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Abstract: A new model selection algorithm is established to determine the best number of hidden neurons for radial 

basis function neural networks. We used a Bayesian information-based criterion to select the best number of hidden 
neurons. The new algorithm grows the number of hidden neurons while the Bayesian information-based criterion is 
used for improvement. The optimal parameter values of a current neural network are used in the subsequent 
architecture. The computational results are compared with the trial-and-error approach through publicly available 
data sets. It is found that the new algorithm is suitable to improve the performance of the neural networks 

automatically. The root mean square error function is used to measure out-of-sample performance. 

 

Keywords: Model selection, radial basis neural network, schwarz information criterion  

 

INTRODUCTION 
 

Radial Basis Function Neural Networks (RBFNNs) 
(Broomhead  and  Lowe, 1988; Lee et al., 2011; Zhao 
et al., 2014; Wang et al., 2016) have elicited a lot of 
attention in the past. Apart from training faster than 
Multilayer Perceptron (MLP) networks, it provides a 
unifying link between classification, function 
approximation, regularization, density estimation and 
noisy interpolation (Ghodsi and Schuurmans, 2003). 
Training an RBFNN normally takes place in two steps 
(Wang and Zhu, 2000; Lampariello and Sciandrone, 
2001; Hamadneh et al., 2012). Firstly, it determines the 
hidden parameters corresponding to the radial basis 
function. Secondly, it determines the output weights. 
Compared to MLP networks, one advantage of 
RBFNNs is that suitable parameters for the hidden layer 
can be found without performing non-linear 
optimization of the network parameters. Still, a critical 
issue remains for RBFNNs in the selection of the 
appropriate number of hidden neurons (basis functions).  
Complexity and generalization ability of the RBFNN 
are controlled by the number of hidden neurons. Too 
few hidden neurons results in poor prediction 
(inadequate generalization) on new data as the model 
has limited flexibility. Conversely, an RBFNN with too 
many     hidden   neurons   also   provides    insufficient 
generalization as it is too flexible and fits the training 

data noise. A low variance, high bias estimator is 
obtained by a small number of hidden neurons whereas 
a high variance, low bias estimator is obtained by a 
large number of hidden neurons. To determine the best 
generalization performance, a trade-off between the 
conflicting requirements of reducing variance and 
simultaneously reducing bias must be accomplished. 
This compromise emphasizes the importance of 
optimizing the complexity of the RBFNN model to 
obtain the best generalization. 

The N2C2S algorithm is used to select 
automatically the most suitable MLP networks 
architecture with a single hidden layer for classification 
(Setiono, 2001). Cross-validation or hold-out samples 
are utilized to determine when to stop adding hidden 
units to the network. This algorithm can be adapted to 
determine the best RBFNN topology. Many techniques 
have been proposed to determine automatically the 
RBFNN model complexity (Bors and Gabbouj, 1994; 
Leonardis and Bischof, 1998; Ghodsi and Schuurmans, 
2003; Peng et al., 2006, 2007). In this study, we 
proposed a new algorithm to select automatically the 
most suitable RBFNN topology for classification. This 
algorithm is called the best number of hidden neurons 
method in RBFNN or BH-RBFNN. We utilized the 
SAS® commercial software to obtain our 
computational results. To select the best number of 
hidden neurons, we used an information-based model 
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selection criterion. The Schwarz Bayesian Criterion 
(SBC) in-sample model selection criterion is employed 
to determine the appropriate model complexity. In this 
study, we determined the parameters' values of the 
neural networks by using the Levenberg-Marquardt 
Algorithm (LMA) (Moré, 1978; Ye, 2003; Heertjes and 
Verstappen, 2014). In addition, the Root Mean Squared 
Error (RMSE) and classification accuracy indicate the 
how good the model will generalize to new unseen data. 
The global values' solutions, obtained by LMA, are 
based on the initial parameters (Moré, 1978; Gow and 
Manning, 1999). 

The main objective is to select the best number of 
hidden neurons in RBFNNs. In the next two Sections, 
RBFNNs and model selection criteria are discussed 
respectively. After that, we proposed a new method to 
select the best RBFNN architecture. The experimental 
results obtained by applying the new technique to ten 
data sets are presented. Finally, the conclusions are 
presented in the last section. 
 
RADIAL BASIS FUNCTION NEURAL NETWRK 

 
RBFNNs have typically three layers, an input 

layer, hidden layer with a non-linear activation function 
and a linear output layer (Lowe, 1989; Moody and 
Darken, 1989; Lee et al., 2011; Hamadneh et al., 2012). 
An activation function in the hidden layer is 
a radial basis function determined by the distance 
between the input vector and a prototype vector. 
Originally, RBF models became popular for performing 
exact interpolation of a set of data points in high-
dimensional space (Ghodsi and Schuurmans, 2003; 
Tilahun et al., 2013). The initial technique yielded an 
interpolating function that passed through every data 
point. Suppose there is a mapping from a d-dimensional 
input space to a one-dimensional target space y, with N 
input vectors xi in the data set and with corresponding 
targets yi, i = 1, ..., N. An exact interpolation is obtained 
by creating a set of N basis functions (one for each data 
set) and then determining the linear combination 
weights of the basic functions. For exact interpolation, 
the radial basis functions are non-linear functions, 

( ),iX cϕ −  of the input vectors X with ci the centre of 

the function. A linear combination of these basis 
functions can be denoted as: 
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The exact interpolation procedure can be modified 

in a number of ways to obtain an RBFNN. First, the 
number of data points, N, is usually much greater than 
the number of radial basis functions, M. Second, rather 
than obtaining the centres of the radial basis functions 
using the input data vectors, they can be determined 
during the training process. Third, each radial basis 
function can have its own width parameter, σj, which is 
also determined by the training process. When these 

changes are applied to the original (exact) interpolation 
formula, the following form of the RBFNN mapping is 
obtained:  

 

 

 
where, the biases wk0  can be incorporated into the final 
summation by including an extra basis function φ0 with 
activation fixed at 1, M is the number of hidden 
neurons and X  is an input value.  

Of all the radial basis function forms, considered in 
previous research on RBF models, the most common 
form is the Gaussian function:  

 

 
 
where, X is the d-dimensional input vector with 

elements xi and cj
 

and σj are the centre and width 

respectively of basis function φj.  
In practice, training an RBFNN is performed in 

two steps. The first step determines the basis function 
parameters cj and σj based on the X-values of the 
training samples. Then, while the basic functions are 
kept fixed, the second-layer weights wi are estimated. In 
this study, we determined the parameters' values by 
using the Levenberg-Marquardt algorithm (Moré, 1978; 
Ye, 2003).   

For the first phase, the generalized Lloyd algorithm 
or Kohonen’s self-organizing maps can be exploited. 
Consider the RBFNN mapping for the second phase. 
When the bias parameters are absorbed into the 
weights, this can be written in matrix notation as Y = W 
φ where Y is the matrix of output values and W = (wkj) 
is a matrix of the weights in the second layer to be 
estimated. This formulation is a classical least squares 
estimation problem. For ||Y–Wφ||

2
 to be minimized, a 

necessary condition is that W must satisfy 
1( ) .T TW Yϕ ϕ ϕ−=  

In the next section the model selection criterion 

which forms the foundation of the new BH-RBFNN 

algorithm is discussed. 
 

MODEL SELECTION CRITERION 
 

Information-based model selection criteria such as 
the Schwarz Information Criterion or Schwarz Bayesian 
criterion (SBC), which penalize large models that often 
tend to over-fit, are the most widely used in-sample 
model selection criteria (Akaike, 1974; Schwarz, 1978; 
Cong and Brady, 2012). In the BH-RBFNN algorithm, 
the SBC is applied for selecting the most appropriate 
RBFNN model. Use of this metric is based on the 
assumption that the true RBFNN model is included in 
the set of candidate RBFNN models and as a result 
consists of a finite number of parameters (Du Toit, 
2006). By making this assumption, the goal of model 
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selection becomes that of correctly identifying the true 
model from a list of candidate models generated by the 
BH-RBFNN algorithm. Furthermore, it is assumed that 
all variables can be measured and the list of important 
variables is known. This is clearly the case for the ten 
publicly available data sets used in this study. The 
Gaussian error model formulation of the SBC is 
employed (Burnham and Anderson, 2002): 

 
 

 
where, 
n = The number of data points 
K = The total number of free parameters which are the 

centres, widths and output weights 
 

 
 
where, 

�� i  = The predicted target value  
Yi  = The target value  
 

In the computational results, the RMSE and 

predictive accuracy on the testing data sets have also 

been included for reference. The first term in SBC 

measures the goodness-of-fit of the model to the data 

and tends to become less as more parameters are added 

to the model, while the second term increases as more 

parameters are added to the model. The latter term sets 

a penalty for model over-fitting. The optimal model is 

selected when SBC is minimized. As a result, SBC is a 

reasonable criterion for RBFNN model selection, which 

balances model fitting and model parsimony.  

 

A NEW METHOD FOR RBFNN 

ARCHITECTURE SELECTION 

 

In this section, we have established a new method 

for selecting the best number of the hidden neurons in 

RBFNNs, called BH-RBFNNs. The algorithm 

simulates a trial-and-error approach to determine the 

best architecture. The algorithm commences with a 

simple RBFNN model. Ineachiteration, the best 

parameters found in the previous iteration are utilized 

as starting parameters. The model is then grown until 

the SBC value does not further improve. In the latter 

case, the same RBFNN architecture is trained from 

random starting parameters and only if the SBC value 

does not again improve the algorithm terminates. 

Suppose there are S data samples. Partition the data set 

randomly into two disjoint subsets: a training set and a 

testing data set.  The training data is used for model 

selection and to improve the performance of RBFNNs 

by determining the best set of parameters. The testing 

data set is used to reveal the generalization capability of 

the neural network. The steps be as follows: 

Step 1: Let �1 be an RBFNN with N input neurons, M 

output neurons and H hidden neurons. 

Step 2: Initialize the parameters of �1 randomly and 

train �1 to minimize the RMSE error function. 

Let the SBC model selection criterion value of 

the trained RBFNN be SBC�1.  

Step 3: Let �2 be a network with N input neurons, M 

output neurons and H+h hidden neurons. 

Step 4: Set the parameters to and from the first H 

hidden neurons of �2 to the optimal parameters 

of �1 and set the remaining parameters of �2 

randomly. Train �2 to minimize the RMSE 

error function and let the SBC model selection 

criterion value of the trained RBFNN be 

SBC�2. 

Step 5: If SBC�2<SBC�1 then 
 
a) Set H: = H+h. 

b) Let �1: = �2 and SBC�1: = SBC�2. 
c) If H <MaxH then return to Step iii. 
        Else: 

1. Train a new RBFNN, �3, with H+h hidden 
neurons and all parameters initially assigned 
random values to minimize the RMSE error 
function. Let the SBC model selection criterion 

value of the trained RBFNN be SBC�3. 

2. If SBC�3 < SBC�1 then 
a) Set H: = H+h. 

b) Let �1: = �3 and SBC�1: = SBC�3. 
c) If H<MaxH then return to Step iii. 

 

Step 6: Output �1 as the final constructed RBFNN. 
 

EXPARIMANTAL RESULTS 

 
For the experimental results, the starting number of 

hidden neurons was 1. The growing network was 
expanded by one neuron at a time (h=1).  A good 
starting value as one hidden neuron is the simplest 
neural network we can use as the starting point since we 
do not know how many neurons will be needed. The 
maximum number of hidden neurons allowed was 10 
(maxH). Parameter optimization was performed by the 
Levenberg-Marquardt algorithm (Moré, 1978). Training 
was terminated if the relative decrease in RMSE error 
function values after two consecutive iterations was less 
than 10

-4
 or the maximum number of function 

evaluations was reached. The latter was set to 10000. In 
this study the Kyphosis data set available in 
http://www.jhsph.edu/ and nine data sets from the UCI 
Machine Learning Repository (Bache and Lichman, 
2013) were used in Table 1. Note that the missing 
values were ignored. Table 2 presents results for a trial-
and-error with 10-fold cross-validation model selection 
approach (grid search) by varying the number of hidden 
neurons (basis functions) between 1 and 10. In addition, 
the RMSE values and classification accuracies obtained 
on the test sets are displayed. 
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Table 1: Data sets used in the experiments 

Data Set Size Missing values (%) 

Attributes 

------------------------------------------------ 

RBFNN 

--------------------------------------

Continuous Binary Nominal Inputs Outputs (binary) 

Kyphosis 83 0 3 0 0 3 1 

Breast cancer 699 2.3 9 0 0 9 1 

Iris 150 0 4 0 0 4 3 
Thyroid 215 0 5 0 0 5 3 

Contraceptive method choice 1473 0 2 3 4 9 3 

Vertebral column 310 0 6 0 0 6 3 
Indian liver patient 583 0 9 1 0 10 1 

Fertility 100 0 1 6 2 9 1 

Seeds 210 0 7 0 0 7 3 
MAGIC Gamma telescope 19020 0 10 0 0 10 1 

        

Table 2: Results obtained using trial-and error approach 

Data Set Hidden neurons SBC RMSE Accuracy (%) 

Kyphosis 1 
9 

-140.990 
-167.943 

0.359 
2.736 

81.803 
77.432 

Breast cancer 1 -2170.773 0.166 96.301 

Iris 4 
10 

-1428.518 
-1776.928 

0.164 
0.646 

96.245 
94.462 

Thyroid 3 
10 

-2035.104 
-2696.808 

0.161 
1.350 

96.681 
96.225 

Contraceptive method choice 3 

10 

-6540.808 

-5906.410 

0.429 

0.427 

55.316 

55.489 
Vertebral column 2 

3 

-2038.107 

-2017.947 

0.283 

0.279 

84.744 

84.774 

Indian liver patient 1 
2 

-839.434 
-776.302 

0.426 
0.425 

72.398 
73.175 

Fertility 1 -166.227 0.315 85.900 

Seeds 5 
8 

-1767.129 
-1848.087 

0.190 
0.437 

95.330 
93.427 

MAGIC Gamma telescope 7 

8 

-36816.548 

-36893.294 

0.334 

0.416 

85.727 

85.851  

 
Table 3: Results obtained using BH-RBFNN approach  

Data Set Hidden neurons SBC RMSE Accuracy (%) 

Kyphosis 1.5±0.85 -141.3400 0.705 79.365 

Breast cancer 3.9±2.56 -2299.112 0.443 96.804 
Iris 7.2±2.15 -1625.348 0.211 95.357 

Thyroid 6.9±3.07 -2348.396 0.233 96.142 

Contraceptive method choice 2.3±0.67 -6478.357 0.433 53.619 
Vertebral column 2.7±0.95 -2023.838 0.285 85.002 

Indian liver patient 1.2±0.42 -830.2830 0.429 70.779 

Fertility 1.1±0.32 -172.9950 0.347 85.118 
Seeds 4.3±1.70 -1754.214 0.441 95.073 

MAGIC Gamma telescope 6.3±2.54 -37450.890 0.330 86.304 

     

For most of the data sets the best number of hidden 
neurons (indicated by bold values) suggested by the 
SBC and RMSE differ. In Table 2 this can be observed 
by two rows for the specific data set. The RMSE and 
classification accuracy indicate the how good the model 
will generalize to new unseen data. It is well known 
that in-sample model selection does not always agree 
with out-of-sample model selection as can be seen from 
all the data sets except the Breast Cancer and Fertility 
data sets (Kingston et al., 2005). For these two data sets 
there is only one row in Table 2 as the SBC and RMSE 
both suggest the same best number of neurons. Since 
there is no general consensus which criterion is better it 
is difficult to decide which model to choose. The BH-
RBFNN algorithm produced the 10-fold cross-
validation results shown in Table 3. For each Table 3: 
Results obtained using BH-RBFNN approach fold the 
best number of hidden neurons is identified by the SBC 

value. At this critical number of hidden neurons the 
algorithm could not improve further by adding another 
hidden node. In Table 3 the average values over the 10 
folds are shown. The±in the second column is a way to 
express the statistical standard deviation.  For example, 
±0.85 it basically means the standard deviation is in the 
range (average-0.85, average+0.85). The 1.5 hidden 
neurons is the average of the 10-fold cross validation 
experiments. Each experiment had an integer number of 
hidden neurons, but 1.5 is the average of them. Note 
that, in BH-RBFNN algorithm, training the neural 
networks by LMA is to minimize the RMSE and the 
SBC is to select the best model.  As mentioned above, 
the main objective of MLA is determined the best local 
minimum value in terms of RMSE, which is not 
necessarily being the global minimum value. LMA 
converges to the best local minimum value only if the 
initial parameters are already somewhat close to that 
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solution. Accordingly, The optimal solution to 
RBFNNs in terms of RMSE, which determined by 
MLA, is based on the initial parameters. In trial-and-
error method, we used randomly initial parameters 
values of each time. While, in BH-RBFNN algorithm 
the initial parameters were fixed and only the new 
parameters we determine randomly. For that, there is 
more chance for trial-and-error method to determine the 
best solutions. Nevertheless, the BH-RBFNN technique 
produced better results than the trial-and-error approach 
for the Breast Cancer, Fertility and MAGIC Gamma 
Telescope data sets (Table 2 and 3). For the latter data 
set, the RBFNN model is also more parsimonious than 
the models obtained by the trial-and-error approach in 
terms of SBC and the speed. So, BH-RBFNN algorithm 
is quicker to run than the trial and error method.  
 

CONCLUSION 

 

In this study we have established a new approach 

to determine the best RBFNN topology for a specific 

pattern classification problem. This constructive 

approach minimizes the SBC information-based 

criterion to identify the optimal complexity and 

consequently generalization capability of the model. As 

a result, the difficulty of choosing the number of hidden 

neurons before network training begins is removed. 

Although there are several network construction 

algorithms in the literature, the BH-RBFNN is simple 

to implement, provides good results and is based on a 

proven topology selection strategy. Furthermore, it 

relieves the data modeller from making difficult 

decisions regarding the complexity of the RBFNN 

architecture. Compared to a trial-and-error procedure, 

the algorithm may select a more parsimonious topology 

and speed which is less prone to over-fitting. However 

one can show analytically that SBC generally gives 

preference to simpler models because it penalizes 

complex models more harshly. 
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