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Abstract: The work aims to arrive at an accurate estimation of fault location in power Distribution Networks (DNs) 
using the potentialities of artificial neural networks. For every fault plausible on feeders and distributors of DNs, 
detailed fault data recording is available only at a common place called distribution substation. In this paper, effort 
was made to train the Artificial Neural Networks (ANNs) with this plausible common fault data to arrive at an 
estimation of type of fault and locus of fault. Two ANNs were trained for this task of fault location on an IEEE test 
case, which was modeled and simulated in MATLAB Simulink. One ANN was dedicated for fault classification to 
ascertain the specific type of fault; another ANN for detecting the faulted line segment and pinpointing the location 
on that faulty section. In all, 550 fault combinations were triggered on this simulated IEEE test DN and fault data 
(voltage and current information) was generated for training and testing of ANNs. The training and testing results 
clearly demonstrated good degree of accuracy in detecting the correct fault type and faulty section, and locating a 
closer fault position. This study enables the substation engineer to estimate this fault information sitting in the 
substation, without actually patrolling or inspecting the affected areas. With this estimation, the maintenance crew 
can rush to the affected spot with minimum delay to repair and restore the power supply. 
 
Keywords: Artificial intelligence, artificial neural networks, fault location, power distribution networks, power 

distribution lines, fault classification, soft computing 
 

INTRODUCTION 
 
Background: The electrical power utilities are required 
to render reliable, continuous and safe electric service 
to related customers, or to put in today’s language, 
power quality and reliability of electric utilities are 
mandatory; not merely mandatory, but must for utility’s 
survival too in today’s competitive power market. 
Power quality involves meeting the customer 
requirements ensuring safety within specified values of 
voltage and frequency (Gonen, 2008). Obviously the 
equipment required to shoulder these responsibilities 
have to be equipped with latest technologies. Once such 
responsibility, which directly influences the power 
reliability indices, namely SAIFI (system average 
interruption frequency index) and CAIDI (customer 
average interruption duration index), is automated fault 
location. The power transmission and distribution 
service interruptions are due to various causes-natural 
calamities like hurricanes, tornadoes, storms, snow, 
rain, lightning, falling of big and overhanging trees; 
contact of birds like cranes, eagles, etc.; contacts of 
animals like monkeys, kangaroos, etc.; equipment 
failures, insulation breakdown, defective materials, etc. 
Other interruptions may be due to certain human 

actions like fast moving vehicles dashing at the electric 
poles, vandalism, land excavation machinery damaging 
the buried power cables, etc. Most of these disturbances 
are beyond the control of humans and in spite of every 
effort to minimize these happenings, they do happen 
again and again. These cited and similar other 
disturbances have the potential to physically damage 
the transmission and distribution lines and may result in 
permanent interruption of power supply to customers 
concerned. And, utilities have to be prepared to 
pinpoint the physical locus of these damages on the 
lines, so that the maintenance/inspection crew can rush 
with minimum search time to the spot for repair and 
restoration of service to the affected customers. These 
exigencies and exercises of the maintenance personnel 
can be implemented for quick restoration of power 
supply, if and only the disturbances, or more technically 
called as power system faults are located quickly and 
therefore automatically. Herein lay the role of fault 
location software and hardware, which are designed and 
developed and updated with latest developments in the 
field. This updating and upgrading the accuracy offered 
by these fault local technologies has been continuously 
undertaken by many researchers, both in academic and 
industrial departments, through the years, to this day. 
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Still, there is tremendous scope to enhance the accuracy 
of pinpointing the fault position/location on the affected 
transmission and distribution lines, so that interruption 
and restoration times can be minimized and thereby 
demonstrate greater levels of power quality and 
reliability. 

Initially, automation was applied for fault location 
on transmission lines only because of its inherent 
importance and also the labor and time involved in 
patrolling the lines located at remote areas, especially 
those in hilly terrains, forest areas, etc. However, the 
fault location on distribution lines is also receiving 
more attention and importance to meet the continuously 
growing customer demands. The de-regulation of 
power markets world-over is compelling many utilities 
to compete and comply with the customer demands of 
uninterrupted availability of power supply. The fault 
location methods developed for transmission lines are 
not directly or that easily applicable for distribution 
lines; because, there are remarkable differences in the 
network topology and electrical states of transmission 
lines and distribution lines. These medium and low 
voltage distribution lines, more specifically feeders, 
consist of numerous laterals and highly ramifying 
branches. The prevalence of single phase and three 
phase loads, which are resistive or inductive and 
dynamically changing, presence of the load taps along 
the main feeder and laterals, makes the distribution 
system and its working characteristics highly non-linear 
and sufficiently complicated (Nouri and Alamuti, 
2011). Fault location methods employed for distribution 
systems can be grouped into four types (Nouri and 
Alamuti, 2011): the classical methods, which use 
fundamental voltages and currents, travelling wave 
techniques, topology based methods and knowledge-
based methods.  
 

LITERATURE REVIEW 
 

To quote, though not the first, but surely among the 
early classical algorithms developed for fault location, 
is by Srinivasan and St-Jacques (1989), who employed 
the concept of simplified distributed parameters for 
fault location. Here the fault location is the 
deterministic solution of an equation derived from the 
circuit model, which compensates for intermediate load 
taps and end loads. Here the attempt was made to 
model the variable impedance behavior of loads, which 
had considerably enhanced the accuracy of fault 
location. Further developments in these algorithms 
were done by considering more real time situations, viz. 
non-homogeneity of distribution feeders, unbalanced 
conditions, etc. One such attempt was demonstrated by 
Girgis et al. (1991), using apparent impedance 
approach. Later Zhu et al. (1997), developed an 
algorithm, which searches all sections for faults. The 
fault location multi-estimation problem, which is 

unique to distribution system classical algorithms, was 
solved to some extent using the available data 
signifying the status of fuses and switching cycles of 
reclosers’ operation. 

As such there are many algorithms developed, 
which really made extensive attempt to close on to real 
time scenarios. Aggarwal et al. (1997a, b), developed 
an exhaustive algorithm, which utilized both pre-fault 
and during-fault values for fault location. Since the 
fault current in healthy phases should be zero ideally, 
that particular criterion was used to close on to the 
actual fault location. At an assumed fault point, 
admittance into network on either side of it is 
calculated. This calculated admittance is used to 
estimate the superimposed fault current in healthy 
phase(s) and the minima of this fault current along the 
feeder is identified, which is the estimation fault 
position of this algorithm. Salim et al. (2008), 
developed a method for fault diagnosis based on 
artificial neural networks for finalizing the faulty 
section and fault detection and classification task is 
shouldered by wavelet method. An extended impedance 
based fault location algorithm for a distribution 
networks was done by Salim et al. (2009). An 
algorithm, which is based on distributed parameters, 
was developed by Yang et al. (2008), for locating faults 
on underground cables. This algorithm is not much 
influenced by fault distance and fault resistance 
fluctuations. Many of the recent works have applied 
artificial intelligence techniques, which demonstrated 
highly satisfactory results (Huan et al., 2015). 

Though all the methods have evolved over the 
years in increasing the accuracy of estimation, 
knowledge-based methods have demonstrated 
overwhelming results, especially in distribution 
networks. Here is one such effort done using artificial 
neural networks to estimate the accuracy of fault 
location in distribution networks. The neural networks 
were utilized earlier by many researchers for the 
purpose, however proposed scheme of their application 
is unique with this work and the results are inspiring 
and therefore are satisfactory.  
 

ARTIFICIAL NEURAL NETWORKS 
 
Technological revolution: Substation automation to a 
great extent is achieved with the growth of technology 
offered by microprocessors. The fault location 
automation hardware is capable of making precise 
measurements for system protection, monitoring and 
regulation. However, the technology could not meet the 
degree of accuracy required to fulfill the impinging 
requirements of power quality and security today. And, 
the alternatives emerged, assuming the name of soft 
computing, based on pattern-recognition algorithms or 
decision making approaches that have considerably 
enhanced the accuracy achieved. This includes artificial  
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Fig. 1: Feed forward neural network 
 

 
 

Fig. 2: Neuron with weighted inputs and bias 
 
neural networks, fuzzy logic, expert systems, genetic 
algorithms, etc. Artificial Intelligence dependent 
techniques have proved to have remarkable edge over 
conventional approaches in considerably enhancing the 
fault location accuracy. Extensive research work is 
being  undertaken  by  many  a  research  institutions 
and  universities  across  the  world  to  employ  the soft  

computing techniques for enhancing the accuracy of 
fault location in power transmission and distribution 
networks. 
 
Feed forward neural networks: An Artificial Neural 
Network (ANN) can be trained with a supervised 
learning algorithm, named popularly as back 
propagation. These networks are called as feed forward 
neural networks, which basically comprise of an input 
layer, where input data is fed to the network, one or 
more hidden layers and an output layer delivering the 
output response from the network. The input layer, 
hidden layer(s) and output layer comprise specified 
number of neurons (Fig. 1). Every neuron of given 
layer is connected to the neurons of the previous layer 
through an adjusting and adapting synaptic weights ‘w’ 
and biases ‘b’ (Fig. 2). A weight is attached to every 
neuron and the training involves adjusting of these 
weights as per the prepared training data. One unique 
feature of ANN is that they are not dependent on the 
knowledge base as does the expert systems do. ANNs 
learn the responses to various inputs contained in the 
training data by adjusting the weights and biases 
accordingly. So, it is clear that the ANNs process the 
information based on the earlier learnt examples. The 
input layer of ANNs can be fed with either unprocessed 
input samples, or by features extracted from input 
samples using data processing techniques. One 
fundamental issue with the ANNs is that there are no 
recommended guidelines for selecting number of 
hidden layers and number of neurons to be considered 
for every hidden layer. And, one of the principal 
advantages of ANNs is, their potential to generalize. 
This generalizing capability enables the ANN to 
respond  to  the  input  data,  which  was  not  used 
during  the  training  of  ANN,  with  remarkable 
results. 

 

 
 
Fig. 3: IEEE 13 node distribution network 
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MATERIALS AND METHODS 
 

IEEE 13 node test case: A 13 node IEEE power 
distribution network (Fig. 3) is considered for studying 
application of ANN for automating location of 
triggered faults on this distribution network (DN). The 
DN has 10 actual line segments (Table 1) and other 
details in Table 2 to 4. 
 
Matlab simulation and data generation: The 
simulink model for the above DN with the cited 
specification and load distribution was developed in 
MATLAB Simulink using block sets of Sim Power 
System. All the eleven faults, viz. 3 phase-to-phase 
faults, 3 single-line-to-ground faults, 3 double-line-to-
ground faults and two three-phase-short circuit faults 
(with and without ground), were triggered on all line 
segments. The five locations were chosen on each line 
segment, all the eleven faults were planted at each 
chosen location using three phase fault block of Sim 
Power System. In all, 550 fault-data (voltage and 
current information) files were generated for these cited 
fault combinations. About 80% of this data is used for 
training the ANNs. Two ANNs were used for 
accomplishing task of fault location on this DN. One is 
ANN_CLASSIFIER, which is dedicated for the 
purpose of fault type classification; and the other is 
ANN_LOCATOR dedicated for faulted line segment 
detection and pinpointing fault position on that 
segment. The scheme of fault location using these two 
ANNs is illustrated in Fig. 4. 
 

RESULTS AND DISCUSSION 
 

Data processing: The fault data collected from various 
fault combinations can be transformed or processed into  

a suitable form to feed into the input layer of ANN 
concerned for proposed training. There are various data 
processing techniques line-up in the literature of the 
day, to treat the raw data available from real time data 
acquisition centers of actual power distribution system. 
To quote a few, clarke’s transformation, fast fourier 
transform, continuous wavelet transform, discrete 
wavelet transform, principal component analysis, etc. 
All these data processing techniques will extract the 
required features, which stand as a representative of 
whole data and will facilitate the ANN for an accurate 
and fast convergence towards the final results. The data 
processing/preparation techniques when applied to raw 
data available will greatly influence the results of ANN. 
The data processing will not only extract the features 
required, but also reduce the quantum and complexity 
of data available and thereby simplify the task ahead 
without compromising the accuracy of data. However, 
the IEEE test DN, which is considered here is a very 
typical sort of DN standing very close to the actual real 
time DN scenarios, but data generated doesn’t involve 
such complexities and disturbances, which is plausible 
in real time actual DNs. Hence, three cycles of post 
fault  current  and voltage information is extracted from 
 
Table 1: Line segment data 
Node A Node B Length (ft.) Config. 
632 645 500 603 
632 633 500 602 
633 634 0 XFM-1 
645 646 300 603 
650 632 2000 601 
684 652 800 607 
632 671 2000 601 
671 684 300 604 
671 680 1000 601 
671 692 0 Switch 
684 611 300 605 
692 675 500 606 

 
Table 2: Transformer data 
Transformer kVA kV-high kV-low R-% X-% 
Substation: 5,000 115 - D 4.16 Gr. Y 1 8 
XFM -1 500 4.16 -Gr.W 0.48- Gr.W 1.1 2 

 
Table 3: Spot load data 

Node 
Load 
Model 

Ph-1 
kW 

Ph-1 
kVAr 

Ph-2 
kW 

Ph-2 
kVAr 

Ph-3 
kW 

Ph-3 
kVAr 

634 Y-PQ 160 110 120 90 120 90 
645 Y-PQ 0 0 170 125 0 0 
646 D-Z 0 0 230 132 0 0 
652 Y-Z 128 86 0 0 0 0 
671 D-PQ 385 220 385 220 385 220 
675 Y-PQ 485 190 68 60 290 212 
692 D-I 0 0 0 0 170 151 
611 Y-I 0 0 0 0 170 80 
 Total 1158 606 973 627 1135 753 

 
Table 4: Distributed load data 

Node A Node B 
Load 
Model 

Ph-1 
kW 

Ph-1 
kVAr 

Ph-2 
kW 

Ph-2 
kVAr 

Ph-3 
kW 

Ph-3 
kVAr 

632 671 Y-PQ 17 10 66 38 117 68 
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Fig. 4: Scheme of Fault location 
 
Table 5: Final training data of ANN_CLASSIFIER 
Network Multilayer Feed forward network 
Number of hidden neurons 10 
Number of Epochs 230 
Training Bayesian regularization back 

propagation 
Data division  Random 
Performance 0.000302 
Gradient 0.000481 

 
fault-data, which was generated by triggering faults on 
simulink model of IEEE test DN considered. The 
extracted three cycle post fault data (voltages and 
currents) were normalized with the pre-fault values 
(voltage   and   current)   and   used   as   input   vectors  
to  the  input  layer  of  ANNs  for  he  training 
rigmaroles. 
 
Training of ANN_CLASSIFIER: A separate ANN is 
dedicated exclusively for the task of fault classification. 
As cited this ANN is required to identify the fault type 
from among the 11 types of faults, when they are 
individually presented to ANN after due training. This 
ANN titled, ‘ANN_CLASSIFIER’ is subjected to 

rigorous training schedules to achieve this challenging 
fault classification task. The performance results of 
final phase of training, which demonstrated reasonably 
good convergence to the proposed task, are presented 
here in Table 5, Fig. 5 to 8. The regression plots for 
training and testing clearly indicate that, regression 
value is closer to an ideal value of unity, viz. 0.99934 
and 0.80519, respectively. Due rounding of output 
ANN values for the fault types of almost all the fault 
combinations was done and all the ANN values could 
be equated with actual values. When compared, for 
many line segments, the results are significantly correct 
(Sarvi and Torabi, 2012; Nouri and Alamuti, 2011). 
 
Training of ANN_LOCATOR: The task of detecting 
the faulted line segment among the 10 line segments of 
the test DN and estimated fault location on the faulted 
line segment, is shouldered by the neural network 
designated as, ANN_LOCATOR. This task is still more 
challenging than the fault classification. Rigorous 
training schedules were conducted on this ANN and 
results  of the final phase of training, where satisfactory 
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Fig. 5: ANN_CLASSIFIER Regression plot (training) 
 

 
 

Fig. 6:ANN_CLASSIFIER Regressionplot (overall) 
 

 
 
Fig. 7: ANN_CLASSIFIER Performance plot 
 

 
 
Fig. 8: ANN_CLASSIFIER Histogram 
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Table 6: ANN_ LOCATOR final training data 
Network Multilayer Feed forward network 
Number of hidden neurons 15 
Number of Epochs 247 
Training Bayesian regularization back 

propagation 
Data division  Random 
Performance 0.00026313 
Gradient 0.00562 
Network Multilayer Feed forward network 

 

 
 
Fig. 9: ANN_LOCATOR Regression Plot (training) 
 
convergence was noticed, are presented in Table 6, Fig. 
9 to 12. The regression plots and performance plots for 
training and testing can be best appreciated against the 
results published in papers (Sarvi and Torabi, 2012; 
Nouri and Alamuti, 2011; Huan et al., 2015). 

 
 

Fig. 10: ANN_LOCATOR Regression Plot (overall) 
 
Fault classification and fault location: Two trained 
ANNs were thoroughly tested using the 20% remaining 
fault data, which was segregated solely for the purpose 
of testing. This data is not used for training any of these 
two ANNs. These trained ANNs were rigged into the 
scheme illustrated in Fig. 4. As was done for training 
purpose, the three cycle post fault feature data of the 
current and voltage was extracted and input vectors 
were prepared for testing the ANNs positioned into the 
proposed scheme. This data contains the fault 
information related to all the 10 line segments of the 
IEEE test case. Though it is not feasible to present all 
the test results here, attempt is made to illustrate few of 
them (Table 7 to 10 and Fig. 13 to 14). It is understood 
that fault location cited is in meters and is measured 
from the beginning of the faulted line segment. It

 

 
 

Fig. 11: ANN_ LOCATOR Performance plot 
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Fig. 12: ANN_LOCATOR Histogram 
 
Table 7: Percentage fault location error on line segment 650-632 

S. No. 

Actual values 
-------------------------------------------------------------------------

ANN values 
-------------------------------------------------------------------------  

 
%Error Faulted line 

 
Fault type 

Fault location 
in meters Faulted line 

 
Fault type 

Fault location in 
meters 

1 650-632 Phase-to-phase fault 
between A and B 

348 650-632 Phase-to-phase fault 
between A and B 

348 0 

2 650-632 Phase-to-phase fault 
between B and C 

348 650-632 Phase-to-phase fault 
between A and B 

348 0 

3 650-632 Phase-to-phase fault 
between A and C 

348 650-632 Phase-to-phase fault 
between A and B 

348 0 

4 650-632 Three-phase-short 
without ground 

348 650-632 Three-phase-short 
without ground 

348 0 

5 650-632 Single-line-ground on 
phase A 

348 650-632 Single-line-ground 
on phase A 

348 0 

6 650-632 Single-line-ground on 
phase B 

348 650-632 Single-line-ground 
on phase B 

349 0.16 

7 650-632 Single-line-ground on 
phase C 

348 650-632 Single-line-ground 
on phase C 

349 0.16 

8 650-632 Double-line-ground 
between A and B 

348 650-632 Double-line-ground 
between A and B 

348 0 

9 650-632 Double-line-ground 
between B and C 

348 650-632 Double-line-ground 
between B and C 

578 37.9 

10 650-632 Double-line-ground 
between A and C 

348 650-632 Double-line-ground 
between A and C 

348 0 

11 650-632 Three-phase-short with 
ground 

348 650-632 Three-phase-short 
with ground 

349 0.16 

 
Table 8: Percentage fault location error on line segment 632-645 

S. No. 

Actual values 
----------------------------------------------------------------------- 

ANN values 
----------------------------------------------------------------------

% Error Faulted line 
 
Fault type 

Fault location 
in meters Faulted Line 

 
Fault type 

Fault location 
in meters 

1 632-645 Phase-to-phase fault 
between A and B 

100 632-645 Phase-to-phase fault 
between A and B 

101 0.660066 

2 632-645 Phase-to-phase fault 
between B and C 

100 632-645 Phase-to-phase fault 
between B and C 

100 0 

3 632-645 Phase-to-phase fault 
between A and C 

100 632-645 Phase-to-phase fault 
between A and C 

101 0.660066 

4 632-645 Three-phase-short 
without ground 

100 632-645 Three-phase-short 
without ground 

98.7 -0.85809 
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Table: 8: Continue       
5 632-645 Single-line-ground on 

phase A 
100 632-645 Single-line-ground 

on phase A 
109 5.940594 

6 632-645 Single-line-ground on 
phase B 

100 632-645 Single-line-ground 
on phase B 

104 2.640264 

7 632-645 Single-line-ground on 
phase C 

100 632-645 Single-line-ground 
on phase C 

100 0 

8 632-645 Double-line-ground 
between A and B 

100 632-645 Double-line-ground 
between A and B 

101 0.660066 

9 632-645 Double-line-ground 
between B and C 

100 632-645 Double-line-ground 
between B and C 

101 0.660066 

10 632-645 Double-line-ground 
between A and C 

100 632-645 Double-line-ground 
between A and C 

96.7 -2.17822 

11 632-645 Three-phase-short with 
ground 

100 632-645 Three-phase-short 
with ground 

99.5 -0.33003 

 
Table 9: Percentage fault location error on line segment 632-671 

S. No. 

Actual values 
-----------------------------------------------------------------------

ANN values 
--------------------------------------------------------------------------

% Error Faulted line Fault type 
Fault location 
in meters Faulted line Fault type 

Fault location  
in meters 

1 632-671 Phase-to-phase fault 
between A and B 

409 632-671 Phase-to-phase fault 
between A and B 

410  0.164989

2 632-671 Phase-to-phase fault 
between B and C 

409 632-671 Phase-to-phase fault 
between B and C 

405 -0.65996 

3 632-671 Phase-to-phase fault 
between A and C 

409 632-671 Phase-to-phase fault 
between A and C 

408 -0.16499 

4 632-671 Three-phase-short 
without ground 

409 632-671 Three-phase-short 
without ground 

412  0.494968

5 632-671 Single-line-ground on 
phase A 

409 632-671 Single-line-ground 
on phase A 

406 -0.49497 

6 632-671 Single-line-ground on 
phase B 

409 632-671 Single-line-ground 
on phase B 

407 -0.32998 

7 632-671 Single-line-ground on 
phase C 

409 632-671 Single-line-ground 
on phase C 

407 -0.32998 

8 632-671 Double-line-ground 
between A and B 

409 632-671 Double-line-ground 
between A and B 

411  0.329979

9 632-671 Double-line-ground 
between B and C 

409 632-671 Double-line-ground 
between B and C 

412  0.494968

10 632-671 Double-line-ground 
between A and C 

409 632-671 Double-line-ground 
between A and C 

423  2.30985 

11 632-671 Three-phase-short with 
ground 

409 632-671 Three-phase-short 
with ground 

407 -0.32998 

 
Table 10: Percentage fault location error on line segment 684-652 

 
 
S. No. 

Actual values 
------------------------------------------------------------------------

ANN values 
-------------------------------------------------------------------------  

 
% Error Faulted line Fault type 

Fault location 
in meters Faulted line Fault type 

Fault location 
in meters 

1 684-652 Phase-to-phase fault 
between A and B 

64 684-652 Phase-to-phase fault 
between A and B 

63.8 -0.08251 

2 684-652 Phase-to-phase fault 
between B and C 

64 684-652 Phase-to-phase fault 
between B and C 

61.9 -0.86634 

3 684-652 Phase-to-phase fault 
between A and C 

64 684-652 Phase-to-phase fault 
between A and C 

62.9 -0.4538 

4 684-652 Three-phase-short 
without ground 

64 684-652 Three-phase-short 
without ground 

66.0  0.825083

5 684-652 Single-line-ground on 
phase A 

64 684-652 Single-line-ground on 
phase A 

64.5  0.206271

6 684-652 Single-line-ground on 
phase B 

64 684-652 Single-line-ground on 
phase B 

64.0  0 

7 684-652 Single-line-ground on 
phase C 

64 684-652 Single-line-ground on 
phase C 

64.4  0.165017

8 684-652 Double-line-ground 
between A and B 

64 684-652 Double-line-ground 
between A and B 

64.1  0.041254

9 684-652 Double-line-ground 
between B and C 

64 684-652 Double-line-ground 
between B and C 

55.1 -3.67162 

10 684-652 Double-line-ground 
between A and C 

64 684-652 Double-line-ground 
between A and C 

61.7 -0.94884 

11 684-652 Three-phase-short with 
ground 

64 684-652 Three-phase-short with 
ground 

62.0 -0.82508 



 
 

Res. J. Appl. Sci. Eng. Technol., 12(12): 1236-1246, 2016 
 

1245 

 
 

Fig. 13: Percentage fault location error for all fault types on line segment (632-633) at 73meters 
 

 
 

Fig. 14: Percentage fault location error for all fault types on faulted line (645-646) at 52meters 
 
will be reiterated that ANN_CLASSIFIER outputs the 
type of fault involved and ANN_LOCATOR outputs 
faulted line segment along with the particular fault 
location on that line segment. The error calculation is 
done using the following formula: 
 

100



total

actual
error l

ll
fl ANN

 
 
where, 
ltotal = Total length of the faulted line 

lactual = Actual fault location in meters 
lANN = Estimated fault location in meters 
flerror = Percentage fault location error 

 
CONCLUSION 

 
A MATLAB simulink model for an IEEE 13 node 

test case of DN was developed. All the eleven types of 
faults were triggered on all line segments of test DN. In 
all 550 fault combinations were planted and related 
fault data (voltage and current information) was 
generated. Three cycles of post fault voltage and 
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current samples for all these combinations were 
extracted/processed for ANN training and testing. Two 
ANNs were trained and tested using the data. Neural 
network tool box of MATLAB was used for rigorous 
training of the ANNs. Some of the results of the ANNs 
are duly illustrated in this paper. All the illustrations are 
self-explanatory and demonstrate the accuracy achieved 
by the ANNs. It goes without saying that the results 
obtained are inspiring and therefore satisfactory.  
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