
Research Journal of Applied Sciences, Engineering and Technology 12(7): 732-741, 2016
DOI:10.19026/rjaset.12.2749
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2016 Maxwell Scientific Publication Corp.
Submitted: October 5, 2015 Accepted: November 4, 2015 Published: April 05, 2016

Corresponding Author: M. Sujithra, Department of Computer Science, Avinashilingam Institute for Home Science and Higher

Education for Women, Coimbatore, India
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

732

Research Article

Enhanced Permission Based Malware Detection in Mobile Devices Using Optimized
Random Forest Classifier with PSO-GA

M. Sujithra and G. Padmavathi

Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore, India

Abstract: Smartphones and mobile devices are rapidly growing with their popularity as a part of global
infrastructure powered communication system. As mobile devices become ubiquitous, used for a wide variety of
application areas like personal communication, data storage, accessing online information, making payment, etc.
The tremendous growth of smartphone usage makes it a target for malicious attackers to propagate malware attacks.
Increased demand for mobile devices is due to the huge availability of applications that can be downloaded and
installed easily on these devices. It is difficult for the general users to differentiate between the set of permissions
which are potentially harmful and those which are not. This paper proposes to solve these issues by enhanced
machine learning based malware detection framework using optimization algorithms. New classifier is developed by
integrating GA and PSO with Random Forest algorithm. The Outcome from this paper is a new MSGP Malware
Detection System consisting of MSGP-MDS Classifier. This reveals that classification of Android APK files using
PSO plays a critical role in realizing higher accuracy with the minimum computation resource requirement.

Keywords: Android, goodware, machine learning, malware, malware detection, optimization technique

INTRODUCTION

Smartphones are playing important role in

everyday lives since they enable everyone to access a
large variety of different services from any place. The
adoption of smart phone is rapidly increasing which is
directly linked to the improved computational power
and other utility functions. Smartphone’s offer various
capabilities of traditional personal computers and in
additionally provide a large selection of connectivity
options like IEEE 802.11, Bluetooth, GSM, GPRS,
UMTS, EDGE, 3G, 4G, HSDPA, HSPA (plus) and
LTE. As part of utilizing mobile devices, certain
sensitive data such as contact lists, passwords and credit
card numbers are stored on these mobile devices.
Additionally to a pre-installed mobile operating system
like Blackberry OS, Symbian OS, iOS, Android and
Windows Mobile, most Smartphone’s additionally
support Wi-Fi connectivity, (Sujithra and Padmavathi,
2012) in order that users can access the Internet to
download and run numerous third-party applications.
Although these capabilities provide for useful service to
the users, where wide range of devices exchange data
with each other thus open up serious security and
privacy concerns. The tremendous growth of
smartphone usage makes it a target for malicious

attackers to propagate malware and perform other
malicious attacks.

Malware, as a malicious application that can be
installed on mobile devices, with the intention of
breaching device security policy with respect to
confidentiality, integrity and availability of data. The
malware comes in different forms such as a virus,
Trojan horse, spyware, adware or trapdoor etc. Malware
has proven to be a serious problem for the mobile
platform because malicious applications can be
distributed to these devices through an application
market. Users can download/upload the APK files from
third party servers and can install into their mobile
devices. Most of the applications from trusted sources
are not malware, but the third party server providing
malware in modified APK. So before the applications
are being installed in the smart phones they can be
detected whether they are malware or goodware (ESET
Labs, 2013). To mitigate these security threats, various
mobile specific Detection Systems have been recently
proposed. The presence of a malware in android
applications can be detected by using any one of these
three techniques. They are:

 Attack or invasion detection
 Misuse detection (signature-based)
 Anomaly detection (behavior-based)

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

733

Among these three techniques, the anomaly or
behavior based detects the malware with the use of the
permissions. Anomaly detection refers to detecting
patterns in a given dataset that do not conform to an
established normal behavior. The proposed
methodology monitors various permissions based
features obtained from the android applications and
analyze these features by using machine learning
classifiers to detect whether the application is goodware
or malware. Further the proposed methodology exploits
optimization techniques in classification of normal and
malware applications with high detection rate. Machine
learning is a branch of artificial intelligence that focuses
on the development of algorithms that allow devices to
reason and decide based on data. Machine learning
algorithms can commonly be divided into three
different types: supervised learning, unsupervised
learning and semi-supervised learning (Fedler et al.,
2013). Android applications can be properly labeled, so
supervised machine learning methods for detection of
android malware applications is proposed. Each
application must declare what permissions it requires
before installed. The mechanism warns the user about
permissions an app requested before installed and hopes
the user makes the right choice. Extract permission
features from the application files and use decision tree
supervised machine learning classifiers (RF, CART and
J48) to detect malicious applications (Wei et al., 2012).

In this framework, the android applications on
android market are downloaded and decompressed into
the contents of Android applications. The proposed
method is based on the characteristic analysis of
Android manifest files and is effective for detecting
malware. The AndroidManifest.xml and classes.dex
files are only selected because these two files contain
the necessary permissions features. Android malware
applications can be detected by using machine learning
approaches. To address the problem, extract android
permission features from the application files and use
decision tree classifiers (RF, CART, J48) to detect
malware in malicious applications. Current techniques
in malware classification do not give a good

classification result when it deals with the new and
unique types of malware. For this reason, the proposed
methodology is enhanced with the usage of
optimization techniques such as Genetic Algorithm and
Particle swam Optimization Algorithm to optimize the
malware classification system (Garcia et al., 2006). The
contribution of the paper includes the enhancement of
the optimized Random Forest Classifier. This reveals
that classification of Android APK files plays a critical
role in realizing a higher detection rate with the
minimum computation resource requirement.

LITERATURE REVIEW

Android malware applications have been rapidly
rising and there are several approaches to detect these
malware applications. Various approaches have been
proposed by different authors for detecting malware in
android mobile devices based on their permissions.
Some of them are discussed below.

Aung and Zaw (2013) monitored various
permissions used features and events obtained from the
android applications and analyses these features by
using machine learning classifiers to classify whether
the application is goodware or malware.

Hein (2014) presented the permission based
malware protection model for Android application and
then uses the self-organizing feature map algorithm.
This is express to make small subsequent adjustments
of the protection level and to improve the accuracy of
the android permissions.

Sanz et al. (2013) presented PUMA, a new method
for detecting malicious Android applications through
machine learning techniques by analyzing the extracted
permissions from the application itself.

Xie et al. (2010) proposed a behavior-based
malware detection system (pBMDS) that correlates
user’s inputs with system calls to detect anomalous
activities related to SMS/MMS sending.

Abela et al. (2013) Gave the capability to classify
unknown applications based from its data, can be used

Table 1: Summarizes the significant literatures reviewed for malware detection system
Year Author Techniques used Metrics
2014 Chit La Pyae Myo Hein Permission based malware protection for

Android applications (SOM)
True positive ratio, false positive ratio,
Total accuracy

2013 Abela, Kevin Joshua L.
Angeles, Don Kristopher E, Delas Alas,
Jan Raynier P, Tolentino, Robert Joseph,
Gomez, Miguel Alberto N.

Behavior based malware detection (Naïve
Bayes algorithm, decision tree algorithms)

True positive
Rate, false positive rate, ROC area.

2013 Zarni Aung, Win Zaw Permission based malware detection.(J48,
CART, random forest)

True positive, false positive, true
negative, false negative, true positive
rate, false positive rate, overall accuracy.

2013 Borja Sanz, Igor Santos, Carlos Laorden,
Xabier Ugarte-Pedrero, Pablo Garcia
Bringas, Gonzalo Alvarez.

Permission based malware detection
(Machine-learning classifier, k-fold cross
validation)

Accuracy, false positive rate, true
positive rate.

2010 Liang Xie, Xinwen Zhang, Jean-Pierre
Seifert, Sencun Zhu

Permission based malware detection
(Hidden Markov Model)

Accuracy, false positive.

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

734

to categorize different Android applications in the
market and to differentiate whether the application is
goodware or malware using behavior based analysis.
Detection of malware using different techniques and
metrics is listed in Table 1.

PERMISSION BASED MALWARE
DETECTION SYSTEM

In this proposed methodology, Machine Learning

Classifiers and Optimization techniques are used to
analyze and classify the malware applications by
comparing the permissions extracted from the
applications which are labelled in the dataset. In
summary, our main findings are extraction of features
from the manifest file of android applications based on
the permissions. Selection and Reduction of extracting
features are done. Machine learning classifiers are used
for the classification and detection of malicious
applications. The detection rate of the classifiers is
improved by optimization techniques (Rastogi et al.,
2013).

Feature extraction: Features are the attributes used for
defining the permission characteristics of an
application. For any downloaded Android application,
retrieve the features from the corresponding application
package file. Analyze the Manifest file of an
application and identify real permissions required by
the application. The values of selected features are
stored as a feature vector, which is represented as a
sequence of bits (0’s or 1’s). A feature set can be
specified as a feature vector, which includes all the
permissions that are requested from the user. This
framework uses a feature extraction tool written by
python script file to extract android permission features

(Damopoulos et al., 2011). The proposed framework is
shown in Fig. 1.

Permissions are requested by an application during
the installation process to grant access to various
features and functionalities on a device. Currently there
are 124 unique permissions which are categorized into
11 top level groups. These permissions are displayed
before any application is installed and can also be
viewed post installation. The downfall is that users
cannot be expected to understand all 124 permissions or
the associated risks with a few specific permissions and
also it is impossible for users to know which
permissions are actually needed by an application.

Every application must have an android
Manifest.xml in its root directory. The manifest
presents essential information about the application to
the Android system. The features in each Android
application are extracted through the following steps:

 Download the goodware and malware applications

available. Decompress the application (.apk) file by
the reengineering process and separate it into its
various component files.

 One among the files is the Android Manifest.xml
file. This xml file has various permissions
contained in it. The permissions of the XML file
are extracted and converted into binary form (0 or
1).

 The binary bit of the feature is set valid (1) if the
permission is present in the apk file else the bit is
set as invalid (0). These permissions form the
features through which the dataset is built. Figure 2
is the overall process of automatic feature
extraction. The few sample permissions are
described in Table 2.

Fig. 1: Permission based malware detection methodology

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

735

Table 2: List of permissions on an APK file
Permission Usage
Android.permission.
PROCESS_OUTGOING_CALLS

The application allows the user to see the number being dialed during an outgoing call with
the option to redirect the call to a different number or abort the call altogether.

Android.permission.RECEIVE_SMS Allows an application to monitor incoming SMS messages, to record or perform processing
on them.

Android.permission.SET_PROCESS_LIMIT Allows an application to set the maximum number of (not needed) application processes
that can be running.

Android.permission.CALL_PHONE Allows an application to initiate a phone call without going through the Dialer user
interface for the user to confirm the call being placed.

Finally the dataset is formed which is saved in a

text format:

0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, goodware

A sample Dataset generated from features of a

goodware application.

0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, malware

A sample Dataset generated from features of a

malware application.

Feature selection: Feature selection methods are used
for reducing the dimension size of a dataset by
removing the features (attributes) which are not
beneficial to be used in the analysis. Efficient feature
selection methods introduce performance gains by
reducing the dataset size and the time spent in
classification analysis. These adverse effects are even
more crucial when applying on mobile devices, since
they are often restricted by processing and storage-
capabilities, as well as battery power. Information Gain
is selected among feature-selection algorithms (Silva
et al., 2013). It is the method of determining the rank of
appropriate feature through the entropy difference
between the cases of accurate classification through
features. The feature selection is done based on the gain
ratio. The features with a higher gain ratio, yield higher
optimality to the resultant generation. The features are
selected based on the Gain value by referring whether
they are greater than 0 and only the features which are
greater than 0 is included in the minimized dataset or
selected features. According to this Gain value the

features are reduced from the original feature set
(Bahrololum et al., 2009). Entropy should be calculated
for each and every feature by the formula given below:

Entropy = -pi log2pi

Where pi is the probability of class i.
After the entropy are calculated the gain of a
feature is to be calculated as

Gain (S, A) = Entropy (S) - Σ |SV| Entropy (SV) V
€ Values (A) |S|
[Attribute A on a collection of samples S].

The Feature Selection steps given in Algorithm:

Algorithm for feature selection:

 The entropy and info_split are calculate for each

feacher in the dataset.
 The gain ratio is obtained using the entropy and

info_split.
 The features with the higher gain ratio are selected

and collected into new dataset.

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 1, 0, 0, goodware A sample Dataset generated
after performing feature selection.

Feature reduction: Number of training samples
needed to design a classifier grows with the dimension
of the features. A way to reduce the dimension of the
features without losing any essential information is
needed. The main idea is to define k centroids, one for
each cluster. The simple K-means algorithm chooses
the centroid randomly from the applications set. The K-
means clustering partitions a data set by minimizing a
sum of-squares cost function. The selected features are
collected in the signature database and divided into
training data and test data and used by the standard
machine learning techniques to detect android malware
applications. K-means clustering uses to group the
feature set in clusters. Choosing K-means clustering
provides advantages like:

 At least a local minimum of the criterion function

is guaranteed and thereby the convergence of
cluster on large data sets is accelerated.

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

736

 It is a data driven method with relatively few
assumptions about the distributions of the
underlying data.

Algorithm:

1. Place K points in the space represented by the

objects that are being clustered.
2. These points represent initial group centroids.
3. Assign each object to the group that has the closest

centroid.
4. When all objects have been assigned, recalculate

the positions of the K centroids.
5. Repeat Steps 2 and 3 until the centroids no longer

move. This produces a separation of the objects
into groups from which the metric to be minimized
can be calculated.

Following provides the pseudocode of clustering:

X: A set of N data vectors

Data set
CI: Initialized k cluster centroids

Number of clusters,
C: The cluster centroids of k-clustering

random initial centroids
P = {p (i) | i = 1, …, N} is the cluster label of X
KMEANS(X, CI) → (C, P)

REPEAT
Cprevious ← CI;

FOR all i ∈ [1, N] DO
Generate new optimal paritions

p (i) ← arg min d (xi, cj);
l ≤ j ≤ k

FOR all j ∈ [1, k] DO
Generate optimal centroids
cj ← Average of xi, whose p(i) = j

UNTIL C = Cprevious

MACHINE LEARNING APPROACH

Decision tree classifiers are tree based classifiers

for instances represented as feature vectors. They
recursively partitions a dataset of records and use a
depth first greedy method or breadth first approach.
Nodes are used for test features, there is one branch for
each value of the feature and leaves specify the
category until all the data items belong to a particular
class. Decision Trees base the classification of instances
by sorting feature vectors. Three machine learning
classification algorithms were applied to the data sets:
Random Forest (RF), Classification and Regression
Trees (CART) and J48 (Kumar and Kumar, 2014).

The random forest algorithm: Random forests are an
ensemble learning method for classification, regression
and other tasks, that operate by constructing a multitude
of decision trees at training time and outputting the
class that is the mode of the classes (classification) or

mean prediction (regression) of the individual trees.
Random Forests (RF) are a combination of tree
predictors such that each tree depends on the values of a
random vector sampled independently and with the
same distribution of all trees in the forest. The
generalization error of a forest of tree classifiers
depends on the strength of the individual trees in the
forest and the correlation between them. Each tree is
independently constructed using a bootstrap sample of
data.

The pseudocode of the classifier RF:

 Selected the number of trees to grow and number

no larger than number of variables.
 For i = 1 to n tree
 Draw a bootstrap sample from the data call those

not in the bootstrap sample the “out-of-bag” data.
 Grow a “random” tree, where at each node, the best

split is chosen among mtry randomly selected
variables. The tree is grow to maximum size and
not pruned back

 Use the tree to predict out-of-bag data
 In the end, use the prediction on out-of-bag data to

from majority votes.
 Prediction of test data is done by majority votes

from prediction from the ensemble of trees.

Forest chooses the classification having the most

votes (Glodek and Harang, 2013). A tree is grown by
first sampling a random number of N cases in the
training set. For each input variable M, a number value
m is used for each node to select randomly from the
input variable to be used to split a node. After, the
generated tree is fully grown as deep as possible.

Classification and Regression Tree (CART):
Classification and Regression Trees uses cross-
validation or a large independent test sample of data to
select the best tree from the sequence of trees
considered in the pruning process. The basic CART
building algorithm is a greedy algorithm that it chooses
the locally best discriminatory feature at each stage in
the process. In the implementation of CART, the
dataset is split into the two subgroups that are the most
different with respect to the outcome. CART partitions
the feature space into a set of rectangles and fit a simple
model in each one. Then it constructs a binary tree
structured classifiers by repeated splits of subsets of the
measurement spaces into two descendant subsets. This
method assigns a class label for each terminal subset
and the resulting partition of x corresponds to the
classifier (Denison et al., 1998). The pseudocode of the
classifier CART.

Let the data be a set of O vector observations, each
of length V, such that each observation has one
response variable and V-1 predictor variables
(supervised learning).

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

737

oi = {oil,…, oiV} = {ri, pi1,…, pi(V-1)}

 For all V-1 predictors, order its values (separate

into categories) partition the sorted predictor
variable at every delta in the sorted values (or by
excluding any category) partition the associated
response variable in the same way and compute its
resulting variance (over two groups)

 Choose the partition which minimizes the response
variance over all predictors and thresholds.

 Split the data into 2 pieces on this threshold and
repeat steps 1 and 2 on both until some stopping
rule is satisfied or each partition contains only 1
data point

J48: The j48 Classification algorithm is inductively
learned to construct a model from the pre-classified
data set. Each data item is defined by values of the
characteristics or features. Classification may be
viewed as a mapping from a set of features to a
particular class. J48 creates an instance of this class by
allocating memory for building and storing a decision
tree classifier (Hall et al., 2013).

The pseudocode of the classifier J48:

1. Create a root node N
2. If T belongs to the same category C, then return N

as a leaf node and mark it as class C
3. If attribute list is empty or the reminder sample of

T is less than a given value, than return N as a leaf
node and mark it as the category which appears
most frequently in attribute list, for each
attribution, calculate its information gain ratio

4. Suppose test attribute is the testing attribute of N,
then test attribute-the attribute which has the
highest information gain ratio in attribution list;

5. If testing attribute is continuous, then find its
division threshold

6. For each new leaf node grow by node N

{
(a) Suppose T is the sample subset

corresponding to the leaf node.
(b) If T has only a decision category, then

mark the leaf node as this category,
(c) Else continue to implement J45_Tree

(T’, T’_Attribute list)
}

7. Calculate the classification error rate of each node

and then prune the tree.

Basic Steps in the Algorithm:

 In case the instances belong to the same class the

tree represents a leaf so the leaf is returned by
labelling with the same class.

 The potential information is calculated for every
attribute, given by a test on the attribute. Then the

gain in information is calculated that would result
from a test on the attribute.

 Then the best attribute is found on the basis of the
present selection criterion and that attribute
selected for branching.

ENHANCED CLASSIFICATION USING

OPTIMIZATION ALGORITHM

Current techniques in malware classification do not
give a good classification result when it deals with the
new and unique types of malware. For this reason, the
usage of optimization techniques, namely Genetic
Algorithm and Particle Optimization Algorithm is used
to optimize the malware classification system. This new
malware classification system also has an ability to
train and learn by itself, so that it can predict the current
and upcoming trend of malware attack. One of the main
goals is to detect and classify the unique malware that
has a relationship during the execution. The other goal
is to find unique malware that performs the same
behavior, but providing different syntax representation.
A framework is proposed by combining GA and PSO
with the implemented machine learning classifiers.

Proposed methodology-1 genetic algorithm with RF
classifier: GA is belongs to the larger class of
Evolutionary Algorithm (EA). GA includes the survival
of the fittest idea into a search algorithm which
provides a method of searching, which does not need to
explore every possible solution in the feasible region to
obtain a good result. GA also commonly used for a
learning approach to solve computational research
problem. By tradition, solutions are represented in
binary as strings of 0s and 1s, but other encodings are
also possible. In each generation, the fitness of every
individual in the population is evaluated. The fitness is
usually the value of the objective function in the
optimization problem being solved. The fittest
individuals are stochastically selected from the current
population and each individual's genome is modified to
form a new generation. The new generation of
candidate solutions is then used in the next iteration of
the algorithm. Commonly, the algorithm terminates
when either a maximum number of generations have
been produced, or a satisfactory fitness level has been
reached for the population (Yusoff and Jantan, 2011). A
typical genetic algorithm requires a genetic
representation of the solution domain and a fitness
function to evaluate the solution domain is as
following:

Evaluate each individuals fitness
Determine population's average fitness
Repeat

Select best ranking individuals to
reproduce
Mate pairs at random
Apply crossover operator
Apply mutation operator

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

738

Evaluate each individual's fitness
Determine population's average fitness
Select ntree, the number of trees to grow and mtry,
a number no larger than a number of variables
For i = 1 to n tree:
Draw a bootstrap sample from the data.
Call those in the bootstrap sample the “out-of-bag”
data.
Grow a “random” tree, where at each node, the best
split is chosen among mtry randomly selected
variables. The tree has grown to maximum size and
not pruned back. Use the tree to to predict out-of-
bag data.
In the end, use the predictions on out of bag data to
form majority votes. Prediction of test data is done
by majority votes from predictions from the
ensemble of trees.

Proposed methodology-2 particle swarm
optimization with RF classifier: Particle Swarm
Optimization (PSO) is a computational method
that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given
measure of quality (Senthilkumar and Kannan, 2014).
PSO optimizes a problem by having a population of
candidate solutions, here dubbed particles and moving
these particles around in the search-space according to
simple mathematical formulae over the
particle's position and velocity. Each particle's
movement is influenced by its local best known
position, but is also guided toward the best known
positions in the search-space, which are updated as
better positions are found by other particles. PSO
achieve its optimal solution by starting with a group of
random solution and then searching repeatedly
(Ahandani and Baghmisheh, 2013). This is expected to
move the swarm toward the best solutions.

For each particle
 Initialize particle
Do
 For each particle:
 Calculate the fitness value
 If the fitness value is better than the
best fitness value (pBest) in history
 Set current value as the new pBest
End
For each particle:
 Find in the particle neighborhood, the particle
with the best fitness
 Calculate particle velocity according to the
velocity equation
 Apply the velocity Constriction
 Update particle position according to the
position equation
 Apply the position constriction
Select ntree, the number of trees to grow and mtry, a
number no larger than a number of variables.
For i = 1 to ntree:

Draw a bootstrap sample from the data. Call those
in the bootstrap sample the “out-of-bag” data.

Grow a “random” tree, where at each node, the best
split is chosen among mtry randomly selected variables.
The tree has grown to maximum size and not pruned
back.

Use the tree to predict out-of-bag data.
In the end, use the predictions on out of bag data to
form majority votes.

Prediction of test data is done by majority votes
from predictions from the ensemble of trees.

EXPERIMENTAL RESULTS
AND DISCUSSION

To evaluate the proposed framework, collected

1000 including normal applications from android
market and malicious applications from the internet
site. The dataset used during the evaluation were
composed of Android apps collected in this system.
These apps were already classified into benign and
malicious samples. Out of over 136,000 available apps
from Google's official Play Store and out of over
40,000 malicious samples identified by Virus Total,
representing 192 malware families, randomly selected
200 distinct apps. In detail, selected 150 benign apps
and 50 malicious apps.

In order to perform the evaluation of the proposed
mechanism and comparison between the various
detection algorithms and feature selection schemes here
employed the following standard metrics: the True
Positive Rate (TPR) measure, which is the proportion
of positive instances classified correctly; False Positive
Rate (FPR), which is the proportion of negative
instances misclassified; and the Total Accuracy, which
measures the proportion of absolutely correctly
classified instances, either positive or negative. The
performance of the proposed swarm optimized
technique over the machine learning techniques
comparatively considered were evaluated in terms of
the below parameters such as Detection time, True
positive rate, False positive rate and Detection accuracy
(Ham and Choi, 2013):

True Positive Rate (TPR): Percentage of correctly
identified goodware applications:

TPR = (TP/TP+FN)

False Positive Rate (FPR): Percentage of wrongly
identified malware applications:

FPR = (FP/TN+FP)

Precision value: It is the number of correctly classified
positive examples with respect to the number of
examples that exist in the system as positive.

Precision value = (TP/TP+FP)

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

739

Table 3: Experimental results classifiers

Algorithm TP rate FP rate Precision Recall
Correctly identified
instances (%)

Incorrectly identified
instances (%)

J48 0.83 0.17 0.87 0.79 83.3 16.7
CART 0.79 0.21 0.86 0.69 79 21
Random forest 0.87 0.13 0.91 0.81 86.8 13.2

Table 4: Experimental results optimized classifiers
Algorithm Correctly identified instances (%) Incorrectly identified instances (%)
Random forest 86.8% 13.2%
Genetic algorithm with RF 87% 13%
Particle swarm optimization with RF 88.4% 12.6%

Fig. 2: An example of decompile APK file

Recall: Recall in information retrieval is the fraction of
the documents that are relevant to the query that are
successfully retrieved:

Recall = (TN/TN+FN)

Overall accuracy (ACC): Percentage of correctly
identified applications

ACC= (TP+TN/TP+TN+FP+FN)

True Positive (TP) is the number of correctly
identified goodware applications, False Positive (FN) is
the number of wrongly identified goodware
applications, True Negative (TN) is the number of
correctly identified malware applications and False
Positive (FN) is the number of wrongly identified
goodware applications.

Table 3 provides the comparison of parameters
between J48, CART and Random Forest. The given
parameters are True positive rate, false positive rate,
Precision Value in (%) and Recall Value in (%) and
Accuracy in (%).

Table 4 provides the comparison of Random
Forest, Genetic Algorithm and particle swarm
optimization using the parameters such as correctly
identified instances (Accuracy) in % and incorrectly
identified instances in %.

Figure 3 gives the comparison, that random forest
has high correctly identified instances of about 86.8%
than compared to J48 whose correctly identified
instance is 83.3% and CART of correctly identified
instance 79%. Again to increase this accuracy,
optimization techniques are used.

Figure 4 gives the comparison, that particle swarm
optimization has high correctly identified instances of
about 88.4% than compared to genetic algorithm of
correctly identified instance is 87% and random forest
of correctly identified instance 86.8%.

Fig. 3: Experimental results-classifiers

Fig. 4: Experimental results-optimized classifiers

CONCLUSION

A framework for detection of android malware

applications using machine-learning techniques has
been proposed by extracting permission features from
several downloaded applications from android markets.
The results were further optimized by optimization
techniques to detect the android applications whether it
is goodware or a malware application. This paper

89.00%

88.50%

88.00%

87.50%

87.00%

86.50%

86.00%

RF GA-RF PSO-RF

Algorithm

C
or

re
ct

ly
 id

en
ti

fi
ed

 in
st

an
ce

s

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

740

proposed the usage of optimization algorithms such as
Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) as an approach to optimize
Random forest Decision Tree in malware classification.
New classifier is developed by combining GA and PSO
with RF_DT named as MSGP Malware System
(MSGP-MS) Classifier. Using real-world malware and
benign applications, experiments were conducted on
Android mobile devices. Experimental results obtained
from MSGP-MS Classifier with RF are compared and
visualized in tables and graphs. MSGP-MS Classifier
shows an accuracy increase from RF Classifier. The
outcome of this paper is a new MSGP Malware
Classification System consisting of MSGP-MS
Classifier. This reveals that classification of Android
APK files using PSO plays a critical role in realizing
higher accuracy with minimum computation resource
requirement.

Conflicts of interest: The idea of detecting the
malware by machine learning classifiers exits in
literature, However the issues are not handled properly.
Our proposed methodology handles the pitfalls with the
improvisation of results.

REFERENCES

Abela, L.K.J., E.D.K. Angeles, P.D.A.J. Raynier, R.J.

Tolentino and N.A.G. Miguel, 2013. An automated
malware detection system for android using
behavior-based analysis AMDA. Int. J.
Cyber-Secur. Digit. Foren., 2(2): 1-11.

Ahandani, M.A. and M.T.V. Baghmisheh, 2013.
Hybridizing genetic algorithms and particle swarm
optimization transplanted into a hyper-heuristic
system for solving university course timetabling
problem. WSEAS T. Comput., 12(3): 128-143.

Aung, Z. and W. Zaw, 2013. Permission-based android
malware detection. Int. J. Sci. Technol. Res., 2(3):
228-234.

Bahrololum, M., E. Salahi and M. Khaleghi, 2009.
Machine learning techniques for feature reduction
in intrusion detection systems: A comparison.
Proceeding of the 4th International Conference on
Computer Sciences and Convergence Information
Technology (ICCIT’09). Seoul, pp: 1091-1095.

Damopoulos, D., S.A. Menesidou, G. Kambourakis, M.
Papadaki, N. Clarke and S. Gritzalis, 2011.
Evaluation of anomaly-based IDS for mobile
devices using machine learning classifiers. Secur.
Commun. Netw., 5(1): 3-14.

Denison, D.G.T., B.K. Mallick and A.F.M. Smith,
1998. A Bayesian CART algorithm. Biometrika,
85(2): 363-377.

ESET Labs, 2013. Trends for 2013: Astounding
Growth of Mobile Malware. Retrieved from:
http://go.eset.com/us/resources/white-
papers/Trends_ for_2013_ preview.pdf.

Fedler, R., J. Schutte and M. Kulicke, 2013. On the
effectiveness of malware protection on android: An
evaluation of android antivirus apps. Technical
Report Antivirus Test, Fraunhofer Research
Institution for Applied and Integrated Security,
Fraunhofer AISEC, pp: 1-35.

Garcia, J.S.D., S.L. Ávila and W.P. Carpes Junior,
2006. Introduction to optimization methods: A
brief survey of methods. IEEE Multidiscipl. Eng.
Educ. Mag., 1(2): 1-5.

Glodek, W. and R. Harang, 2013. Rapid permissions-
based detection and analysis of mobile malware
using random decision forests. Proceeding of the
IEEE Military Communications Conference
(MILCOM, 2013). San Diego, CA, pp: 980-985.

Hall, M., E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann and I.H. Witten, 2013. The WEKA
data mining software: An update. ACM SIGKDD
Explor. Newslet., 11(1): 10-18.

Ham, H.S. and M.J. Choi, 2013. Analysis of Android
malware detection performance using machine
learning classifiers. Proceeding of the International
Conference on ICT Convergence (ICTC, 2013).
Jeju, pp: 490-495.

Hein, C.L.P.M., 2014. Permission based malware
protection model for android application.
Proceeding of the International Conference on
Advances in Engineering and Technology
(ICAET'2014). Singapore, pp: 222-226.

Kumar, A. and S. Kumar, 2014. Decision tree based
learning approach for identification of operating
system processes. WSEAS T. Comput., 13:
277-288.

Rastogi, V., Y. Chen and X. Jiang, 2013.
Droidchameleon: Evaluating android anti-malware
against transformation attacks. Proceeding of the
8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (ASIA
CCS '13), pp: 1-6.

Sanz, B., I. Santos, C. Laorden, X. Ugarte-Pedrero,
P.G. Bringas and G. Álvarez, 2013. PUMA:
Permission usage to detect malware in android.
Proceeding of the International Joint Conference
on CISIS’12-ICEUTE´ 12-SOCO´ 12 Special
Sessions. Springer, Berlin, Heidelberg, 189: 289-
298.

Senthilkumar, B. and T. Kannan, 2014. Multi-objective
optimization of bead geometry and dilution in
FCAW process using PSO. Int. J. Appl. Eng. Res.,
9(24): 25817-25832.

Silva, L.O.L.A., M.L. Koga, C.E. Cugnasca and A.H.R.
Costa, 2013. Comparative assessment of feature
selection and classification techniques for visual
inspection of pot plant seedling. Comput. Electron.
Agr., 97: 47-55.

Sujithra, M. and G. Padmavathi, 2012. Mobile device
security: A survey on mobile device threats,
vulnerabilities and their defensive mechanism. Int.
J. Comput. Appl., 56(14): 24-29.

Res. J. Appl. Sci. Eng. Technol., 12(7): 732-741, 2016

741

Wei, X., L. Gomez, I. Neamtiu and M. Faloutsos, 2012.
Permission evolution in the android ecosystem.
Proceeding of the 28th Annual Computer Security
Applications Conference (ACSAC'12). NY, USA,
pp: 31-40.

Xie, L., X. Zhang, J.P. Seifert and S. Zhu, 2010.
pBMDS: A behavior-based malware detection
system for cellphone devices. Proceeding of the
3rd ACM Conference on Wireless Network
Security, pp: 37-48.

Yusoff, M.N. and A. Jantan, 2011. A framework for
optimizing malware classification by using genetic
algorithm. In: Zain, J.M. et al. (Eds.), ICSECS,
2011. Part II, Communications in Computer and
Information Science, Springer-Verlag, Berlin,
Heidelberg, 180: 58-72.

