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Abstract: Smartphones and mobile devices are rapidly growing with their popularity as a part of global 
infrastructure powered communication system. As mobile devices become ubiquitous, used for a wide variety of 
application areas like personal communication, data storage, accessing online information, making payment, etc. 
The tremendous growth of smartphone usage makes it a target for malicious attackers to propagate malware attacks. 
Increased demand for mobile devices is due to the huge availability of applications that can be downloaded and 
installed easily on these devices. It is difficult for the general users to differentiate between the set of permissions 
which are potentially harmful and those which are not. This paper proposes to solve these issues by enhanced 
machine learning based malware detection framework using optimization algorithms. New classifier is developed by 
integrating GA and PSO with Random Forest algorithm. The Outcome from this paper is a new MSGP Malware 
Detection System consisting of MSGP-MDS Classifier. This reveals that classification of Android APK files using 
PSO plays a critical role in realizing higher accuracy with the minimum computation resource requirement. 
 
Keywords: Android, goodware, machine learning, malware, malware detection, optimization technique 

 
INTRODUCTION 

 
Smartphones are playing important role in 

everyday lives since they enable everyone to access a 
large variety of different services from any place. The 
adoption of smart phone is rapidly increasing which is 
directly linked to the improved computational power 
and other utility functions. Smartphone’s offer various 
capabilities of traditional personal computers and in 
additionally provide a large selection of connectivity 
options like IEEE 802.11, Bluetooth, GSM, GPRS, 
UMTS, EDGE, 3G, 4G, HSDPA, HSPA (plus) and 
LTE. As part of utilizing mobile devices, certain 
sensitive data such as contact lists, passwords and credit 
card numbers are stored on these mobile devices. 
Additionally to a pre-installed mobile operating system 
like Blackberry OS, Symbian OS, iOS, Android and 
Windows Mobile, most Smartphone’s  additionally 
support Wi-Fi connectivity, (Sujithra  and Padmavathi, 
2012) in order that users can access the Internet to 
download and run numerous third-party applications.  
Although these capabilities provide for useful service to 
the users, where wide range of devices exchange data 
with each other thus open up serious security and 
privacy concerns. The tremendous growth of 
smartphone usage makes it a target for malicious 

attackers to propagate malware and perform other 
malicious attacks. 

Malware, as a malicious application that can be 
installed on mobile devices, with the intention of 
breaching device security policy with respect to 
confidentiality, integrity and availability of data. The 
malware comes in different forms such as a virus, 
Trojan horse, spyware, adware or trapdoor etc. Malware 
has proven to be a serious problem for the mobile 
platform because malicious applications can be 
distributed to these devices through an application 
market. Users can download/upload the APK files from 
third party servers and can install into their mobile 
devices. Most of the applications from trusted sources 
are not malware, but the third party server providing 
malware in modified APK. So before the applications 
are being installed in the smart phones they can be 
detected whether they are malware or goodware (ESET 
Labs, 2013). To mitigate these security threats, various 
mobile specific Detection Systems have been recently 
proposed. The presence of a malware in android 
applications can be detected by using any one of these 
three techniques. They are: 

 
 Attack or invasion detection 
 Misuse detection (signature-based)  
 Anomaly detection (behavior-based) 
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Among these three techniques, the anomaly or 
behavior based detects the malware with the use of the 
permissions. Anomaly detection refers to detecting 
patterns in a given dataset that do not conform to an 
established normal behavior. The proposed 
methodology monitors various permissions based 
features obtained from the android applications and 
analyze these features by using machine learning 
classifiers to detect whether the application is goodware 
or malware. Further the proposed methodology exploits 
optimization techniques in classification of normal and 
malware applications with high detection rate. Machine 
learning is a branch of artificial intelligence that focuses 
on the development of algorithms that allow devices to 
reason and decide based on data. Machine learning 
algorithms can commonly be divided into three 
different types: supervised learning, unsupervised 
learning and semi-supervised learning (Fedler et al., 
2013). Android applications can be properly labeled, so 
supervised machine learning methods for detection of 
android malware applications is proposed. Each 
application must declare what permissions it requires 
before installed. The mechanism warns the user about 
permissions an app requested before installed and hopes 
the user makes the right choice. Extract permission 
features from the application files and use decision tree 
supervised machine learning classifiers (RF, CART and 
J48) to detect malicious applications (Wei et al., 2012). 

In this framework, the android applications on 
android market are downloaded and decompressed into 
the contents of Android applications. The proposed 
method is based on the characteristic analysis of 
Android manifest files and is effective for detecting 
malware. The AndroidManifest.xml and classes.dex 
files are only selected because these two files contain 
the necessary permissions features. Android malware 
applications can be detected by using machine learning 
approaches. To address the problem, extract android 
permission features from the application files and use 
decision tree classifiers (RF, CART, J48) to detect 
malware in malicious applications. Current techniques 
in    malware    classification    do    not    give   a   good 

classification result when it deals with the new and 
unique types of malware. For this reason, the proposed 
methodology is enhanced with the usage of 
optimization techniques such as Genetic Algorithm and 
Particle swam Optimization Algorithm to optimize the 
malware classification system (Garcia et al., 2006). The 
contribution of the paper includes the enhancement of 
the optimized Random Forest Classifier. This reveals 
that classification of Android APK files plays a critical 
role in realizing a higher detection rate with the 
minimum computation resource requirement. 
 

LITERATURE REVIEW 
 

Android malware applications have been rapidly 
rising and there are several approaches to detect these 
malware applications. Various approaches have been 
proposed by different authors for detecting malware in 
android mobile devices based on their permissions. 
Some of them are discussed below. 

Aung and Zaw (2013) monitored various 
permissions used features and events obtained from the 
android applications and analyses these features by 
using machine learning classifiers to classify whether 
the application is goodware or malware. 

Hein (2014) presented the permission based 
malware protection model for Android application and 
then uses the self-organizing feature map algorithm. 
This is express to make small subsequent adjustments 
of the protection level and to improve the accuracy of 
the android permissions.  

Sanz et al. (2013) presented PUMA, a new method 
for detecting malicious Android applications through 
machine learning techniques by analyzing the extracted 
permissions from the application itself.  

Xie et al. (2010) proposed a behavior-based 
malware detection system (pBMDS) that correlates 
user’s inputs with system calls to detect anomalous 
activities related to SMS/MMS sending.  

Abela et al. (2013) Gave the capability to classify 
unknown applications based from its data, can be used

 
Table 1: Summarizes the significant literatures reviewed for malware detection system 
Year Author Techniques used Metrics 
2014 Chit La Pyae Myo Hein Permission based malware protection for 

Android applications (SOM) 
True positive ratio, false positive ratio, 
Total accuracy 

2013 Abela, Kevin Joshua L. 
Angeles, Don Kristopher E, Delas Alas, 
Jan Raynier P, Tolentino, Robert Joseph, 
Gomez, Miguel Alberto N. 

Behavior based malware detection (Naïve 
Bayes algorithm, decision tree algorithms) 

True positive 
Rate, false positive rate, ROC area. 

2013 Zarni Aung, Win Zaw Permission based malware detection.(J48, 
CART, random forest) 

True positive, false positive, true 
negative, false negative, true positive 
rate, false positive rate, overall accuracy. 

2013 Borja Sanz, Igor Santos, Carlos Laorden, 
Xabier Ugarte-Pedrero, Pablo Garcia 
Bringas, Gonzalo Alvarez. 

Permission based malware detection 
(Machine-learning classifier, k-fold cross 
validation) 

Accuracy, false positive rate, true 
positive rate. 

2010 Liang Xie, Xinwen Zhang, Jean-Pierre 
Seifert, Sencun Zhu 

Permission based malware detection 
(Hidden Markov Model) 

Accuracy, false positive. 
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to categorize different Android applications in the 
market and to differentiate whether the application is 
goodware or malware using behavior based analysis. 
Detection of malware using different techniques and 
metrics is listed in Table 1. 
 

PERMISSION BASED MALWARE  
DETECTION SYSTEM 

 
In this proposed methodology, Machine Learning 

Classifiers and Optimization techniques are used to 
analyze and classify the malware applications by 
comparing the permissions extracted from the 
applications which are labelled in the dataset. In 
summary, our main findings are extraction of features 
from the manifest file of android applications based on 
the permissions. Selection and Reduction of extracting 
features are done. Machine learning classifiers are used 
for the classification and detection of malicious 
applications. The detection rate of the classifiers is 
improved by optimization techniques (Rastogi et al., 
2013). 
 
Feature extraction: Features are the attributes used for 
defining the permission characteristics of an 
application.  For any downloaded Android application, 
retrieve the features from the corresponding application 
package file. Analyze the Manifest file of an 
application and identify real permissions required by 
the application. The values of selected features are 
stored as a feature vector, which is represented as a 
sequence of bits (0’s or 1’s). A feature set can be 
specified as a feature vector, which includes all the 
permissions that are requested from the user. This 
framework uses a feature extraction tool written by 
python  script file to extract android permission features 

(Damopoulos et al., 2011). The proposed framework is 
shown in Fig. 1.  

Permissions are requested by an application during 
the installation process to grant access to various 
features and functionalities on a device. Currently there 
are 124 unique permissions which are categorized into 
11 top level groups. These permissions are displayed 
before any application is installed and can also be 
viewed post installation. The downfall is that users 
cannot be expected to understand all 124 permissions or 
the associated risks with a few specific permissions and 
also it is impossible for users to know which 
permissions are actually needed by an application. 

Every application must have an android 
Manifest.xml in its root directory. The manifest 
presents essential information about the application to 
the Android system. The features in each Android 
application are extracted through the following steps: 
 
 Download the goodware and malware applications 

available. Decompress the application (.apk) file by 
the reengineering process and separate it into its 
various component files.  

 One among the files is the Android Manifest.xml 
file. This xml file has various permissions 
contained in it. The permissions of the XML file 
are extracted and converted into binary form (0 or 
1). 

 The binary bit of the feature is set valid (1) if the 
permission is present in the apk file else the bit is 
set as invalid (0). These permissions form the 
features through which the dataset is built. Figure 2 
is the overall process of automatic feature 
extraction. The few sample permissions are 
described in Table 2. 

 

 
 

Fig. 1: Permission based malware detection methodology 
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Table 2: List of permissions on an APK file 
Permission Usage 
Android.permission. 
PROCESS_OUTGOING_CALLS 

The application allows the user to see the number being dialed during an outgoing call with 
the option to redirect the call to a different number or abort the call altogether. 

Android.permission.RECEIVE_SMS Allows an application to monitor incoming SMS messages, to record or perform processing 
on them. 

Android.permission.SET_PROCESS_LIMIT Allows an application to set the maximum number of (not needed) application processes 
that can be running. 

Android.permission.CALL_PHONE Allows an application to initiate a phone call without going through the Dialer user 
interface for the user to confirm the call being placed. 

 
Finally the dataset is formed which is saved in a 

text format: 
 
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, goodware   

 
A sample Dataset generated from features of a 

goodware application. 
 

0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 
0, 0, 0, 0, 0, 0, malware 

 
A sample Dataset generated from features of a 

malware application. 
 
Feature selection: Feature selection methods are used 
for reducing the dimension size of a dataset by 
removing the features (attributes) which are not 
beneficial to be used in the analysis. Efficient feature 
selection methods introduce performance gains by 
reducing the dataset size and the time spent in 
classification analysis.  These adverse effects are even 
more crucial when applying on mobile devices, since 
they are often restricted by processing and storage-
capabilities, as well as battery power. Information Gain 
is  selected  among  feature-selection algorithms (Silva 
et al., 2013). It is the method of determining the rank of 
appropriate feature through the entropy difference 
between the cases of accurate classification through 
features. The feature selection is done based on the gain 
ratio. The features with a higher gain ratio, yield higher 
optimality to the resultant generation. The features are 
selected based on the Gain value by referring whether 
they are greater than 0 and only the features which are 
greater than 0 is included in the minimized dataset or 
selected features. According to this Gain value the 

features are reduced from the original feature set 
(Bahrololum et al., 2009). Entropy should be calculated 
for each and every feature by the formula given below: 
 

Entropy = -pi log2pi 

Where pi is the probability of class i. 
After the entropy are calculated the gain of a 
feature is to be calculated as 

Gain (S, A) = Entropy (S) - Σ |SV| Entropy (SV) V 
€ Values (A) |S|  
[Attribute A on a collection of samples S]. 

 

The Feature Selection steps given in Algorithm: 
 
Algorithm for feature selection: 
 
 The entropy and info_split are calculate for each 

feacher in the dataset. 
 The gain ratio is obtained using the entropy and 

info_split. 
 The features with the higher gain ratio are selected 

and collected into new dataset. 
 

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 
0, 0, 0, 1, 0, 0, goodware A sample Dataset generated 
after performing feature selection.  
 
Feature reduction: Number of training samples 
needed to design a classifier grows with the dimension 
of the features.  A way to reduce the dimension of the 
features without losing any essential information is 
needed. The main idea is to define k centroids, one for 
each cluster. The simple K-means algorithm chooses 
the centroid randomly from the applications set. The K-
means clustering partitions a data set by minimizing a 
sum of-squares cost function. The selected features are 
collected in the signature database and divided into 
training data and test data and used by the standard 
machine learning techniques to detect android malware 
applications. K-means clustering uses to group the 
feature set in clusters. Choosing K-means clustering 
provides advantages like: 
 
 At least a local minimum of the criterion function 

is guaranteed and thereby the convergence of 
cluster on large data sets is accelerated. 
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 It is a data driven method with relatively few 
assumptions about the distributions of the 
underlying data. 
 

Algorithm: 
 
1. Place K points in the space represented by the 

objects that are being clustered. 
2. These points represent initial group centroids. 
3. Assign each object to the group that has the closest 

centroid. 
4. When all objects have been assigned, recalculate 

the positions of the K centroids. 
5. Repeat Steps 2 and 3 until the centroids no longer 

move. This produces a separation of the objects 
into groups from which the metric to be minimized 
can be calculated. 

 
Following provides the pseudocode of clustering: 
 
X: A set of N data vectors   

Data set 
CI: Initialized k cluster centroids   

Number of clusters, 
C: The cluster centroids of k-clustering 

random initial centroids 
P = {p (i) | i = 1, …, N} is the cluster label of X 
KMEANS(X, CI) → (C, P) 

REPEAT 
Cprevious ← CI; 

FOR all i ∈ [1, N] DO  
Generate new optimal paritions 

p (i) ← arg min d (xi, cj); 
l ≤ j ≤ k 

FOR all j ∈ [1, k] DO  
Generate optimal centroids 
cj ← Average of xi, whose p(i) = j 

UNTIL C = Cprevious 

 
MACHINE LEARNING APPROACH 

 
Decision tree classifiers are tree based classifiers 

for instances represented as feature vectors. They 
recursively partitions a dataset of records and use a 
depth first greedy method or breadth first approach. 
Nodes are used for test features, there is one branch for 
each value of the feature and leaves specify the 
category until all the data items belong to a particular 
class. Decision Trees base the classification of instances 
by sorting feature vectors. Three machine learning 
classification algorithms were applied to the data sets: 
Random Forest (RF), Classification and Regression 
Trees (CART) and J48 (Kumar and Kumar, 2014). 
 
The random forest algorithm: Random forests are an 
ensemble learning method for classification, regression 
and other tasks, that operate by constructing a multitude 
of decision trees at training time and outputting the 
class that is the mode of the classes (classification) or 

mean prediction (regression) of the individual trees. 
Random Forests (RF) are a combination of tree 
predictors such that each tree depends on the values of a 
random vector sampled independently and with the 
same distribution of all trees in the forest. The 
generalization error of a forest of tree classifiers 
depends on the strength of the individual trees in the 
forest and the correlation between them. Each tree is 
independently constructed using a bootstrap sample of 
data.  
 
The pseudocode of the classifier RF: 
 
 Selected the number of trees to grow and number 

no larger than number of variables. 
 For i = 1 to n tree 
 Draw a bootstrap sample from the data call those 

not in the bootstrap sample the “out-of-bag” data. 
 Grow a “random” tree, where at each node, the best 

split is chosen among mtry randomly selected 
variables. The tree is grow to maximum size and 
not pruned back  

 Use the tree to predict out-of-bag data 
 In the end, use the prediction on out-of-bag data to 

from majority votes. 
 Prediction of test data is done by majority votes 

from prediction from the ensemble of trees.   
 
Forest chooses the classification having the most 

votes (Glodek and Harang, 2013). A tree is grown by 
first sampling a random number of N cases in the 
training set. For each input variable M, a number value 
m is used for each node to select randomly from the 
input variable to be used to split a node. After, the 
generated tree is fully grown as deep as possible. 
 
Classification and Regression Tree (CART): 
Classification and Regression Trees uses cross-
validation or a large independent test sample of data to 
select the best tree from the sequence of trees 
considered in the pruning process. The basic CART 
building algorithm is a greedy algorithm that it chooses 
the locally best discriminatory feature at each stage in 
the process. In the implementation of CART, the 
dataset is split into the two subgroups that are the most 
different with respect to the outcome. CART partitions 
the feature space into a set of rectangles and fit a simple 
model in each one. Then it constructs a binary tree 
structured classifiers by repeated splits of subsets of the 
measurement spaces into two descendant subsets. This 
method assigns a class label for each terminal subset 
and the resulting partition of x corresponds to the 
classifier (Denison et al., 1998). The pseudocode of the 
classifier CART. 

Let the data be a set of O vector observations, each 
of length V, such that each observation has one 
response variable and V-1 predictor variables 
(supervised learning). 
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oi = {oil,…, oiV} = {ri, pi1,…, pi(V-1)} 
 
 For all V-1 predictors, order its values (separate 

into categories) partition the sorted predictor 
variable at every delta in the sorted values (or by 
excluding any category) partition the associated 
response variable in the same way and compute its 
resulting variance (over two groups) 

 Choose the partition which minimizes the response 
variance over all predictors and thresholds. 

 Split the data into 2 pieces on this threshold and 
repeat steps 1 and 2 on both until some stopping 
rule is satisfied or each partition contains only 1 
data point     

 
J48: The j48 Classification algorithm is inductively 
learned to construct a model from the pre-classified 
data set. Each data item is defined by values of the 
characteristics or features. Classification may be 
viewed as a mapping from a set of features to a 
particular class.  J48 creates an instance of this class by 
allocating memory for building and storing a decision 
tree classifier (Hall et al., 2013).  
 
The pseudocode of the classifier J48: 
 
1. Create a root node N 
2. If T belongs to the same category C, then return N 

as a leaf node and mark it as class C 
3. If attribute list is empty or the reminder sample of 

T is less than a given value, than return N as a leaf 
node and mark it as the category which appears 
most frequently in attribute list, for each 
attribution, calculate its information gain ratio 

4. Suppose test attribute is the testing attribute of N, 
then test attribute-the attribute which has the 
highest information gain ratio in attribution list; 

5. If testing attribute is continuous, then find its 
division threshold 

6. For each new leaf node grow by node N 
 

{ 
(a) Suppose T is the sample subset 

corresponding to the leaf node. 
(b) If T has only a decision category, then 

mark the leaf node as this category,  
(c) Else continue to implement J45_Tree 

(T’, T’_Attribute list) 
}  

 
7. Calculate the classification error rate of each node 

and then prune the tree. 
 
Basic Steps in the Algorithm: 
 
 In case the instances belong to the same class the 

tree represents a leaf so the leaf is returned by 
labelling with the same class. 

 The potential information is calculated for every 
attribute, given by a test on the attribute.  Then the 

gain in information is calculated that would result 
from a test on the attribute. 

 Then the best attribute is found on the basis of the 
present selection criterion and that attribute 
selected for branching. 

 
ENHANCED CLASSIFICATION USING 

OPTIMIZATION ALGORITHM 
 

Current techniques in malware classification do not 
give a good classification result when it deals with the 
new and unique types of malware. For this reason, the  
usage of optimization techniques, namely Genetic 
Algorithm and Particle Optimization Algorithm is used 
to optimize the malware classification system. This new 
malware classification system also has an ability to 
train and learn by itself, so that it can predict the current 
and upcoming trend of malware attack. One of the main 
goals is to detect and classify the unique malware that 
has a relationship during the execution. The other goal 
is to find unique malware that performs the same 
behavior, but providing different syntax representation. 
A framework is proposed by combining GA and PSO 
with the implemented machine learning classifiers. 
 
Proposed methodology-1 genetic algorithm with RF 
classifier: GA is belongs to the larger class of 
Evolutionary Algorithm (EA). GA includes the survival 
of the fittest idea into a search algorithm which 
provides a method of searching, which does not need to 
explore every possible solution in the feasible region to 
obtain a good result. GA also commonly used for a 
learning approach to solve computational research 
problem. By tradition, solutions are represented in 
binary as strings of 0s and 1s, but other encodings are 
also possible. In each generation, the fitness of every 
individual in the population is evaluated. The fitness is 
usually the value of the objective function in the 
optimization problem being solved. The fittest 
individuals are stochastically selected from the current 
population and each individual's genome is modified to 
form a new generation. The new generation of 
candidate solutions is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations have 
been produced, or a satisfactory fitness level has been 
reached for the population (Yusoff and Jantan, 2011). A 
typical genetic algorithm requires a genetic 
representation of the solution domain and a fitness 
function to evaluate the solution domain is  as 
following: 
 

Evaluate each individuals fitness 
Determine population's average fitness 
Repeat 

Select best ranking individuals to 
reproduce 
Mate pairs at random 
Apply crossover operator 
Apply mutation operator 
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Evaluate each individual's fitness 
Determine population's average fitness 
Select ntree, the number of trees to grow and mtry, 
a number no larger than a number of variables 
For i = 1 to n tree: 
Draw a bootstrap sample from the data. 
Call those in the bootstrap sample the “out-of-bag” 
data. 
Grow a “random” tree, where at each node, the best 
split is chosen among mtry randomly selected 
variables. The tree has grown to maximum size and 
not pruned back. Use the tree to to predict out-of-
bag data. 
In the end, use the predictions on out of bag data to 
form majority votes. Prediction of test data is done 
by majority votes from predictions from the 
ensemble of trees. 

 
Proposed methodology-2 particle swarm 
optimization with RF classifier: Particle Swarm 
Optimization (PSO) is a computational method 
that optimizes a problem by iteratively trying to 
improve a candidate solution with regard to a given 
measure of quality (Senthilkumar and Kannan, 2014). 
PSO optimizes a problem by having a population of 
candidate solutions, here dubbed particles and moving 
these particles around in the search-space according to 
simple mathematical formulae over the 
particle's position and velocity. Each particle's 
movement is influenced by its local best known 
position, but is also guided toward the best known 
positions in the search-space, which are updated as 
better positions are found by other particles. PSO 
achieve its optimal solution by starting with a group of 
random solution and then searching repeatedly 
(Ahandani and Baghmisheh, 2013). This is expected to 
move the swarm toward the best solutions. 
 
For each particle 
 Initialize particle 
Do 
 For each particle: 
  Calculate the fitness value 
  If the fitness value is better than the 
best fitness value (pBest) in history  
  Set current value as the new pBest 
End 
For each particle: 
 Find in the particle neighborhood, the particle 
with the best fitness 
 Calculate particle velocity according to the 
velocity equation 
 Apply the velocity Constriction 
 Update particle position according to the 
position equation 
 Apply the position constriction 
Select ntree, the number of trees to grow and mtry, a 
number no larger than a number of variables. 
For i = 1 to ntree: 

Draw a bootstrap sample from the data. Call those 
in the bootstrap sample the “out-of-bag” data. 

Grow a “random” tree, where at each node, the best 
split is chosen among mtry randomly selected variables. 
The tree has grown to maximum size and not pruned 
back. 

Use the tree to predict out-of-bag data. 
In the end, use the predictions on out of bag data to 
form majority votes. 

Prediction of test data is done by majority votes 
from predictions from the ensemble of trees. 
 

EXPERIMENTAL RESULTS  
AND DISCUSSION 

 
To evaluate the proposed framework, collected 

1000 including normal applications from android 
market and malicious applications from the internet 
site. The dataset used during the evaluation were 
composed of Android apps collected in this system. 
These apps were already classified into benign and 
malicious samples. Out of over 136,000 available apps 
from Google's official Play Store and out of over 
40,000 malicious samples identified by Virus Total, 
representing 192 malware families, randomly selected 
200 distinct apps. In detail, selected 150 benign apps 
and 50 malicious apps. 

In order to perform the evaluation of the proposed 
mechanism and comparison between the various 
detection algorithms and feature selection schemes here 
employed the following standard metrics: the True 
Positive Rate (TPR) measure, which is the proportion 
of positive instances classified correctly; False Positive 
Rate (FPR), which is the proportion of negative 
instances misclassified; and the Total Accuracy, which 
measures the proportion of absolutely correctly 
classified instances, either positive or negative. The 
performance of the proposed swarm optimized 
technique over the machine learning techniques 
comparatively considered were evaluated in terms of 
the below parameters such as Detection time, True 
positive rate, False positive rate and Detection accuracy 
(Ham and Choi, 2013): 

 
True Positive Rate (TPR): Percentage of correctly 
identified goodware applications: 

 
TPR = (TP/TP+FN) 

 
False Positive Rate (FPR): Percentage of wrongly 
identified malware applications: 

 
FPR = (FP/TN+FP) 

 
Precision value: It is the number of correctly classified 
positive examples with respect to the number of 
examples that exist in the system as positive.  

 
Precision value = (TP/TP+FP) 
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Table 3: Experimental results classifiers 

Algorithm TP rate FP rate Precision Recall
Correctly identified 
instances (%)

Incorrectly identified
instances (%)

J48 0.83 0.17 0.87 0.79 83.3 16.7 
CART 0.79 0.21 0.86 0.69 79 21 
Random forest 0.87 0.13 0.91 0.81 86.8 13.2 

 
Table 4: Experimental results optimized classifiers 
Algorithm Correctly identified instances (%) Incorrectly identified instances (%)
Random forest 86.8% 13.2% 
Genetic algorithm with RF 87% 13% 
Particle  swarm optimization with RF  88.4% 12.6% 

 

 
 
Fig. 2: An example of decompile APK file 
 
Recall: Recall in information retrieval is the fraction of 
the documents that are relevant to the query that are 
successfully retrieved: 

 
Recall = (TN/TN+FN) 
 

Overall accuracy (ACC): Percentage of correctly 
identified applications 
 

ACC= (TP+TN/TP+TN+FP+FN) 
 

True Positive (TP) is the number of correctly 
identified goodware applications, False Positive (FN) is 
the number of wrongly identified goodware 
applications, True Negative (TN) is the number of 
correctly identified malware applications and False 
Positive (FN) is the number of wrongly identified 
goodware applications. 

Table 3 provides the comparison of parameters 
between J48, CART and Random Forest. The given 
parameters are True positive rate, false positive rate, 
Precision Value in (%) and Recall Value in (%) and 
Accuracy in (%). 

Table 4 provides the comparison of Random 
Forest, Genetic Algorithm and particle swarm 
optimization using the parameters such as correctly 
identified instances (Accuracy) in % and incorrectly 
identified instances in %. 

Figure 3 gives the comparison, that random forest 
has high correctly identified instances of about 86.8% 
than compared to J48 whose correctly identified 
instance is 83.3% and CART of correctly identified 
instance 79%. Again to increase this accuracy, 
optimization techniques are used. 

Figure 4 gives the comparison, that particle swarm 
optimization has high correctly identified instances of 
about 88.4% than compared to genetic algorithm of 
correctly identified instance is 87% and random forest 
of correctly identified instance 86.8%. 

 
 

Fig. 3: Experimental results-classifiers 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Experimental results-optimized classifiers 

 
CONCLUSION 

 
A framework for detection of android malware 

applications using machine-learning techniques has 
been proposed by extracting permission features from 
several downloaded applications from android markets. 
The results were further optimized by optimization 
techniques to detect the android applications whether it 
is goodware or a malware application. This paper 
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proposed the usage of optimization algorithms such as 
Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) as an approach to optimize 
Random forest Decision Tree in malware classification. 
New classifier is developed by combining GA and PSO 
with RF_DT named as MSGP Malware System 
(MSGP-MS) Classifier. Using real-world malware and 
benign applications, experiments were conducted on 
Android mobile devices. Experimental results obtained 
from MSGP-MS Classifier with RF are compared and 
visualized in tables and graphs. MSGP-MS Classifier 
shows an accuracy increase from RF Classifier. The 
outcome of this paper is a new MSGP Malware 
Classification System consisting of MSGP-MS 
Classifier.  This reveals that classification of Android 
APK files using PSO plays a critical role in realizing 
higher accuracy with minimum computation resource 
requirement. 
 
Conflicts of interest: The idea of detecting the 
malware by machine learning classifiers exits in 
literature, However the issues are not handled properly. 
Our proposed methodology handles the pitfalls with the 
improvisation of results. 
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