function of the data objects and 

finally Baye’s probability is used to confirm the outliers 

as Projected outliers.  

 

Distance based outlier detection method: The modern 

distance based approach states a simple notion that a 

data point is said to be an outlier if its locality is 

sparsely populated (Lazarevic et al., 2013). It is one of 

the important methods of outlier detection which is 

distribution free as well as easily applicable for the 

various types of data. According to distance based 

approach, Given a dataset X, an object xŰ X is a DB(α, 

δ)- outlier if: 

 

|{x
’
Ԑ X| d (x, x’) > δ}| ≥ αn                                           (1) 

 

Here, n = |x|, the no. of objects α, δ Ԑ R (0≤α≤ 1) 

are parameters There are two drawbacks of the distance 

based methods: 

 

• Setting the distance threshold δ is quite difficult in 

practice but setting α is not so difficult because it is 

always close to 1. 

• The lack of the ranking of the outliers as it always 

gives the binary result of whether the data object is 

an outlier or not. K
th

 nearest neighbor, i.e., KNN 

score qk
th

NN(x): = d
k 

(x;X)-dk(x,X) is the distance 

b/n x and its k
th

 NN in X, but again the two 

drawbacks of K
th

 nearest neighbor Approach is: 

o Scalability: O(n
2
) and its solution is the partial 

computation of the pairwise distances to compute 

the scores only for the top t outliers.  

o Detection ability and its solution is to introduce the 

degree of outlierness by switching to density based 

methods. 

 

Density based outlier detection method: The basic 
idea of the density based outliers is to calculate and 

compare the densities around a point with the densities 
around it’s local neighbors and that related density 
when computed becomes the outlier score. The general 
assumption of the density based outlier methods is that 
around the normal object the density of the data object 
is similar to the densities around its neighbors whereas 
the density of outlier is quiet different to the density 
around it’s neighbors. LOF or Local outlier Factor is 
based on pairwise distances and is a very prominent 
outlier detection method. The local outlier factor (LOF) 
qLOF(x) is defined as the ratio of the local reachability 
densities of x and the average of the localreachability 
densities of the k

th
 nearest neighbors. Consider the 

following: 

The reachability distance is: Rd(x,x’):= max{d
k
(x’, 

x), d(x, x’)}. 

The local reachability density is: 
 

△ �: = �( �
|	
(��|


� ��(�; � ′��′ԑ	�(�� ���
             (2) 

 
The LOF is defined as: 
 

���(�� = �( �
|��(
�|� � △��ԑ��(
� �

△�                 (3) 

 

In simple and straightforward calculation, LOF = 1 

implies point is in a cluster i.e., region with 

homogeneous density around the points and its 

neighbors and if LOF>>1: implies point is simply an 

outlier as mostly the interest is always shown in top n 

outliers, so LOF saves the time as there is no need to 

compute LOF for all the data points thereby saving the 

overall run time. 

 

Gaussian mixture model: GMM is one of the robust 

techniques to detect the anomalous observations and is 

generally used for the multimodal forms of the data 

distributions mixture models and the GMM parameters 

are estimated through the Expectation Maximization 

algorithm and it is also effectively applied for the 

clustering and classification. GMMs were initially used 

for the structural damage detection, then further it was 

used with Mahanalobis distance given by Nair and they 

and proved useful in solving damage detection. GMM 

model consists of the means, co-variances and a 

probabilistic assignment of every data point to the 

Gaussians GMM is the sum of K-Gaussian densities 

and it has the following forms: 

 

�(�� = � �� ( �
µ�

, Ʃ"���#�                              (4) 

 
Every Gaussian component containing the mixture 

ɳ(x/µk, Ɖk) has its own mean µk and covariance Ɖk. The 

parameters Πk are called mixing coefficients which 
satisfies: 
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Fig. 1: Modes at conditional distribution 

 

� ∏��%#� =1 and 0≤ ∏k≤1                (5) 

 
Gaussian Mixture distribution is used to maximize 

the log of the likelihood function (Dempster et al., 
1977) and the EM framework is used which is given by 
the following steps: 
 

• The parameters of GMM are initialized, i.e, means 
µk, covariance Ʃk and mixing coefficients Πk  

• E-Step(Expectation): In this step, the 
responsibilities γ(Zn, k) are evaluated using the 
most recent values of GMM parameters: 

 

&(Ƶ'"� = (�	(
)
µ� ,Ʃ��

� (*	(
)
µ* ,Ʃ%��*+�

                (6) 

  
where, Znk is an element of k- dimensional binary 
random variable z for nth learning pattern.  
 
M-Step (Maximization Step): In this step, the 
weighted means and variances are recomputed: 
  

µ�
',- = �

	�
� &(	'#� ƕ'"��'                                  (7) 

 

� =',-�
�

	�
� &(	'#� ƕ'"�  

.� − µ�
',-0(�' − µ�

',-�1                                     (8) 

 

 ��',- = 	�
	                                                            (9) 

 
Here, µk

new
 is a scalar whereas Ʃk

new
 denotes the d 

dimensional vectors where Nk =Ʃγ(Zn(k) and N is the 
no of learning patterns. Figure 1 illustrates this: 
These steps are intended till the convergence. 
 
Baye’s probability: Suppose, X = (x1, x2, x3…… xn) 
denotes the set of N observations from d dimensional 
space. If there are two classes say one of outlier and 
another of normal class N. Let the series of the 
projected outliers be M0 = {m1, m2, m3} be the 
corresponding outlier score of the higher dimensional 
projected outliers assigned to X. If there is no loss of 
generality, let us assume that the higher the value of pi, 
more likely xi is an outlier. i.e., mi = P(O| mi). 

The probability that xi is normal can be computed 

accordingly by P (N| mi) = 1-pi. According to it: 

3 � 4
56

� = 7�86
9 �7(4�

7�86
9 �7(4�:7�86

� �7(	�                             (10) 

 

3 � 4
56

� = �
�:;<= (�>6�                                          (11) 

 
Embedded approach and exact procedure:  
 

• Take the real or synthetic data that is basically used 
for clustering from UCI repository. 

• Make the absolute clusters from it using the K-
means clustering algorithm and then the cluster 
validation problem is resolved from it by choosing 
or applying the appropriate threshold to it. 

• Out of these absolute clusters, firstly the distance 
based outlier detection technique is applied, i.e., 
the distance of the data items from the cluster 
centroid is calculated first and its distance from the 
k-nearest neighbor is calculated. 

• Attribute Relevance Analysis is done so as to find 
the projected clusters. All the irrelevant attributes 
contain the noise or the outliers which are also 
termed as sparse data points whereas the relevant 
attributes exhibit some cluster structure (Agrawal 
et al., 1998). Higher the density of the points than 
it’s surrounding regions highly clustered the region 
would be. In order to investigate the densely 
populated region, the sparseness degree has to be 
computed and hence the density based outliers has 
to be applied. Then the local outlier factor has to be 
calculated for the projected clusters with the 
notion: 

 
LOF = 1 {data item is a normal object} 
LOF>> 1 {data item is simply an outlier} 

 

• After, the distance and density based methodology, 
apply the Gaussian Mixture Model to the output of 
both the distance and density based methods in 
order to calculate the probability density function. 
To do so, M-Step-Re-estimation of GMM 
parameters to upto date values of responsibilities 
γ(Znk). Free parameters of the Gaussian mixture 
model consist of the means and covariance 
matrices of the Gaussian components and the 
weights indicating the contribution of each 
Gaussian to the approximation of P(X | Cj). The 
Log-Likelihood function is given: 
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Fig. 2: Flow of the proposed work 

 

�% = ∏ 3(?6
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I�                                             (12) 

 
This step helps us to find the projected outliers. 
 

• Then Baye’s Probability is applied to the output 

obtained from the Gaussian Mixture Model. Baye’s 

probability relates the posterior density functions 

with the current probability density function to 

calculate or check the likelihood of a point and if 

there is a quiet or a little chance of categorizing a 

point as a normal one or it can be included in the 

cluster, then that point is pruned out. In this way, 

the final output obtained will be completely a 

refined and an exact stream of the projected 

outliers (Fig. 2). 

 

RESULTS AND DISCUSSION 

 

Initial results: First of all, absolute clusters are formed 

are formed using K-means clustering algorithm, then 

the distance based outlier detection is applied to detect 

the outliers. Then the cluster validation problem is 

resolved for it by choosing the exact threshold value. 

This threshold should be exact for the particular clusters 

so that neither too much outliers are highlighted nor the 

true outliers should be hidden. Secondly density based 

approach will exploit the further higher dimensional 

outliers. Then again the clusters are validated by 

choosing the appropriate radius value. The final 

projected outliers are highlighted after estimating 

probability density functions and conditional 

probabilities by using Gaussian Mixture model and 

Baye’s Probability respectively. Probability density 

function performs the relevance attribute analysis and 

Baye’s probability converges the attributes by applying  

the conditional check to highlight the projected outliers. 

This Experiment is done on the real dataset i.e., iris 

data set taken from UCI Repository, it’s a multivariate 

dataset with 150 instances and 4 attributes. Firstly the 

work is done on only two attributes sepal length, sepal 

width and then it is enhanced for another two attributes 

petal length and petal width to test the scalability of our 

model. In order to generate the exact accuracy, the 

absolute clusters are formed by validating the threshold 

value of the cluster and this threshold value is tested 

under  various  different  values of radius. Then it’s log- 

 
Table 1: No of the Projected outliers and their Elapsed time of various validated clusters 

Threshold (Ist step cluster 

validation in %) 

Radius value (IInd step 

cluster validation) Log-Likelihood No of iterations Projected outliers 

Time elapsed  

(in milliseconds) 

80 0.200 15.6658 39 94 0.6702764 

80 0.230 8.6652 41 54 0.737656 
80 0.250 11.9354 72 54 0.670268 

80 0.270 2.26815 38 54 0.670107 

80 0.285 18.8681 30 47 0.653342 
80 0.300 8.81027 37 47 0.711358 

90 0.200 17.1259 32 13 0.646975 

90 0.230 8.66552 24 13 0.649362 
90 0.250 5.23091 100 13 0.669489 

90 0.270 3.1248 96 13 0.660074 

90 0.285 18.8681 39 13 0.673496 
90 0.300 8.65112 43 13 0.821260 
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Fig. 3: Projected outliers at 80% threshold with radius 0.200 
 

 
 
Fig. 4: Projected outliers at 80% threshold with radius 0.300 
 

 
 

Fig. 5:  Projected outliers at 90% threshold with radius 0.200 

 
 

Fig. 6: Projected outliers at 90% threshold with radius 0.300 

 

likelihood value is estimated using the expectation step 

of Gaussian Mixture and finally the no of projected 

outliers and the time elapsed in executing them is 

shown in the Table 1. Consider the Fig. 3 and 4 

obtained after executing the model in matlab software 

which shows both the clusters and outliers are also 

highlighted. In these two figures the clusters are shown 

at a proper threshold value 80% and 90% at their 

extreme radius points so as to resolve the cluster 

validity problem and to obtain the absolute clusters. 

The attribute relevance analysis is done which helps in 

converging the large no of data points within the 

clusters which are marked as circles in Fig. 3 and 4 and 

the outliers of high projection are marked as small 

crosses.  

 

Performance evaluation: Our main motive is to 

construct the scalable model that should be Robust 

enough to handle the large no. of outliers. The various 

parameters are calculated for the above shown results 

(Fig. 5 and 6). 

 

Scalability: When the scalability is enhanced, for 

further more dimensions even then the performance 

will not degrade and the following results will be 

shown as in the fig. This fig shows the results when two 

more attributes are included in the data set. Now, the 

projected outliers are also enhanced at both 80 and 90% 

threshold value. The performance is not degraded as 

time elapsed is also comparatively very less. 
 
Uniqueness: In Table 1 and 2 every time when the 
model is executed, it provides unique no of outliers. At 
different threshold and different radius, a varying no of 
outliers with varying radius are shown. 
 

Time complexity and space complexity: The Time 

elapsed  by the projected outliers is calculated to be less  
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Table 2: No. of the projected outliers and their elapsed time of various validated clusters with enhanced dimensions 

Cases Threshold (%) Radius value Projected outliers Time in milliseconds 

1 80 0.200 118 1.161 
2 90 0.200 113 1.158 
3 80 0.230 71 1.145 
4 90 0.230 62 1.133 
5 80 0.250 71 1.140 
6 90 0.250 62 1.132 
7 80 0.270 71 1.139 
8 90 0.270 62 1.131 
9 80 0.285 65 1.135 
10 90 0.285 53 1.128 
11 80 0.300 65 1.132 
12 90 0.300 51 1.127 

 

 
 

Fig. 7: Comparison of time with amplitude 

 
than order of O(n

2
) and the CPU burst time and the self 

time is calculate to be 0.48 and 0.16 milliseconds. 
Individual time elapsed for all the cases are shown in 
Fig. 7. 

Usually, in the higher dimensional data, when the 
dimensionality is enhanced, the time is increased and it 
degrades the system’s performance upto a large extent, 
but in our case, when the dimensionality is enhanced 
although the time is increased (Table 2) but still the 
performance is not degraded as shown in Fig. 7. The 
unfiltered data after delay composition will remain as it 
is and as it is not affecting the amplitude and hence it 
will not affect the system’s overall performance. 
 

Curse of dimensionality: This is the problem where 

the higher dimensional or projected outliers are hidden 

in the lower dimensional subspaces and hence their 

prominence is overlooked which has a major impact at 

the overall performance of the system. In order to 

resolve this problem, we have found out the individual 

probability densities of the clusters using Gaussian 

mixture and to confirm their outlierness, conditional 

probability is used using Bayes Probability. Hence, the 

projected outliers that are hidden in lower dimensional 

subspaces are highlightened and become more 

prominent.  

 

Robustness: The enhancement of the scalability does 

not compromise with the quality and quantity of the 

outliers; moreover, it does not enhance the time and the 

space complexity of the outliers, so the overall 

performance of the system remains unaffected, hence 

the system is Robust under the severe conditions. 
 

CONCLUSION 

 
In this study, we proposed a robust and a scalable 

model using hybrid approach and clustering. After 

constructing the clusters using K-means, different other 
methodologies like Distance Based, Density Based, 
Gaussian Mixture and ultimately Bayes probability is 
applied. At varying radius and threshold the quantity 
and the quality of the outliers is checked and the model 
is finally tested under various parameters like 
Scalability, Robustness, Time Complexity etc at initial 
position and when the dimensionality is enhanced, the 
performance is no impacted.  
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