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Abstract: Construction of a prototype Single Sided Linear Induction Motor (SLIM) is not possible taking stator and 
rotor width to be infinite because the formation of stator winding is not possible without the overhang. Also the 
current path in the rotor sheet cannot be made of closed type until and unless rotor width is finite. This study takes 
into account, the finite width effects of both stator and rotor but ignores the discontinuity of the rotor in the 
longitudinal direction. The finite width effects in a SLIM are analyzed using special mathematical tools such as 
Hankel Function for faster numerical convergence. The basic difficulty in formulating such problem, based on 
electromagnetic field theory applications, is to calculate the induced current in the rotor sheet, which is electrically 
decoupled from the stator winding system. It is also known that currents in the rotor sheet are generally computed, 
based on the fact that current cannot escape the sheet. Therefore, the divergence of rotor current density being zero 
calls for introduction of a field quantity “Stream Function”. The present paper uses stream function effectively for 
tackling the above said difficulty. The results presented in the study are compared with the values of a model with 
stator and rotor of finite width. Such comparison results can help a designer to decide a finalized value of stator and 
rotor width. 
 
Keywords: Hankel function, SLIM, stream function and finite width effects 
 

INTRODUCTION 
 

Single Sided Linear Induction Motor (SLIM) is 
widely used in transportation system and other fields in 
need of linear drive which can obtain the thrust without 
gears and links, or auxiliary mechanisms. Bulk of 
literature deals with the double-sided, short primary and 
long secondary Linear Induction Motor (LIM) which is 
considered as one of the most suitable means of 
propulsion for high speed ground vehicles (Laithwaite, 
1966). However, vehicles provided with these LIM’s 
cannot provide good lift force because the strong 
attraction forces between primary and secondary iron 
dominates over the repulsive forces between primary 
winding and secondary conducting sheet (Nasar, 1976). 
Good amount of lift and propulsion can be obtained by 
using SLIM with long primary and short secondary 
(Chattopadhyay, 1997; Venkataratnam and 
Chattopadhyay, 2002). SLIM with short primary and 
long secondary consisting of a conducting plate lying 
on solid or laminated back iron has been analysed by 
many (Boldea and Babescu, 1978; Freeman and 
Lowther, 1973; Lipkins and Wang, 1971; McLean, 
1988). But because of the discontinuity of the magnetic 
field in SLIM, they have special characteristics and 
inherent problems. Edge effect is one of the major 

phenomenons that makes the analysis and design of 
these motors difficult (Ham et al., 2009). Finite Width 
Effects have been analyzed by Preston and Reece 
(1969) the work presented in Han et al. (2008) is a field 
theory approach because original formulations have 
been done in terms of vector potential. However 
dynamic characteristics have not been dealt in detail. 
Analysis presented in Yang et al. (2008) appears to be 
more helpful for a designer as it is based on circuit 
theory approach. It is well known that numerical 
methods in computational techniques becomes very 
much helpful to a researcher or designer when the 
electromagnetic field equations are applied to a full 
electrical machine or parts of electrical machines in the 
proximity of iron boundary. Such philosophy leads to 
partial differential equations or integro-differential 
equations formulation in the area of electrical machines, 
drives or magnetic. As realistic iron boundaries are 
involved in such formulations, closed form equations 
becomes very difficult to build up and hence the 
concerned analytical solutions are also rare. Such 
situations can be tackled efficiently using tools under 
numerical methods such as finite difference method, 
finite element method etc. In such context the 
companion paper (Dos Santos et al., 2001) draws the 
attention of researchers. In such paper the mathematical  
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Fig. 1: Model of SLIM with coordinate system used for analysis of finite width effects (Coordinate axes are fixed relative to 
rotor) 

 
model has been developed from the view point of 
circuit theory and hence equivalent circuit is feasible. 
But finite element method has been applied efficiently 
to the system to calculate the propelling force which is 
generally considered to be one of the major components 
of electromagnetic forces. The dynamic end effects of a 
Linear Induction Motor [LIM] are needed to be 
calculated with much accuracy for the betterment of the 
design process. The concept of state space vector model 
of a Lim can be applied to calculate the net axial thrust 
including the end effect braking force (Pucci, 2014). 
For practical application of a particular LIM as a 
component of machine drives needs for the clear cut 
declarations of the machine design parameters. Such 
parameters if needed are to be calculated becomes 
cumbersome job. Alternately parameter identification 
can be done based on input, output data. Exactly this 
type of work has been reported by Alonge et al. (2014). 
The present paper analyses the transverse edge effects 
in a SLIM using field theory approach. The results 
regarding the electromagnetic forces presented in this 
study can be compared to a realistic model with stator 
and rotor of finite width. In a practical machine the 
width of the stator winding as well as the width of the 
supporting back iron must be finite. The width of the 
rotor sheet placed over the stator winding of finite 
width can be made very large but it has no practical 
advantage beyond certain extent. From the 
experimental results, it is observed that the rotor width 
should be approximately equal to stator width including 
winding overhang for good performance. Therefore the 
rotor width is also finite. Length of the rotor sheet 
should also be finite because concept of infinite length 
is absurd. But to analyse the problem in stages, a rotor 
of infinite length and finite width is considered in the 
present paper. With reference to Fig. 1, we propose to 
calculate: 
 
 The field at any point in free space due to the stator 

winding having a sinusoidal distribution of linear 

current density along the length 
 The induced currents in the rotor sheet considering 

the field due to stator as well as the rotor currents 
 The propulsion, levitation and lateral forces on the 

rotor 
 
The coordinate system is fixed relative to the rotor, 

the origin being placed just above the stator surface. 
The rotor is assumed to be thin and lying parallel to x-z 
plane at a height h from the stator surface. It is also 
assumed that the stator back iron of width Ws, is 
assumed to be infinitely permeable and perfectly 
laminated. 
 

MATERIALS AND METHODS 
 
Formulation for the field due to stator current sheet: 
As the stator winding has finite width, the stator current 
will have not only the axial component of the linear 
current density,  (which would have been the only 
component for a stator winding of infinite width) but 
also the peripheral component of linear current density, 

. The latter component may be viewed as one due to 
the end current of a winding having overhang. From the 
physical considerations, the axial component of linear 
current density can be assumed to be constant over the 
stator iron width. For diamond shaped coils, the 
variation of 	  with the overhang width can be 
considered as linear. Therefore, in a coordinate system 
fixed to the rotor,  (Ratnam and Chattopadhyay, 
1996) can be expressed as:  
 

                                         (1) 
 
where, 

  = Peak value of stator linear current density 
  = Supply frequency in rad/sec 

 
/   
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Fig. 2: Variation of f (z) with z 
 
where, 
 = Stator pole-pitch 
 = Slip of the rotor 

 
The function of f(z) in Eq. (1) can be expressed as 

given in Fig. 2: 
 

1 for W1<z<W2                             (2) 
 

1  for W2<z< (W2+C)                         (3) 

  

= 1  for (W1 –C) <z< W1               (4) 

 
where,  
C = Stator overhang length (in z direction) 
 

W 	 	 W                                                 (5) 

 
W   =  Width of the stator iron block  
W  =  Offset of the rotor sheet (widthwise) with respect  
													to the stator: 
 

W 	 W                                             (6) 

 
It is necessary to assume certain amount of offset 

for the rotor (W0) with respect to the stator to enable 
calculation of the lateral force. The continuity equation 
of the current in the stator winding can be expressed as: 
 

0                                            (7) 

 
As an infinitely long three phase balanced 

distributed stator winding fed by three phase balanced 
currents can be represented by a current sheet having a 
sinusoidal current distribution along the length and with 
respect to time, like  expressed in Eq. (1): 

	  can also be expressed as 	         (8) 
 

 = The function of z only. 
 
From Eq. (1) and (8) we have: 
 

′                              (9) 

 

                                 (10) 

 
′  is the derivative of  with respect to z. Eq. (7) 

(9) and Eq. (10) yield: 
 

′                                                (11) 

 
From Eq. (8), (11) we can express: 
  

′                                (12) 

 
Vector potential due to stator current: The vector 
potential due to stator current at any field point (x’, y’, 
z’) can be expressed as: 
  

	
	

	 	 	∞

∞
             (13) 

 
where  
 

r = x 	x’ 	 	y’ 	 	 z 	z’               (14) 
 

Is the distance of the field point (x’, y’, z’) from the 
source point (x, 0, z). The effect of stator iron is taken 
into account by considering the ‘image’ of  over the 
width of the iron block,	W , which will contribute an 
additional component vector potential given by:  

 
	
	

	 	∞

∞
                              (15) 
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The image of  is not taken into account as it 
flows in the overhang beyond stator iron width. Thus 
the vector potential at any field point: 
 

	                                          (16) 
 
Based on Eq. (13) and (15), we have 	and	  : 
 

	
	 ′ ∞

∞
	

	
	

∞

∞
	 	                               

                                                                                   (17) 
	

	
∞

∞
	 	            

                                                                                   (18) 
Eq. (17) and (18) involve an integral which can be 

rewritten using Eq. (14) as: 
 

∞

∞
	

	 ’ 	 	 	 ’ 	 	 	 ’

∞

∞
	   

 
On simplification by contour integration method 

(Details given in Appendix-1) we finally get: 
 

∞

∞
	 2

′ ∞
	             (19) 

 
The integral on the R.H.S of Eq. (19) can be 

written as Preston and Reece (1969) and Pucci (2014): 
 

2
∞

	 2 	     

        

where,  is the Hankel function of the zeroth order 
of the first kind. The numerical evaluation of this 
integral is much faster as compared to that of the 
original integral in the L.H.S of Eq. (19). Based on Eq. 
(16), (17), (18) and (19) the net vector potential , at 
any field point due to the stator current can be 
expressed as: 
 

	
4

	 

′
2 ′ ∞

	   

 
	

4
	

′
 

2
∞

	

2
∞

	              (20) 

 
The integration over ‘z’ can be carried out 

numerically without any further transformation because 
of the finite limits of ‘z’. 

From the vector potential 	  expressed in Eq. (20), 
the flux density vector at any field point can be 
computed numerically using the relation . 
Numerical algorithms are presented in later sections. 
 
Formulation for current and fields in the rotor 
sheet: With reference to Fig. 1, the rotor sheet is placed 
parallel to the surface of the stator with its longitudinal 
edges running parallel to the length of the stator. As the 
rotor sheet is of finite width like the stator, the induced 
currents in the sheet must have a closed path. Therefore 
the axial component of the rotor current density ( ) 
must gradually turn into peripheral current density . 
The rotor sheet has small thickness and hence it does 
not allow any normal component of current density,	 , 
to flow. In other words, the rotor current is planar in 
nature. At any instant, in the sheet, divergence of the 
current density must vanish to maintain continuity of 
current flow. Therefore we can write: 
 

	 . 0                                                              (21) 
 
As divergence of curl of any vector is zero,	  can 

be expressed in terms of stream function  as: 
 

                                                           (22) 
 
As planar current flows in the sheet, the stream 

function possesses only one component,	 , normal to 
its surface: 
 

	 . 	                          (23) 
 

As 0 and  does not vary with y, 

hence . 0: 
 

0 	 0                           (24) 

 and   

  
where  is the electric field vector and  is the 
conductivity of the rotor sheet material: 
 

0 	 0            (25) 

 
where,  is the total flux density (normal to the sheet) 
at the field point (x’, y’, z’) on the sheet. As ′ ′ has a 
sinusoidal variation with respect to time, we can write: 
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                                          (26) 

 
Substituting Eq. (26) in Eq. (25), we obtain: 
 

                           (27) 
 

Equating R.H.S of Eq. (24) and (27), we obtain 
(Nasar, 1976): 
 

                                                (28) 
     

′		 ′		
                           (29) 

 
As the rotor sheet is of infinite length, like stator 

linear current density components, rotor linear current 
density components also will have sinusoidal variation 
in the longitudinal direction. Therefore at any point (x’, 
y’, z’) in the sheet,	  is: 
 

	 ′	
′
                                         (30) 

 
where, 	 ′	  is a function of 	 ′ only. From Eq. (30) 
we obtain: 
 

′		
	 ′	

′
	                              (31) 

′		
	 ′	

′		
′
                                      (32)  

 
Eq. (29), (31) and (32) yield: 
 

	 ′	

′		
	 ′	

′
          (33) 

 
Along	with	boundary	condition	 ′ 	

0	and		 ′ 	 0                                         (34) 

 
where, W  is the width of the rotor sheet. The boundary 
conditions indicate that current cannot escape from the 
rotor sheet along its width.	′ ′ in Eq. (33) can be 
obtained as: 
 

                                           (35) 
 
where,  is the normal component of the flux density 
due to the stator current sheet (obtained as explained at 
the end of above section) and  is the normal 
component of flux density due to the rotor current 
taking into account the proximity of stator iron. The 
formulation and calculation of  is presented in 
following section. 
 
Vector potential due to rotor current: The vector 
potential,	  at any field point (x’, z’) in the rotor sheet 

due to currents in the same sheet, taking into account 
the proximity of stator back iron is given by: 
 

x’, z’                                           (36) 
 

	 	 	 	∞

∞	
                        (37) 

 
	 	 	 	∞

∞	                           (38)  

 

where, x 	x’ 	 	 z 	z’  and 

x 	x’ 	 	 z 	z’ 4 y′  
 
where, y′ is the height of the rotor sheet above the stator 
surface. With reference to Eq. (37) and Eq. (38),	  
and  are the vector potentials due to rotor current 
and its image over the stator iron width respectively.	  
and  are the longitudinal and lateral components of 
the rotor sheet. Vector potential due to rotor currents 
has similar expressions as those due to stator current, 
except that the rotor current density components are 
unknown unlike the components in the stator winding. 
Hence: 
  

 ;                            (39) 
 
where, 	 ,	  are the rotor current density components 
(in A/m2) and ′ ′ is the thickness of the rotor sheet. 
From the relation  	  and 	  can be 
expressed as: 
  

 ;                            (40)  

 
From Eq. (39) and Eq. (40) we obtain: 
 

 ;                           (41) 

 
From Eq. (30) we can write: 
 

	  ;             (42) 

 
 Appearing on the R.H.S of Eq. (42) equations is a 

function of ′ ′ only. Based on Eq. (41) and Eq. (42) we 
can write: 
 

	  ;	      (43) 

 
Based on Eq. (36), (37), (38), (43),	 x’, z’  can be 
written as: 
 

 	 	                                           (44) 
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	 ’ 	 	 	 ’

∞

∞
	

	

	

	 ’ 	 	 	 ’ ′

∞

∞
	  

                                                                     (45) 

	

	 ’ 	 	 	 ’

∞

∞
	

	

	

	 ’ 	 	 	 ’ ′

∞

∞
	  

                                                                     (46) 
The infinite limit integrals appearing in Eq. (45) 

and (46) can be reduced again by the method of contour 
integration, similar to the method followed in above 
section. (For details refer Appendix-1). Thus  and 

 can be simplified to the expressions given by: 
 

	 ′
′

∞
	

	

	 ′
	 	 ’ ′

∞
		

                                                                     (47) 

	 ′
′

∞
	

	

	 ′
	 	 ’ ′

∞
		                   

                                                                                   (48) 
 
Solution of stream function,	 : In Eq. (33), the 
normal component for flux density,  comprises of 

, the component due to stator current and , the 
component due to rotor current. At any point on the 
rotor sheet,	  can be calculated from the vector 

potential,	  due to known stator current as given in Eq. 
(20). Similarly  can be obtained from  and  
(Eq. (47) and (48)) which are integrals involving the 
unknown  and its partial derivatives with appropriate 
kernels. Equation (20) has on its L.H.S the unknown 
function  and its second order derivative while the 
R.H.S involves a known function,	  and the integral 
expression involving  and its partial derivatives with 
suitable kernels. Thus Eq. (20) is an integro-differential 
equation in . It is perhaps possible to solve such 
equation analytically using some sort of integral 
transforms. However, the kernel involved in this 
equation is singular and difficult to handle 

mathematically. Hence numerical solution to the 
problem is preferred. Step by step method for solution 
of  is outlined in next section. 

Steps of algorithm for numerical solution for  
and : 
 
Step 1 : The rotor sheet is discretized along its width 

(in z-direction) into a large number of 
elements each of width ‘dz’. Discretizing the 
rotor sheet   along the length (in the x-
direction is not necessary). The coordinates of 
the grid point along the width are noted. 

Step 2 : Calculation of flux density ( ) due to the 
stator current: 

 
Rearranging the expression for the vector potential 

due to stator current sheet,	  in Eq. (20), we obtain, for 
a fixed value of ′: 
 

′ 	 ′ 	
′

          (49) 
 
where, 
 

′

	
2 ′ ∞

	
	

       (50) 

 

                      (51) 
 

The flux density at any point due to the stator 
current	  can be expressed as: 
 

′ ′
                           (52) 

 
where,  
 

′
′

′
	 ′              (53) 

 
The grid points obtained after discretizing the sheet 

are used to calculate  and then ′  using Eq. (49) 
and (53). The required numerical differentiation has 
been carried out by forward difference method. Thus a 
column matrix [  is formed. 
 
Step 3: Calculations of normal component of flux 

density due to rotor current,	 . 
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The expression for the component of vector 
potential,	  and , at any point in the sheet due to 
rotor current, can be rewritten, based on Eq. (47) and 
(48) respectively, as: 
 

| ’, ’, ’ 	
′ 	

′
                              (54) 

 

| ’, ’, ’ 	
′ 	

′
                              (55) 

 
′

	
′

∞
	

	

	
	 	 ’ ′

∞
	

	 	
 

                                                                     (56) 
′

	
′

∞
	

	

	
	 	 ’ ′

∞
	

	 	
             

                                                                                   (57) 
 

The above expressions are again discretized and 
the following matrix equation can be obtained: 
 

	                                             (58) 

 
	                                               (59) 

 
where, the elements of matrices  and  are 
known in terms of ,  and grid point coordinates. The 

column matrices , ,  and  have for 

their elements, the corresponding values at the grid 
points. 
 
Step 4: Using the central difference method, the matrix 

 can be expressed as: 

  

	                                                 (60) 

 
where,  is the coefficient matrix in terms of the grid 
coordinates along the z-direction. While forming the 
matrices, the boundary lines of the rotor sheet along its 
width are considered as 0 lines for satisfying the 
conditions in Eq. (40) connected with the differential 
Eq. (33) 
 

Step 5 : Substituting   for    from Eq. (60) in 

(58),	  can be expressed as: 

 	  = 	             (61) 
 
where,    
 

Step 6 : | ’, ’, ’ 	 ’, ’, ’ 	 ’, ’, ’ 	

            (62) 

 
where,  and  are functions of  only: 
 

Also | ’, ’, ’ 	
            (63) 

 
where,  is a function of  only. From Eq. (62) 
and (63) we can write: 
 

                         (64) 

 
After discretizing the expression for  in Eq. 

(64), we obtain a matrix equation: 
 

                           (65) 

 
Step 7: Using the forward difference method we can 

write: 
 

                                             (66) 

 
where,  is a known coefficient matrix. Substituting 
for  from Eq. (61) in (66), we obtain: 
 

                   (67) 

 
where, 
 

                                                (68) 
 
Step 8 : Based on Eq. (59), (65) and (67) we obtain the 

expression for  as: 
  

	 	            (69) 
 
where,  is the coefficient matrix given by	

 
 
Step 9 : With reference to Eq. (33), we can express 

 as a column vector  where: 
  

                                          (70) 
 
Discretizing the L.H.S of Eq. (33) matrix: 
  

		 LAPLACIAN                  (71) 
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where, the coefficient matrix LAPLACIAN  is 
expressed in terms of the discretized forms of the 
second order differential operators. From Eq. (64), (70) 
and (71) we have: 
 

LAPLACIAN            (72) 

 
Step 10 : Substituting for  from Eq. (69) in (72), 

we obtain: 
 
LAPLACIAN j  

  

LAPLACIAN j   (73) 
 
From  we can find  using Eq. (69) 
 
Step 11: Calculation of  and  components, the 

longitudinal and lateral components of flux 
density in the rotor sheet due to both rotor 
and stator current are  and : 

 
 ;             (74) 

 
where, ,  are the components of flux density due 
to the stator current sheet and ,  are the 
components of flux density due to rotor current. As the 
rotor sheet is of infinite length,	 2 and  at any 
field point for a fixed value of  can be expressed as: 
 

| ’, ’, ’ 	
; | ’, ’, ’ 	

                                         (75) 
 

Since , the flux density components 
will also have a sinusoidal distribution with respect to 
length. Therefore: 
  

| ’, ’, ’ 	
; | ’, ’, ’ 	

                                                     (76) 
 

And ) are functions of  only. From the 

relation	 , we can write: 
 

; 	  ; ; 	

                                                                     (77) 
Step 12: If the rotor sheet is placed parallel to the 

stator surface at a height  from the later, by 
the method of central difference  and                   

 at that height can be calculated as: 
 

|
| ∆ 			 		 | ∆ 	

∆
        (78) 

|
| ∆ 			 		 | ∆ 	

∆
             

                                                                                   (79) 
 
where, the symbol (i) denotes the (i-th) discretized 
point in the z-direction. For obtaining the mean values 
of the flux density components,	  and , in a thin 
rotor sheet ∆ ,where  is the thickness of the 
rotor sheet. 
 
Step 13: For calculation of  and , we 

calculate    for  a  particular height  of 
rotor  sheet   above   the   stator  surface. From  

,  and  are calculated from Eq. 
(59) and (61). Hence we can express: 

 

|
| ∆ 			 		 | ∆ 	

∆
        (80) 

 
|

| ∆ 			 		 | ∆ 	

∆
                 (81) 

 
Again we can take ∆ , where  is the 

thickness of the rotor sheet. It is to be noted that  
and  have a discontinuity across the rotor sheet. The 
values calculated above give the average values at the 
top and bottom surface of the rotor. 
 
Calculation of forces: Once the fields and currents in 
the rotor are known, all the force components are 
calculated using the established relation . 

Total time average of propulsion, lateral and 
levitation forces, , ,  for unit length of the 
infinitely long rotor are calculated as: 
 

	
∆ ∑ 	 ∗              (82) 

 
∆ ∑ 	 ∗              (83) 

 
∆ ∑ 	 ∗

∗                                                                       (84) 
 

RESULTS AND DISCUSSION 
 

The above numerical method of solution is applied 
to predict the various components of flux density and 
forces for the model under consideration 
(Chattopadhyay, 1997). The main details of the model 
are reproduced below: 
 

Ws 10.6	cm;Wr 27	cm;ωs 314
rad

sec
;L

76	cm; σ at	75°C 2.42 107Ω 1m 1; τ
28cm; d 3.08	mm  
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Fig. 3: Flux density (By1) distribution due to stator current (Pucci, 2014) 
 

 
 
Fig. 4: Distribution of by against z (with rotor) 
 

 
 
Fig. 5: Variation of Bx1 and Bx against z 
 

Length of stator winding overhang (C) = 8.2 
cm;	Iz 360	A/cm corresponding to a stator current of 
12 A/phase (R.M.S). 

Flux density distribution: The plots of peak values of 
(due to stator current) based on Eq. (50) to (54) with 

respect of z, (i) just on the stator surface and (ii) at a 
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height of 2.1 cm form the stator surface are shown in 
Fig. 3 for a stator phase current of 12A (R.M.S) which 
gives a stator linear current density of 360 A/cm. The 
experimentally found flux density distributions (by 
using the search coil and mill-voltmeter) are also shown 
on the same figure. The distributions are quite close to 
each other. 

For the same stator current, the total flux density 
distribution,	  on the rotor surface ( ′ = 2.1 cm) for 
unity slip is shown in Fig. 4. From this figure, it can be 
seen that  distribution is similar to -distribution 
but has undergone some attenuation due to presence of 
rotor currents. 

Distribution of  with ’z’ for a stator phase 
current of 12A (R.M.S) is shown in Fig. 5. In the same 
figure, the variation of total flux density,	  (both due 
to stator and rotor currents) at unity slip is also shown. 
Once again -distribution is similar to 	distribution 
but it has undergone some attenuation. 

The distribution of at a height of 0.725 cm, 
against z is also shown in Fig. 6. The corresponding 

measured values are also plotted in the same graph. It 
can be seen that there is a good correlation between the 
two values. The total flux density,	  distribution is 
once again similar to  distribution but very much 
attenuated due to increased distance from the stator 
surface and rotor currents.  

 
Rotor current distribution:  values are calculated at 
different grid points on the rotor sheet at any chosen 
slip (say s = 1) for a rotor height of 2.1 cm above the 
stator surface. The complex values of  are multiplied 
by  to obtain the instantaneous value,	  
of : 
 

  
 

By choosing the time instant as zero,	  values 
are calculated at different grid points and constant 	  
contours are plotted (Fig. 7) over a distance of two pole 
pitches along the rotor. 

 

 
 
Fig. 6: Distribution of Bz1 against z 

 

 
 

Fig. 7: Typical current distribution in the rotor sheet of infinite length and finite width at a certain instant 
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Fig. 8: Variation of propulsion and levitation force with slip based on a rotor model of infinite length and finite width 
 

 
 
Fig. 9: Variation of lateral force against rotor offset (at unity 

slip) 
 

 
 
Fig. 10: Path for contour integration 
 
Forces: The propulsion and levitation forces per unit 
length are calculated using Eq. (82) and (84) 
respectively, for the model under consideration. The 
above values are multiplied by the actual rotor length 
(0.76 m) to get the total force on the rotor of the model. 
By doing so, we are ignoring the discontinuity of the 
rotor in the longitudinal direction. The forces are 
calculated for slip varying form s = 0 to s = 1, assuming 
no rotor offset with respect to the stator width. The 

simulations are plotted in Fig. 8. The experimental 
values which could be measured only at s = 1 are also 
shown in the same figure. Experimental value of 
levitation force is in good agreement with the calculated 
value while the experimental value of propulsion force 
is less than its theoretical value by about 17%. The 
lateral force per unit length is calculated from Eq. (83) 
for different rotor offsets in the range 0-7 cm at any 
chosen value of slip (s = 1). The above values are 
multiplied by the actual rotor length (0.76 m) to get the 
total lateral force for the rotor of the experimental 
model and are plotted in Fig. 9. 

  
CONCLUSION 

 
In the present study, analysis of a SLIM with a 

stator and rotor of finite width has been presented. The 
finite width of the rotor gives rise to peripheral currents 
in addition to the axial currents which are 
simultaneously reduced in length. The mathematical 
formulation and calculation of the fields due to 
infinitely long but finitely wide stator has been done 
using special function (Hankel Function) for faster 
numerical convergence. An integro-differential 
equation involving the stream function ( ) has been 
formulated to account for the reaction effect due to the 
induced currents in the rotor. As the rotor like the 
stator, is assumed to be infinitely long, the same Hankel 
function approach has been used for quick solution of 

.  Based on  values, flux density components due 
to rotor current have been calculated. Finally the 
analysis leads to the evaluation of flux density 
distributions, current contours on the rotor sheet and the 
propulsion, levitation and lateral forces on the rotor. 
The observed flux density distributions and the 
measured forces (at unity slip) in the experimental 
model have shown reasonable agreement with the 
corresponding calculated values. The lateral force, 
which is zero for zero offsets, increases with the rotor 
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offset indicating that the rotor is inherently unstable in 
the lateral direction. 

Finite Width considerations become a major factor 
in cases like deciding the weight of the rotor where 
length and width of the rotor can be compromised. 
Larger the weight of rotor, more current it will draw 
from the source, so as to make it stable in the y-
direction. Since the source capacity (rating) is limited, 
development of such model in laboratory becomes 
crucial, regarding the geometrical dimension factor. 
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APPENDIX-1 
 

Evaluation of integral		 	
∞

∞
 

Let ′ and 	 	y’ 	 	 z 	z’  

Hence 	
∞

∞

′ ∞

∞
	                                   (85) 

 
Numerical evaluation of integral on right in Eq. (85) is much 

faster as compared to the integral on left in Eq. (85) 
For the convenience of notation we replace p by y so that: 

 

		
∞

∞
		

∞

∞
                                            (86) 

 
For ease of evaluating the integral in Eq. (86), it is desirable that 

the integrand be expressed as a function of   so that the 
contour integration in the complex z-plane can be performed. So, we 
can write: 

 
∞

∞
	

√

∞

∞
                                        (87) 

 
Where  and the path of integration is shown as  in 

Fig. 10. 
The integrand has a branch point singularity at . 

Therefore, a branch cut has been taken along the path 	 ′. Paths 
,	 ,	 ′ form the closed contour for integration. With reference to Fig. 

10, no singularity is trapped in the enclosed portion of the contour as 
branch cut has been taken along the path ′.  Therefore summation of 
the residues of the poles enclosed by the path is zero and hence we 
can write: 

 
	∮ 	 ∮ ∮ 0

′
                                                                     (88) 

 
Where the integrand along each path is same and is omitted to 

avoid repetition. But the integral over  is zero, by Jordan’s Lemma. 
So we look at the integral given by: 
 

∮
√′

lim → 2
√

lim → 2                             (89) 

If → ∞, the last integral in the R.H.S of Eq. (89) approaches 
zero because the integrand approaches zero as → 0.  
 

∞

∞
lim
→∞
∮

√′
2

∞
      (90) 

 
Let , then from the Eq. (90) we get 

 
∞

∞
2

∞
                  (91) 

 
Hence the Eq. (19) is proved in the R.H.S of the Eq. (91). 
 

REFERENCES 
 
Alonge, F., M. Cirrincione, F. D'Ippolito, M. Pucci and 

A. Sferlazza, 2014. Parameter identification of 
linear induction motor model in extended range of 
operation by means of input-output data. IEEE T. 
Ind. Appl., 50(2): 959-972. 

Boldea, I. and M. Babescu, 1978. Multilayer approach 
to the analysis of single-sided linear induction 
motors. P. I. Electr. Eng., 125(4): 283-287. 

Chattopadhyay, A.B., 1997. Some experimental and 
theoretical investigations on the propulsion, 
levitation and lateral guidance forces in a long 
stator, short rotor, single sided linear induction 
motor. Ph.D. Thesis, Indian Institute of 
Technology (IIT) Kharagpur. 

Dos Santos, E.B., J.R. Camacho, A.A. De Paula and 
G.C. Guimaraes, 2001. Efficiency of the Linear 
Induction Motor (LIM) performance under 
constant voltage feeding-additional finite elements 
considerations. Proceeding of the IEEE Porto 
Power Tech, Vol. 4. 

Freeman, E.M. and D.A. Lowther, 1973. Normal force 
in single-sided linear induction motors. P. I. Electr. 
Eng., 120(12): 1499-1506. 

Ham, S.H., S.G. Lee, K.S. Kim, S.Y. Cho, C.S. Jin and 
J. Lee, 2009. Study on reduction of transverse edge 
effect of single-sided linear induction motor for 
transportation system. Proceeding of the IEEE 
Electrical Machines and Systems, ISBN: 978-1-
4244-5177-7, pp: 1-4. 

Han, J., Y. Li, Y. Du, W. Xu and N. Jin, 2008. 
Dynamic characteristics study of single-sided 
linear induction motor with finite element method. 
Proceeding of the IEEE/ASME International 
Conference on Advanced Intelligent Mechatronics. 
Xian, ISBN: 978-1-4244-2494-8, pp: 439-444. 

Laithwaite, E.R., 1966. Induction Machines for Special 
Purposes. Newnes, London. 

Lipkins, R.S. and T.C. Wang, 1971. Single Sided 
Linear Induction motor (SLIM): A study of thrust 
and lateral forces. Report FRA-RT-72-25. Prepared 
for Office of High Speed Ground Transportation. 
Federal Railroad Administration, Washington D.C. 

McLean, G.W., 1988. Review of recent progress in 
linear motors.  IEE Proc-B, 135(6): 380-416. 



 
 

Res. J. App. Sci. Eng. Technol., 12(12): 1163-1175, 2016 
 

1175 

Nasar, S.A., 1976. Linear Electric Machines. Wiley, 
New York. 

Preston, T.W. and A.B.J. Reece, 1969. Transverse edge 
effects in linear induction motors. P. I. Electr. Eng., 
116(6): 973-979.  

Pucci, M., 2014. State space-vector model of linear 
induction motors. IEEE T. Ind. Appl., 50(1): 195-
207. 

Ratnam, K.V. and A.B. Chattopadhyay, 1996. Analysis 
of electromagnetic forces in a single-sided short 
rotor linear induction motor. Proceeding of the 
International Conference on Power Electronics, 
Drives and Energy Systems for Industrial Growth. 
New Delhi, 1: 591-597. 

Venkataratnam, K. and A.B. Chattopadhyay, 2002. 
Analysis of electromagnetic forces in a levitated 
short rotor LIM-Part I: Finite length and finite 
width effects. IEEE T. Energy Conver., 17(1): 95-
101. 

Yang, Z., J. Zhao and T.Q. Zheng, 2008. A novel 
traction and normal forces study for the linear 
induction motor. Proceeding of the International 
Conference on Electrical Machines and 
Systems. Wuhan, pp: 3474-3477. 

 
 
 
 

 


