
Research Journal of Applied Sciences, Engineering and Technology 12(8): 790-813, 2016                

DOI:10.19026/rjaset.12.2780 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2016 Maxwell Scientific Publication Corp. 

Submitted: November 11, 2013 Accepted: November 29, 2013 Published: April 15, 2016 

 

Corresponding Author: R. Manjula Devi, Faculty of Computer Science and Engineering, Kongu Engineering College, 

Perundurai, Erode 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

790 

 

Research Article  

CAST: A constant Adaptive Skipping Training Algorithm for Improving the Learning 

Rate of Multilayer Feedforward Neural Networks 
 

R. Manjula Devi and S. Kuppuswami 

Faculty of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode 
 

Abstract: Multilayer Feedforward Neural Network (MFNN) has been administered widely for solving a wide range 
of supervised pattern recognition tasks. The major problem in the MFNN training phase is its long training time 
especially when it is trained on very huge training datasets. In this accordance, an enhanced training algorithm called 
Constant Adaptive Skipping Training (CAST) Algorithm is proposed in this research paper which intensifies on 
reducing the training time of the MFNN through stochastic manifestation of training datasets. The stochastic 
manifestation is accomplished by partitioning the training dataset into two completely separate classes, classified 
and misclassified class, based on the comparison result of the calculated error measure with the threshold value. 
Only the input samples in the misclassified class are exhibited to the MFNN for training in the next epoch, whereas 
the correctly classified class is skipped constantly which dynamically reducing the number of training input samples 
exhibited at every single epoch. Thus decreasing the size of the training dataset constantly  can reduce the total 
training time, thereby speeding up the training process. This CAST algorithm can be merged with any training 
algorithms used for supervised task, can be used to train the dataset with any number of patterns and also it is very 
simple to implement. The evaluation of the proposed CAST algorithm is demonstrated effectively using the 
benchmark datasets - Iris, Waveform, Heart Disease and Breast Cancer for different learning rate. Simulation study 
proved that CAST training algorithm results in faster training than LAST and standard BPN algorithm. 
 
Keywords: Adaptive skipping, learning rate, MFNN, neural network, training algorithm, training speed  

 
INTRODUCTION 

 
Multilayer Feedforward Neural Network (MFNN) 

with a single hidden layer has been explored as the best 
neural network architecture for nonlinear classification 
problem due to its capability to approximate any 
nonlinear function mapping (Mehra and Wah, 1992; 
Hornik et al., 1989; Huang et al., 2000). The Back 
Propagation (BPN) is the most popular supervised 
training algorithm that has been used to train MFNN 
extensively for the past two decades (Razavi and 
Tolson, 2011).  It is fragmented into two phases: 
Training Phase (also called as Learning Phase) and 
Testing Phase (also called as Evaluation Phase).  
Among these two phases, the training phase plays an 
important role in establishing nonlinear models. In 
order to obtain better performance, it still requires many 
epochs for training the simple problem using MFNN. 
So the BPN is unfortunately very slow. And also BPN 
training performance is literally associated with the 
type and size of network architecture, the number of 
epochs and patterns to be trained, training speed, and 
the dimensionality of the training datasets. 

In order to enhance the training performance, the 
training speed is the factor that is considered to be very 

important. The  training  speed is highly depends on the 
dimensionality of training dataset. In general, training 
MFNN with a larger training datasets will generalize 
the network well. But, lengthy training time is needed 
for larger training dataset (Behera et al., 2006) which 
influence the training speed.  

This research proposes a new training algorithm to 
improve the training speed by reducing the training 
time of MFNN through the stochastic manifestation of 
training datasets.  The correctly classified class input 
samples in the training datasets will be skipped 
constantly  from the training for the consecutive n 
epochs. Thereby, the CAST algorithm dynamically 
diminishing the number of training input pattern 
samples constantly exhibited at every single epoch. 
Thus diminishing the size of the training datasets 
constantly  can reduce the total training time, thereby 
speeding up the training process. Hence, the overall 
training time for actual training of the MFNN is often 
reduced by several hundred times than in the standard 
training algorithm. This method is carried out by 
merging into any algorithm used for training the 
supervised task.  

The content of this research paper is materialized 
as follows. The brief review of the previous works done 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

791 

relevant to the research problem is given and then the 
formulation of the given research problem s shown. The 
proposed CAST algorithm is presented. Followed by 
Performance evaluation of CAST using the benchmark 
datasets for the classification problems is simulated. 
Finally, the experimental results are summarized and 
analyzed along with the conclusions of the research 
paper. 
 

RELATED WORKS 

 

In order to speed up the MFNN training process, 

many researchers have investigated the above detriments 

and devoted many of their research works through 

various formation ranges from different amendments of 

existing algorithms to evolution of new algorithms. The 

formation of improving the training speed and maintain 

the generalization includes initialization of optimal 

initial weight (Nguyen and Widrow, 1990; Varnava and 

Meade Jr., 2011), adaptation of learning rate 

(Plagianakos et al., 1998), adaptation of the momentum 

term (Shao and Zheng, 2009), adaptation of the 

momentum term in parallel with learning rate adaptation 

(Behera et al., 2006), and using second order algorithm 

(Ampazis and Perantonis, 2002; Wilamowski and Yu, 

2010; Yu and Wilamowski, 2012).  

During the training process, the number of 
iterations will be scaled down through the proper 
initialization of the weight which in turn will increase 
the training speed. Some of the techniques applied for 
initializing the weight have been discussed here. Nguyen 
and Widrow (1990) initialize the layer’s intermediate 
weight within the specified range for faster learning. 
Varnava and Meade Jr. (2011) used the polynomial 
mathematical models for obtaining the network synaptic 
initial value. The learning rate is one of the training 
parameters that fine-tune the size of the network’s 
respective old weights during learning. Assigning the 
constant value of the learning rate will degrade the 
speed of the training which results in slow convergence. 
But, adaptation of learning rate using the Barzilai and 
Borwein is proposed by Plagianakos et al. (1998) in 
order to improve the convergence speed. Based on the 
factor inclined to investigate, several dynamic methods 
for assigning the learning rate adaptively have been 
codified. Behera et al. (2006) developed two new 
algorithms designated as LFI and LF II from Lyapunov 
theory of stability where the learning rate is assigned to 
the adaptive values instead of fixed value. Next, the 
algorithm that derives the second order differential 
equation from the cost functions for updating the weight 
during the training process has been listed. The most 
popular second order training algorithm are quasi-
Newton methods or Levenberg–Marquardt (LM) 
(Wilamowski and Yu, 2010; Yu and Wilamowski, 2012) 
and conjugate gradient (CG) methods (Ampazis and 
Perantonis, 2002). Eventhough, the above second order 
approaches achieve good results, but they are 

computationally very expensive. Ampazis and 
Perantonis (2002) extracted the importance of the 
Levenberg–Marquardt and Conjugate Gradient methods 
and derived the two different approaches Levenberg–
Marquardt with adaptive momentum (LMAM) and 
optimized Levenberg–Marquardt with adaptive 
momentum (OLMAM) second order algorithm. 
Wilamowski and Yu (2010) applied vector 
multiplication for determining the gradient vector and 
Hessian matrix instead of matrix multiplication (Yu and 
Wilamowski, 2012) which significantly reduces the cost 
of memory cost for training and thereby improves the 
training speed.  

However, the disadvantages found in the traditional 
method are not surmounted by the above discussed 
techniques.   All of the above mentioned efforts are 
focused directly or indirectly on tuning the network’s 
training parameters.  And besides, the formation 
discussed above consumes totally all the input samples 
till the training terminates. If a large amount of training 
data with high dimension is rendered for classification, 
then a problem is introduced by the above discussed 
technique which will slow down classification. So, the 
intention of this research is to impart a simple and new 
algorithm CAST for training the ANN in a fast manner 
by presenting the training input samples randomly based 
on the classification. 
 
Problem formulations: BPN algorithm is an iterative 
gradient training algorithm designed to estimate the 
coefficients of weight matrices that minimizes the total 
Root Mean Squared Error (RMSE). The RMSE is 
defined between the desired output and the actual output 
summed over all the training pattern input to the 
network. 
 

���� = �
� � �	�	 � �                                             (1) 

 
E

p 
is calculated using the following formula 

  

�	 = �
� � (t�

� − y�
�)��� � �                                        (2) 

 
Where P is the total number of training sample 

patterns, m is the number of nodes in the output layer, 

��
	
 is the target output of the kth node for the pth sample 

pattern, and ��
	

 is the actual output of the kth node 

estimated by the network for the pth sample pattern.  
According to the Equation (2), there is a real fact 

that the correctly classified input samples does not 
involve in the updating of weight since the error value 
generated by that sample pattern is zero.  Here the 
intention of this research is to partition the training 
input samples into two distinct classes, classified and 
misclassified class, based on the comparison result of 
the calculated error measure with the maximum 
threshold value. By doing so, the training input samples 
whose actual output is same as target output will belong 
to   the   classified class; the remaining training input 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

792 

samples will belong to the misclassified class. Only the 
input samples in the misclassified class are presented to 
the next epoch (Epoch is one complete cycle of 
populating the MFNN with the entire training samples 
once) for training, whereas the correctly classified class 
will not be presented again for the subsequent n epochs. 
The adaptive skipping training algorithm is used to 
estimate the skipping factor value. In the LAST 
algorithm (Devi et al., 2013), the value of skipping 
factor is increased linearly that is the input samples are 
skipped linearly. In the proposed CAST algorithm, the 
correctly classified class input samples will be skipped 
constantly  from the training for the consecutive n 
epochs. Thereby, the CAST algorithm dynamically 
diminishing the number of training input pattern 
samples constantly  exhibited at every single epoch. 
Thus diminishing the size of the training datasets 
constantly  can reduce the total training time, thereby 
speeding up the training process. The dominance of this 
CAST algorithm is that its implementation is extremely 
simple and easy, and can lead to significant advances in 
the training speed. 

 

PROPOSED CAST METHOD 

 

Overview of CAST Architecture: The CAST 

algorithm that is contained in the prototypical MFNN 

architecture is outlined in Fig. 1. 

Assume that the network contains n input nodes in 

the input layer, p hidden nodes in the hidden layer and 

m output nodes in the output layer. Since the above 

network is highly interconnected, the nodes in each 

layer are connected with all the nodes in the next layer. 

Let P represent the number of input patterns in the 

training dataset. The input matrix, X, of size p × n is 

presented to the network. The number of nodes in the 

input layer is equivalent to the number of columns in 

the input matrix, X. Each row in X is considered to be a 

real-valued vector xiєℜn+1
 where 1 ≤ i ≤ n. The summed 

real-valued vector generated from the hidden layer is 

represented ziєℜp+1
 where 1 ≤ i ≤ p. The estimated 

output real-valued vector generated from the network is 

denoted as yiєℜm
 where 1 ≤ i ≤ m and the corresponding 

target vector is represented as tiє ℜm
 where 1 ≤ i ≤ m. 

Let it implies the it
th

 iteration number. 

Let fN(x) and fL(x) be the non-linear logistic 

activation function and linear activation function used 

for computation in the hidden and output layer 

respectively. Let vij be the n × p weight matrix contains 

input-to-hidden weight coefficient for the link from the 

input node i to the hidden node j and voj be the bias 

weight to the hidden node j. Let wjk be the p × m weight 

matrix contains hidden-to-output weight coefficient for 

the link from the hidden node j to the output node k and 

wok be the bias weight to the output node k. 

 

 
 
Fig. 1: Architecture of MFNN with CAST algorithm 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

793 

Proposed CAST Algorithm: The working principle of 

the CAST algorithm that is incorporated in the BPN 

algorithm is summarized below: 

 

Step 1: Weight initialization: Initialize weights to 

small random values; 

Step 2: Furnish the input sample: Disseminate to the 

input layer an input sample vector xk having 

desired output vector yk; 

Step 3: Forward phase: Starting from the first hidden 

layer and propagating towards the output 

layer: 

 

• Calculate the activation values for the Hidden 

layer as: 

o Estimate the net output value:  
 

����(��) = ���(��) + � !�(��). ��#(��)� � � �             (3) 

 

o Estimate the actual output: 

 

��(��) = �
�$%&'()*                                                   (4) 

 

• Calculate the activation values for the Output 

layer as: 

o Estimate the net output value: 

 

����(��) = +��(��) + , ��(��). +��(��)	
� � �         (5) 

 

o Estimate the actual output: 

  

��(��) = �
�$%&-().                                                 (6) 

 

Step 4: Output errors: Calculate the error terms at 

the output layer as: 

 

/�(��) = 0�� − ��(��)1. 2 ′3��(��)4                      (7) 

 

Differentiate the activation function in Equation 6: 

 

2 ′3��(��)4 = 536.(�7)4
58     

=  ��(��) × 31 − ��(��)4                                     (8) 

 

Substitute the resultant value of Equation (8) in (7): 

 

/�(��) = �� (��). 01 − ��(��)1. 0�� − ��(��)1       (9) 

 

Step 1: Backward phase: Propagate error backward 

to the input layer through the hidden layer 

using the error term. 

 

ä�(��) = ;� /�(��). +��(��)<� � � =. 2 ′ >��(��)?      (10) 

 

Differentiate the activation function in Equation 4: 

2 ′ >��(��)? = 5>@*(�7)?
58 = ��(��) × >1 − ��(��)?         (11) 

 

Substitute the resultant value of Equation (11) in (10): 

 

/�(��) = ;� /�(��). +��(��)<� � � =��(��). ;1 − ��(��)=  (12) 

 

Step 2: Weight amendment: Update weights using 

the Delta-Learning Rule. 

 

Weight amendment: For Output Unit. 

 

A��(�� + 1) = A��(��) +  B(��). /�(��). ��(��)  (13) 

 

Weight amendment: For Hidden Unit. 

 

  C��(�� + 1) = C��(��) + B(��) /�(��) !�(��)     (14) 

 

Step 3: CAST Algorithm: Incorporating the CAST 

algorithm. 

 

• Compare the error value, D�� − ��D with threshold 

value, dmax. 

 

D�� − ��(��)D < F<G8                                          (15) 

 

If equation 15 generates 0, then the xi is correct. 

 

• Compute: The probability value for all input 

samples. 

 

HIJK(!�) =
L0, if xR is  correct and epoch number < `
1, J�ℎbI+�cb d      (16) 

 

• Calculate the skipping factor, sfi, for all input 

samples 

o Initialize the value of sfi to zero (for first epoch) 

o Increment the value of sfi constantly for correctly 

classified samples alone. 

• Skip the training samples with prob (=0) for the 

next sfi epoch 

 

Step 4: Repeat steps 1-7 until the halting criterion is 

satisfied, which may be chosen as the Root 

Mean Square Error (RMSE), elapsed epochs 

and desired accuracy. 

 

Working flow of CAST: The block diagram of the 

proposed strategy is illustrated in the Fig. 2. 

 

Empirical result and analysis: This section holds 

about the description of the dataset used for the 

research, the experimental design and results. 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

794 

 
 
Fig. 2: Flow diagram of CAST training algorithm 

 

Dataset properties: In this section, the performance of 

the proposed CAST algorithm is evaluated on the 

benchmark two-class classification and multi-class 

classification problems. The benchmark datasets used 

for two-class classification problem are Iris and 

Waveform Data Set, and multiclass classification 

problem are Heart and Breast Cancer Data Set. The 

fore-mentioned datasets are fetched from the UCI 

(University of California at Irvine) Machine Learning 

Repository (Asuncion and Newman, 2007).  The 

extracted results are compared with the existing BPN 

and LAST algorithms for both two- and multiclass 

classification problems.   

The specification of the benchmark datasets 

utilized for training in the research is summarized in the 

Table 1. 

Table 1: Specification of benchmark data sets 

Datasets 
No. of 
attributes No. of classes No. of instances 

Iris 4 3 150 
Waveform 21 3 5000 
Heart 13 2 270 
Breast cancer 31 2 569 

 
Table 2: Selected training architectures and parameters 

Datasets Learning rate MLP architecure  Momentum 

Iris 1e - 4 4 × 5 × 1 0.8 
 1e – 3    
Waveform 1e – 4 21×10×1 0.7 
 1e – 3    
Heart 1e – 4 13×5×1 0.9 
 1e – 3   
Breast cancer 1e – 4 31×15×1 0.9 

 

Experimental design: A 3-layer feedforward neural 

network is adopted for the simulations of all the 

training algorithms with the selected training 

architecture and training parameters mentioned in the 

Table 2. The simulations of all the training algorithms 

are repeated for two different learning rates such as 1e-

4 (0.0001) and 1e-3(0.001). 

The simulations of all the above training 

algorithms are done using MATLAB R2010b on a 

machine with the configuration of Intel
®
 Core I5-

3210M processor, 4 GB of RAM and CPU speed of 

2.50GHz.  

According to the idea of Nguyen-Widrow 

algorithm (Nguyen and Widrow, 1990), the MFNN 

weight coefficients are initialized with the random 

values within the specified range -0.5 to +0.5. The 

Fivefold cross validation method is applied to train and 

test the above training algorithms. Each dataset is split 

into five disjoint subsets. Among these subsets, a single 

subset is retained for testing, and the remaining four 

subsets are used for training. The validation process is 

repeated five times with each of the five subset used 

exactly once for testing. 

 

• Experimental Result 

• Multiclass Problems 

• Iris Data Set 

 

The IRIS dataset is furnished with 150 iris flower 

samples collected equally from three different varieties 

of iris flowers. The varieties are listed as Iris Setosa, 

Iris Versicolour and Iris Virginica. These varieties are 

identified based on the four characteristics of iris flower 

such as width and length of Iris sepal, and width and 

length of Iris petal. Among these varieties, Iris Setosa is 

easier to be separated from the other two varieties, 

while the other two varieties, Iris Virgincia and Iris 

Versicolour, are partially obscured and harder to be 

distinguished. 

The total number of IRIS input samples consumed 

by BPN, LAST and CAST training algorithms at every 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

795 

single epoch is graphically represented in the Fig. 3 and 

4 with the learning rate of 1e-4 and 1e-3 respectively. 

Figure 5 and 6 illustrates the epoch wise training 

time comparison between BPN, LAST and CAST 

training algorithm for the learning rates 1e-4 and 1e-3 

respectively.  

 

Waveform data set: The Waveform database generator 

data set consists of measurements of 5000 wave’s 

samples. The 5000 wave’s samples are equally 

scattered (about 33%) among the three classes of waves 

(Asuncion and Newman, 2007). These samples are 

collected from the generation of 2 of 3 "base" waves.  It 

contains 21 attributes of numeric values which are 

involved in the categorization of each class of waves.   

The total number of Waveform input samples 

consumed by BPN, LAST and CAST training 

algorithms at every single epoch is graphically 

represented in the Fig. 7 and 8 with the learning rate of 

1e-4 and 1e-3 respectively. 
Figure 9 and 10 illustrates the epoch wise training 

time   comparison   between   BPN,   LAST  and  CAST 
training algorithm for the learning rates 1e-4 and 1e-3 
respectively. 

 

Two-Class problem: 
Heart data set: The Statlog Heart disease database 

consists of 270 patient’s samples. The presence or  

absence of each patient’s heart disease is predicted 

using 13 attributes. Among these 270 patient’s samples, 

150 samples are the samples of heart disease which is 

‘absent’ and 120 samples of heart disease which is 

‘present’. 

The total number of Heart input samples consumed 

by BPN, LAST and CAST training algorithms at every 

single epoch is graphically represented in the Fig. 11 

and 12 with the learning rate of 1e-4 and 1e-3 

respectively. 

Figure 13 and 14 illustrates the epoch wise training 

time comparison between BPN, LAST and CAST 

training algorithm for the learning rates 1e-4 and 1e-3 

respectively. 

 

Breast cancer data set: The Wisconsin Breast Cancer 

Diagnosis Dataset contains 569 patient’s breasts 

samples among which 357 diagnosed as benign and 212 

diagnosed as malignant class. Each patient’s 

characteristics are recorded using 32 numerical 

features. 

 
 
Fig. 3: IRIS epoch wise input samples with 1e-4 learning rate 

 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

796 

 
 
Fig. 4: IRIS epoch wise input samples with 1e-3 learning rate 

 

 
 
Fig. 5: IRIS epoch wise training time with 1e-4 learning rate 

 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

797 

 
 
Fig. 6: IRIS epoch wise training time with 1e-3 learning rate 

 

 
 
Fig. 7: Waveform epoch wise input samples with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

798 

 
 
Fig. 8: Waveform epoch wise input samples with 1e-3 learning rate 
 

 
 
Fig. 9: Waveform epoch wise training time with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

799 

 
 
Fig. 10: Waveform epoch wise training time with 1e-3 learning rate 

 

 
 
Fig. 11: Heart epoch wise input samples with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

800 

 
 

Fig. 12: Heart epoch wise input samples with 1e-3 learning rate 

 

 
 
Fig. 13: Heart epoch wise training time with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

801 

 
 
Fig. 14: Heart epoch wise training time with 1e-3 learning rate 

 

 
 
Fig. 15: Breast cancer epoch wise input samples with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

802 

 
 
Fig. 16: Breast cancer epoch wise input samples with 1e-3 learning rate 

 

 
 
Fig. 17: Breast cancer epoch wise training time with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

803 

The total number of Heart input samples consumed 
by BPN, LAST and CAST training algorithms at every 
single epoch is graphically represented in the Fig. 15 
and 16 with the learning rate of 1e-4 and 1e-3 
respectively. 

Figure 17 and 18 illustrates the epoch wise training 
time comparison between BPN, LAST and CAST 
training algorithm for the learning rates 1e-4 and 1e-3 
respectively. 

 

Result analysis and comparison: Table 3 to 10 shows 

the experimental results of BPN, LAST and CAST 

algorithm observed at each step across five repeats of 

fivefold cross validation using two different learning 

rates such as 1e-4 and 1e-3.  

From these Table 3 to 10, the CAST algorithm 

yields improved computational training speed in terms 

of the total number of trained input samples as well as 

total training time over BPN and less than LAST. But, 

when the skipping factor goes higher, the accuracy of 

the system is affected highly.  

 

Training samples comparison: The comparison 

results of the total number of input samples consumed 

for   training   by   BPN,  LAST   and   CAST  with   the

 

 
 
Fig. 18: Breast cancer epoch wise training time with 1e-3 learning rate 

 

Table 3: Comparison results trained by the Iris dataset with 1e-4 learning rate 

  BPN 

--------------------------------------------------------

LAST 

--------------------------------------------------- 

CAST 

-------------------------------------------------- 

Testing 

fold 

 Number of 

 epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1  5442 653040 26.7909 83.33 395718 13.1303 80 208755 8.2995 73.33 

2  5902 708240 27.2332 83.33 396670 13.5337 83.33 240293 8.5218 76.67 

3  5332 639840 23.6228 80 379759 12.9799 83.33 206029 8.2960 80 

4  5439 652680 24.1885 83.33 383028 13.2143 80 223245 8.2565 80 

5  5161 619320 23.2492 83.33 365940 12.7051 76.67 203116 7.8261 76.67 

Average:  654624 25.0169 82.664 384223 13.1127 80.666 216288 8.23998 77.334 

 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

804 

Table 4: Comparison results trained by the IRIS dataset with 1e-3 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

---------------------------------------------------- 

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 547 65640 2.8833 83.33 39896 1.4390 83.33 22339 0.7867 76.67 

2 526 63120 2.4651 80 37281 1.2867 80 21369 0.7537 80 

3 535 64200 2.4906 80 39165 1.3472 80 21735 0.7667 76.67 

4 545 65400 2.7546 83.33 39697 1.3740 83.33 22120 0.7756 80 

5 510 61200 2.3283 83.33 37425 1.2840 83.33 20735 0.7306 76.67 

Average:  63912 2.58438 81.998 38693 1.34618 81.998 21660 0.76266 78.002 

 
Table 5: Comparison results trained by the waveform dataset with 1e-4 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

---------------------------------------------------- 

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 8187 32748000 47.6683 84.9 27229320 28.9716 85.1 16974989 17.2826 79.8 

2 8973 35892000 66.7460 83.7 29669915 52.8073 84.6 17897431 30.3537 80.2 

3 8929 35716000 65.7213 84.6 29656457 47.9644 84.5 17812293 30.2254 81.1 

4 8903 35612000 64.8988 83.2 29571880 47.3533 83.1 17806977 29.0942 80.9 

5 8887 35548000 64.3973 82.1 29476116 47.3203 82.5 17144339 28.6921 79.9 

Average:  35103200 61.8863 83.7 29082110 44.8834 83.96 17527206 27.12961 80.38 

 

Table 6: Comparison results trained by the waveform dataset with 1e-3 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

------------------------------------------------------

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 823 3292000 6.1784 84.4 2729243 4.5310 85.6 1611594 2.6747 81.1 

2 894 3576000 6.7595 83.8 2944663 4.7575 84.5 1785336 2.9381 80.6 

3 891 3564000 6.6254 82.9 2944567 4.6765 83.9 1761213 2.8975 79.9 

4 890 3560000 6.4547 83.5 2938903 4.6199 83.6 1784880 2.8904 80.5 

5 890 3560000 6.4537 84.1 2937498 4.6656 84.6 1659327 2.8696 80.1 

Average:  3510400 6.49434 83.74 2898975 4.6501 84.44 1720470 2.85406 80.44 

 

Table 7: Comparison results trained by the heart dataset with 1e-4 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

------------------------------------------------------ 

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 7485 1616760 58.0715 81.48 81.48 43.3506 83.33 713559 23.2651 75.93 

2 7529 1626264 60.2075 83.33 83.33 46.7666 81.48 809372 25.3458 74.07 

3 7569 1634904 67.8729 83.33 83.33 48.6806 83.33 820114 27.8431 75.93 

4 7567 1634472 66.8935 81.48 81.48 47.8751 79.63 813699 26.6308 79.63 

5 7567 1634472 66.5249 81.48 81.48 47.3221 81.48 811180 25.9578 77.78 

Average:  1629374 63.91406 82.22 959597 46.799 81.85 793585 25.8085 76.67 

 

Table 8: Comparison results trained by the heart dataset with 1e-3 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

---------------------------------------------------- 

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 830 179280 7.3662 81.48 107845 4.9837 83.33 95137 3.3133 74.07 

2 828 178848 7.361153 83.33 116169 5.238218 81.48 98116 3.382314 75.93 

3 829 179064 7.265956 83.33 108534 4.492601 83.33 90205 3.533761 75.93 

4 829 179064 7.326156 79.63 107736 4.772563 81.48 93136 3.554815 74.07 

5 829 179064 7.341574 81.48 107736 5.274545 81.48 99092 3.993784 77.78 

Average:  179064 7.332208 81.85 109604 4.95233 82.22 95137 3.555595 75.56 

 

Table 9: Comparison results trained by the breast cancer dataset with 1e-4 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

--------------------------------------------------- 

CAST 

---------------------------------------------------- 

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total  number 

of input 

samples 

 Training   

 time 

 (in Sec) 

Accuracy 

(%) 

1 6279 2856945 162.5596 87.72 1659497 100.1092 87.72 1055844  34.0808 83.33 

2 6460 2939300 172.0937 86.64 1718322 105.6381 86.64 966328  30.7942 79.82 

3 7976 3629080 210.8542 88.6 2140909 131.4230 87.72 1286262  46.8745 84.21 

4 7691 3499405 203.5600 86.84 2074540 125.0857 85.97 1138979  43.9744 80.07 

5 7439 3392184 193.7257 87.61 1996086 119.5164 87.61 1097278  31.3622 84.07 

Average:  3263383 188.5586 87.482 1917870.8 116.354 87.13 1108938  37.417214 82.3 

 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

805 

Table 10: Comparison results trained by the breast cancer dataset with 1e-3 learning rate 

  BPN 

------------------------------------------------------ 

LAST 

------------------------------------------------- 

CAST 

--------------------------------------------------------

Testing 

fold 

Number of 

epochs 

Total  

number of 

input samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

 Accuracy 

 (%) 

Total number 

of input 

samples 

Training 

time 

(in Sec) 

Accuracy 

(%) 

1 609 277095 16.5255 87.72 161260 10.3436  85.97 101916 5.4285 83.33 

2 647 294385 17.2322 86.64 172059 10.5972  86.64 107089 5.8950 84.21 

3 785 357175 21.3841 88.6 210885 13.4171  87.72 132372 6.4982 84.21 

4 750 341250 19.7409 86.84 202580 12.1622  85.97 128676 5.8950 83.33 

5 743 338808 19.7142 87.61 199366 11.9810  87.61 120608 5.7421 84.07 

Average:  321742.6 18.91938 87.482 189230 11.7002  86.782 118132 5.8918 83.83 

 

 
 
Fig. 19: Comparison result of IRIS input samples with 1e-4 learning rate 

 

 
 
Fig. 20: Comparison result of IRIS input samples with 1e-3 learning rate 

 

learning  rate  of  1e-4  and  1e-3  are  shown  in Fig. 19 

to 26. 

From the Fig. 19, it is portrayed that the total 

number of IRIS data samples consumed by CAST 

algorithm for training under the learning rate of 1e-4 is 

reduced by an average of nearly 67% and 44% of BPN 

and LAST algorithm respectively. 

From the Fig. 20, it is portrayed that the total 

number of IRIS data samples consumed by CAST 

algorithm for training under the learning rate of 1e-3 is 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

806 

reduced by an average of nearly 66% and 44% of BPN 

and LAST algorithm respectively. 

From the Fig. 21, it is portrayed that the total 

number of Waveform data samples consumed by CAST 

algorithm for training under the learning rate of 1e-4 is 

reduced by an average of nearly 50% and 40% of BPN 

and LAST algorithm respectively. 

From the Fig. 22, it is portrayed that the total 

number of Waveform data samples consumed by CAST 

algorithm for training under the learning rate of 1e-3 is 

reduced by an average of nearly 51% and 41% of BPN 

and LAST algorithm respectively. 

From the Fig. 23, it is portrayed that the total 

number of Heart data samples consumed by CAST 

algorithm for training under the learning rate of 1e-4 is 

reduced by an average of nearly 51% and 17% of BPN 

and LAST algorithm respectively. 

From the Fig. 24, it is portrayed that the total 

number of Heart data samples consumed by CAST 

algorithm  for  training under the learning rate of 1e-3 is  

 

 
 

Fig. 21: Comparison result of waveform input samples with 1e-4 learning rate 

 

 
 
Fig. 22: Comparison result of waveform input samples with 1e-3 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

807 

 
 
Fig. 23: Comparison result of heart input samples with 1e-4 learning rate 

 

 
 

Fig. 24: Comparison result of heart input samples with 1e-3 learning rate 

 

reduced by an average of nearly 47% and 13% of BPN 

and LAST algorithm respectively. 

From the Fig. 25, it is portrayed that the total 

number of Breast Cancer data samples consumed by 

CAST algorithm for training under the learning rate of 

1e-3 is reduced by an average of nearly 66% and 42% 

of BPN and LAST algorithm respectively. 

From the Fig. 26, it is portrayed that the total 

number of Breast Cancer data samples consumed by 

CAST algorithm for training under the learning rate of 

1e-3 is reduced by an average of nearly 63% and 38% 

of BPN and LAST algorithm respectively. 

 

Training time comparison: Thus decreasing the size 

of the trained input samples can reduce the training 

time which is shown in this section, thereby increasing 

the speed of the training process. Figure 27 to 34 

illustrates the training time comparison between BPN, 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

808 

 

Fig. 25: Comparison result of breast cancer input samples with 1e-4 learning rate 
 

 

Fig. 26: Comparison result of breast cancer input samples with 1e-3 learning rate 

 

 
 
Fig. 27: Comparison result of IRIS training time with 1e-4 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

809 

 
 
Fig. 28: Comparison result of IRIS training time with 1e-3 learning rate 

 

 
 
Fig. 29: Comparison result of waveform training time with 1e-4 learning rate 

 

LAST and CAST training methods for different 

learning rate of 1e-4 and 1e-3. 

From the Fig. 27, the total training time for training 

IRIS dataset by CAST algorithm is reduced to an 

average of 67% of BPN algorithm and 37% of LAST 

algorithm for the learning rate of 1e-4. 

From the Fig. 28, the total training time for training 

IRIS dataset by CAST algorithm is reduced to an 

average of 70% of BPN algorithm and 43% of LAST 

algorithm for the learning rate of 1e-3. 

From the Fig. 29, the total training time for training 

waveform dataset by CAST algorithm is reduced to an 

average of 56% of BPN algorithm and 40% of LAST 

algorithm for the learning rate of 1e-4. 

From the Fig. 30, the total training time for training 

waveform dataset by CAST algorithm is reduced to an 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

810 

 
 
Fig. 30: Comparison result of waveform training time with 1e-3 learning rate 

 

 
 
Fig. 31: Comparison result of heart training time with 1e-4 learning rate 

 

average of 56% of BPN algorithm and 39% of LAST 

algorithm for the learning rate of 1e-3. 

From the Fig. 31, the total training time for training 

Heart dataset by CAST algorithm is reduced to an 

average of 60% of BPN algorithm and 45% of LAST 

algorithm for the learning rate of 1e-4. 

From the Fig. 32, the total training time for training 

Heart dataset by CAST algorithm is reduced to an 

average of 52% of BPN algorithm and 28% of LAST 

algorithm for the learning rate of 1e-3. 

From the Fig. 33, the total training time for training 

Breast Cancer by CAST algorithm is reduced to an 

average of 80% of BPN algorithm and 68% of LAST 

algorithm for the learning rate of 1e-4. 

From the Fig. 34, the total training time for training 

Breast Cancer dataset by CAST algorithm is reduced to 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

811 

 

Fig. 32: Comparison result of heart training time with 1e-3 learning rate 

 

 
 
Fig. 33: Comparison result of breast cancer training time with 1e-4 learning rate 

 

 
 
Fig. 34: Comparison result of breast cancer training time with 1e-3 learning rate 



 

 

Res. J. App. Sci. Eng. Technol., 12(8): 790-812, 2016 

 

812 

an average of 69% of BPN algorithm and 50% of LAST 
algorithm for learning rate of 1e-3.   

Although the training performance of CAST 
achieves faster, it still lacks in the accuracy rate due to 
high skipping factor. So, further work should be 
concentrated on how to improve the accuracy rate of 
the training algorithm also. 
 

CONCLUSION 
 

In this brief, a simple and fast training algorithm 
called Constant Adaptive Skipping Training (CAST) 
Algorithm is presented. The simulation results showed 
that, compared to other training methods, the new 
algorithm improves the training speed by significantly 
reducing the total number of training input samples 
consumed by MFNN for training at every single epoch.   
Hence, the overall training time for actual training of 
the MFNN is often reduced by an average of 50% than 
in the standard training algorithm. It is concluded that 
the proposed CAST algorithm are much faster than the 
standard BPN and LAST algorithm and also the 
proposed CAST Algorithm can be merged in addition 
with any algorithm used for training any real-world 
supervised task classification. 
 

REFERENCES 
 
Ampazis, N. and S.J. Perantonis, 2002. Two highly 

efficient second-order algorithms for training 
feedforward networks. IEEE T. Neural Networ., 
13(5): 1064-1074.  

Asuncion, A. and D.J. Newman, 2007. UCI Machine 
Learning Repository. School of Information and 
Computer Science, University of California, Irvine, 
CA. Retrieved form: 
http://www.ics.uci.edu/~mlearn/. 

Behera, L., S. Kumar and A. Patnaik, 2006. On 
adaptive learning rate that guarantees convergence 
in feedforward networks. IEEE T. Neural Networ., 
17(5): 1116-1125. 

Devi, R.M., S. Kuppuswami and R.C. Suganthe, 2013. 
Fast linear adaptive skipping training algorithm for 
training artificial neural network. Math. Probl. 
Eng., 2013(2013): 9. 

Hornik, K., M. Stinchcombe and H. White, 1989. 

Multilayer feedforward networks are universal 

approximators. Neural Networks, 2(5): 359-366.  

Huang, G.B., Y.Q. Chen and H.A. Babri, 2000. 

Classification ability of single hidden layer 

feedforward neural networks. IEEE T. Neural 

Networ., 11(3): 799-801. 

Mehra, P. and B.W. Wah, 1992. Artificial Neural 

Networks: Concepts and Theory. 1st Edn., IEEE 

Computer Society Press, Los Alamitos, Calif, pp: 

667.  

Nguyen, D. and B. Widrow, 1990. Improving the 

learning speed of 2-layer neural networks by 

choosing initial values of the adaptive weights. 

Proceeding of the IJCNN International Joint 

Conference on Neural Networks. San Diego, CA, 

USA, 3: 21-26.  

Plagianakos, V.P., D.G. Sotiropoulos and M.N. 

Vrahatis, 1998. A nonmonotone backpropagation 

training method for neural networks. Department 

of Mathematics, University of Patras, Technical 

Report No. TR98-04. 

Razavi, S. and B.A. Tolson, 2011. A new formulation 

for feedforward neural networks. IEEE T. Neural 

Networ., 22(10): 1588-1598. 

Shao, H. and G. Zheng, 2009. A new BP algorithm with 

adaptive momentum for FNNs training. Proceeding 

of the WRI Global Congress on Intelligent 

Systems. Xiamen, China, 4: 16-20.  

Varnava, T.M. and A.J. Meade Jr., 2011. An 

initialization method for feedforward artificial 

neural networks using polynomial bases. Adv. 

Adaptive Data Anal., 3: 385-400.  

Wilamowski, B.M. and H. Yu, 2010. Improved 

computation for levenberg–Marquardt training. 

IEEE T. Neural Networ., 21: 930-937.  

Yu, H. and B.M. Wilamowski, 2012. Neural Network 

Training with Second Order Algorithms. In: Hippe, 

Z.S. et al. (Eds.), Human-Computer Systems 

Interaction: Backgrounds and Applications 2. 

Advances in Intelligent and Soft Computing, 

Springer-Verlag, Berlin, Heidelberg, 99: 463-476. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 


