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Abstract: In spite of the huge success of computational chemistry in corrosion studies, most of the ongoing research 

on the inhibition of preferential weldcorrosion is restricted to laboratory work. In the present study, a 

nondeterministic artificial intelligence model is proposed, the aim being to more accurately predict the occurrence of 

corrosion in the Heat Affected Zone (HAZ), which is most exposed to corrosion risk. The prediction of corrosion 

rates has become an important challenge for the engineering community. For industry, one of the more important 

aspects of corrosion is the HAZ for welded carbon steel in CO2 environments. Nowadays, data from various sources 

(e.g., temperature and velocity), for both inhibited and non-inhibited CO2 solutions, can be fed into neural networks, 

allowing them to be used for data processing. An artificial neural network is proposed for the prediction of corrosion 

in the HAZ.A phenomenal outcome for the prediction of corrosion in the HAZ was proposed with the learning 

ability of an artificial neural network using software, through which training of 406 sets of data using the Leven 

Berg-Marquardt algorithm were obtained from experimental data. The training sets were developed for three levels 

of corrosion (mild, moderate and severe) through the Artificial Neural Network (ANN) and resulted in a trend which 

took the form of an incremental parabolic curve. This study presents an artificial neural network model which 

simulates the complex and nonlinear atmospheric corrosion process observed in experimental data. The correlation 

statistics (R) in the ANN proved to be 90% accurate. The test results were validated to confirm the efficacy of the 

developed ANN model for prediction of corrosion rate and good performance was observed. The interactions 

between the inputs were estimated by performing a sensitivity analysis based on the developed model. Since the 

model results from this research showed good agreement with experimentally obtained corrosion rates, it could now 

be widely applied in corrosion studies. 
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INTRODUCTION 

 

Corrosion presentsa challenge for design and 

corrosion engineers in the oil and gas production and 

transportation industries. Marine oil field corrosion 

manifests itself in several forms, which include the 

“sweet corrosion” caused by carbon dioxide (CO2) gas 

in various marine pipeline operations. The major 

parameters influencing the rate are temperature, 

pressure, flow and salinity (Turgoose and Palmer, 

2005). 

Carbon steel welded marine pipelines are used 

extensively in the oil and gas industry for sub-sea 

applications. The cost of marine pipeline corrosion is a 

considerable part of the investment in subsea projects 

for long-distance and large-diameter pipelines. Better 

understanding and control of the corrosion of carbon 

steel could increase its applicability and, therefore, have 

a sizeable economic impact (Nyborg, 2005). Prediction 

of the rate of corrosion of steel structures in global 

marine environments is a challenging task due to the 

wide variation in the parameters involved. 

A recent survey found that around 36% of failures 

in offshore pipelines were attributable to (localized) 

corrosion in welds. It is known that the most severe 

form is pitting corrosion and that this is worse for the 

Heat Affected Zone (HAZ) than for either the weld 

zone or the parent metal. This is due to the nature of its 

formation during the welding process, with a significant 

short-term thermal gradient occurring between the weld 

metal and the parent metal followed by quite rapid 

cooling (Chaves and Melchers, 2014). 
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Raja Dhas and Somasundaram (2013) were able to 
make predictions about the heat affected zone 
associated with a SAW process, which was a useful aid 
to determining the quality of a weld and avoiding the 
residual stress and distortion that can lead to the failure 
of the weldment. 

Although experimental studies are straightforward, 
they are often expensive and time-consuming. 
Alternatively, modeling is useful and a powerful tool in 
improving our understanding of the corrosion process. 
It also helps construction and corrosion engineers by 
predicting the life of a marine pipeline in a given 
environment. Several models for predicting 
CO2corrosion are to be found in the literature (Malinov 
et al., 2000; Metzbower et al., 2001). These models are 
mainly based on laboratory data and in some cases are 
validated by field data. They can be classified as 
mechanistic models, semi-empirical models or 
empirical models (De Masi et al., 2014).  

In the past few years, there has been a growing 

interest in ANN modeling of various aspects of the 

marine environment. ANN models have been 

developed to predict different correlations and 

phenomena in steels, aluminum alloys and titanium 

alloys (Paul, 2012). However, not many neural 

networks have been applied to the analysis of non-

homogeneous material conditions, such as those 

involved with corrosion rates in welded pipelines. This 

is because prediction modeling is complicated due to 

metallurgical variation of the welded region, including 

the Weld Metal (WM), Heat Affected Zone (HAZ) and 

Parent Material (PM). 
Neural networks can learn both static and dynamic 

properties autonomously, based on historical 
measurements and then act in such a way that a better 
solution is obtained under unknown environmental 
conditions (Alawadhi and Robinson, 2011). In the 
present study, a nondeterministic artificial intelligence 
model is proposed, the aim being to more accurately 
predict the occurrence of corrosion in the HAZ section, 
which is most exposed to corrosion risk.  
 

Experimental procedure: A series of experiments was 

performed in-house to identify the current density (Icorr) 

of the HAZ of welded marine pipelines. A cylindrical 

working, HAZ representative electrode, made of API 

X56 steel, was used in the experiments. The experiment 

was performed in a glass cell and used a Saturated 

Calomel Electrode as the reference electrode. The 

counter electrode was a platinum wire. All the tests 

were carried out at three different temperatures, 25, 50 

and 70°C, under 1 bar pressure. Cell temperature was 

controlled by a hot plate with thermocouple feedback. 

In order to remove oxygen from the test solution, CO2 

gas was bubbled into the test solution for a period of 30 

min prior to the test. The Icorr was obtained under static 

and dynamic (turbulent flow) conditions using a 

rotating cylinder electrode, with an inhibitor and 

without an inhibitor. In dynamic conditions, a rotational 

speed range of 1000 rpm to 5000 rpm was used. 

Polarization experiments were carried out as per ASTM 

standard methods (Scully, 2000; Oluwole and Idusuyi, 

2012; ASTM G59-97, 2003; ASTM G5-94, 2004), 

using an ACM potential stat to impose various 

potentials on the cylinder electrode while 

simultaneously measuring the current. The potential 

was then scanned 10 mV above and below this value, at 

a scan rate of 10 mV min. The Icorr of the HAZ region 

was measured by uncoupling the electrode of the RCE 

in turn and carrying out Linear Polarization Resistance 

measurements (LPR). 

 

MODELING METHODOLOGY 

 
The objective of the study was to predict HAZ 

corrosion rates using ANN modeling. The data used for 
model development in the training and testing stages 
were collected from literature (Alawadhi and Robinson, 
2011). ANN models create a correlation between input 
and target output with the help of hidden neurons in 
hidden layers. A total of 42 data sets were available 
from experiments and these were randomly divided into 
30 training and 12 testing sets. The seven input 
parameters considered in the present work were 
temperature, inhibitor, speed, flow velocity, Reynolds 
number, mass shear stress and Sherwood number and 
the output was corrosion rate. The data sets and their 
descriptive statistics are listed in Table 1 and 2, 
respectively. Feed forward neural networks with 
backpropagation algorithms were used to develop the 
model. A root mean squared error of 0.000036 and 
mean average error of 0.028848 after 15000 iterations 
was achieved. The architecture consisted of 2 hidden 
layers, each layer consisting of 6 hidden neurons (7-6-
6-1), a learning rate of 0.3 and momentum term of 0.6. 
 

RESULTS AND DISCUSSION 
 
LPR test: The variation in the experimental and 
numerical Icorr values for the 3.5% NaCl solution, with 
and without the addition of the inhibitors at different 
temperatures, is given in Fig. 1 and 2, respectively. It is 
known that, once polarization resistance is determined, 
calculation of Icorr requires knowledge of Tafel 
constants and these constants can be determined from 
experimental polarization curves. However, when the 
results show polarization resistance values within the 
same order of magnitude, it is necessary to use more 
accurate values derived from the Tafel slopes in order 
to perform a consistent analysis of the results (ASTM 
G59-97, 2003 and ASTM G5-94, 2004). Therefore, Icorr 
values were obtained from polarization resistance 
measurements using the Stern-Geary expression 
(Stansbury and Buchanan, 2000).The input parameters 
were: Density = 7.8 g/cm

3
; Tafel constants, ba = bc = 

60 mV/Decade; Equivalent weight, 28 grams; Scan rate 
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Table 1: Experimental and ANN simulated HAZ corrosion rate results’ (*:0 indicates uninhibited solution; 1 indicates inhibited solution (30 
ppm inhibitor)) 

No. Temp Inhibitor code Speed 
Flow 
velocity 

Reynolds 
number 

Mass shear 
stress 

Sherwood 
number CR Train/test 

1 20 0 0 0 0 0 0 0.644017 Train 
2 20 0 500 0.52 9950 1.40 464 0.802894 Train 
3 20 0 1000 1.05 20000 4.55 753 0.858647 Train 
4 20 0 2000 2.09 40100 14.8 1220 0.996315 Test 
5 20 0 3000 3.14 60100 29.5 1620 1.216025 Train 
6 20 0 4000 4.19 80200 48.0 1980 1.425702 Test 
7 20 0 5000 5.24 100000 70.2 2330 1.579880 Train 
8 50 0 0 0 0 0.00 0 1.745996 Train 
9 50 0 500 0.52 9950 1.40 464 1.932178 Test 
10 50 0 1000 1.05 20000 4.55 753 2.140585 train 
11 50 0 2000 2.09 40100 14.8 1220 2.122805 train 
12 50 0 3000 3.14 60100 29.5 1620 2.353564 test 
13 50 0 4000 4.19 80200 48.0 1980 2.306066 train 
14 50 0 5000 5.24 100000 70.2 2330 2.339975 train 
15 70 0 0 0 0 0.00 0 1.019048 test 
16 70 0 500 0.52 9950 1.40 464 1.131951 train 
17 70 0 1000 1.05 20000 4.55 753 1.114044 test 
18 70 0 2000 2.09 40100 14.8 1220 1.009777 train 
19 70 0 3000 3.14 60100 29.5 1620 0.910336 train 
20 70 0 4000 4.19 80200 48.0 1980 1.157859 test 
21 70 0 5000 5.24 100000 70.2 2330 1.712214 Train 
22 20 1 0 0 0 0.00 0 0.006731 train 
23 20 1 500 0.52 9950 1.40 464 0.008255 Train 
24 20 1 1000 1.05 20000 4.55 753 0.011938 test 
25 20 1 2000 2.09 40100 14.8 1220 0.012954 Train 
26 20 1 3000 3.14 60100 29.5 1620 0.012065 Train 
27 20 1 4000 4.19 80200 48.0 1980 0.017272 Train 
28 20 1 5000 5.24 100000 70.2 2330 0.042672 test 
29 50 1 0 0 0 0.00 0 0.034925 test 
30 50 1 500 0.52 9950 1.40 464 0.093599 Train 
31 50 1 1000 1.05 20000 4.55 753 0.116332 Train 
32 50 1 2000 2.09 40100 14.8 1220 0.126492 test 
33 50 1 3000 3.14 60100 29.5 1620 0.130302 Train 
34 50 1 4000 4.19 80200 48.0 1980 0.199771 Train 
35 50 1 5000 5.24 100000 70.2 2330 0.189484 Train 
36 70 1 0 0 0 0.00 0 0.112141 Train 
37 70 1 500 0.52 9950 1.40 464 0.083693 test 
38 70 1 1000 1.05 20000 4.55 753 0.060198 Train 
39 70 1 2000 2.09 40100 14.8 1220 0.062357 Train 
40 70 1 3000 3.14 60100 29.5 1620 0.194691 test 
41 70 1 4000 4.19 80200 48 1980 0.158877 Train 
42 70 1 5000 5.24 100000 70.2 2330 0.138938 Train 

 
Table 2: Descriptive statistics of the data used for modeling 

Input/output Minimum Maximum Mean SD 

Temperature 20 70 46.6700 35.36000 
Inhibitor 0 1 0.50000 0.710000 
Speed 0 5000 2214.28 3535.530 
Flow velocity 0 5.24 2.32000 3.710000 
Reynolds number 0 100000 44335.7 70710.68 
Mass shear stress 0 70.2 24.0600 49.64000 
Sherwood number 0 2330 1195.30 1647.560 
Corrosion rate 0.006731 2.353564 0.76980 0.360000 

 
= 166 µV/s, which corresponds to 10 mV/min; Potential 
Shift, -10 mV, +10 mV and B = 13 mV: 
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It was clear that the simulated results are consistent 

with those from the experiments. Increasing 
temperature and rotational speed led to an increase 
incurrent density, from 99.22 mA/cm

2
 to 147.24 

mA/cm
2 
at 25°C, from 166.5 mA/cm

2 
to 201.891 

mA/cm
2
 at 50°C and from 166.5 mA/cm

2
 to 201.896 

mA/cm
2
 at 70°C, all in the absence of inhibitors. Under 

static conditions, visual examination found that a dark 
grey film was formed on the metal surface. However, 
when the rotational speed increased, it was observed 
that, at all temperatures, current density increased 
linearly. This was attributed to the fact that the dark 
grey surface film that forms under static conditions, 
which appears to be partially protective, can be partly 
removed when under high shear stress. As a result, the 
film had an open porous structure which explains why 
it offered little corrosion protection (Pardo et al., 2010). 
Another observation was that, at 70°C, there was more 
protection for the HAZ than at other temperatures for 
the samerotational speed, indicating that when these
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Fig. 1: Effect of temperature and rotational speed on Icorr values under uninhibited conditions 

 

 
 

Fig. 2: Effect of temperature and rotational speed on Icorr values under inhibited conditions 
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kinds of film are formed, their stability and 
protectiveness increase with temperature, especially for 
temperatures above 60°C (Alawadhi and Robinson, 
2011).  

The current density was measured at various 
temperatures and at different rotational speeds in the 
presence of the corrosion inhibitor. However, current 
densities were considerably lower than those under 
uninhibited conditions. Under flowing conditions, 
inhibitors seem to become better attached to the HAZ, 
providing good corrosion protection, especially at room 
temperature. However, for the HAZ at 50 and 70°C, 
especially at 5000 rpm, an increase in current density 
was noticed and this was thought to be due to the partial 
removal of the inhibitor film formed on the metal 
surface. It was found that the inhibitor remained on the 
metal surface for a few hours, but as the rotation speed 
increased, it became detached from the surface leaving 
active sites, increasing susceptibility toward localized 
types of corrosion. There was a marginal difference in 
the current density curves at the different rotation 
speeds. As soon as the rotation speed increased, the Icorr 
value increased slightly obtaining the highest value at 
3000 rpm, but it decreased again with a further increase  

in the rotation speed to 5000 rpm, as seen for the 

uninhibited solution. 

At room temperature, the lines are nearly 

horizontal, indicating that rotational speed had very 

little effect. In general, the Icorr under inhibited 

conditions was two or three times lower than under 

uninhibited conditions. As previously stated, inhibitors 

perform differently under flow conditions, as the flow 

can increase mass transport of inhibitor molecules 

leading to their concentration at the metal surface. 

Thiseffect can improve inhibitor performance (Nafday 

and Nesic, 2005). 

 
ANN modeling results: The model predictions for the 
training and test data are shown in Fig. 3. The Pearson 
rvalues and adjusted R squared values, which indicate 
the model’s predictive efficiency, were calculated and 
are shown in Fig. 3. For training data, these values are 
near to one. Even for unseen test data, the values are in 
good agreement with experimental values and the 
average error in the prediction for 12 samples is 0.055. 
Thus, the ANN model will be helpful in the accurate 
prediction of corrosion rates and useful to industry. 

 

 
 

 
 

Fig. 3: Predicted and experimental corrosion rates for the HAZ; (a): training data; (b): testing data and the absolute errors of; (c): 

training data and (d): testing data 
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Fig. 4: Predicted corrosion rate versus temperature for various speeds of rotation 

 

A sensitivity analysis was carried out on the trained 

model testing the predictions by varying temperature 

with and without an inhibitor at different speeds. In the  

presence of an inhibitor, with increasing speed and 

temperature, the corrosion rate increases up to 65°C. 

Without an inhibitor, the highest corrosion rate was 

observed at around 50°C, at all speeds. The predictions 

without an inhibitor showed higher corrosion rates than 

with an inhibitor at all temperatures and speeds. This is 

in good agreement with practical observation. The 

corrosion experimentson the steels were conducted at  

20, 50 and 70°C and at 500, 1000, 2000, 3000, 4000 
and 5000 rpm speeds.  

The model can also predict at intermediate values 
of temperature (30, 35, 45, etc.) and at various speed 
values (1250, 1500, 2500, etc.), which will be useful for 
analyzing optimum conditions for lower corrosion 
values 

The training network result showed that all data 
were successfully modeled. One distinguishing 
characteristic of an ANN is its adaptability which 
requires a unique information flow design, as shown in 
Fig. 4. 
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Fig. 5: Potential variations at different rotation speeds and different temperatures under inhibited and uninhibited conditions 

 

Corrosion potential measurements: It is known that a 

simple way to study the film formation of materials in a 

solution is to monitor the Ecorr as a function of time, as 

shown in Fig. 5. A rise in potential in the positive 

direction indicates the formation of a passive film, a 

steady potential indicates that the film remains intact 

and protective and a drop in potential in the negative 

direction indicates breaks in the film, dissolution of the 

film, or no film formation (Nafday and Nesic, 2005). 

Temperature and rotation speed are factors that affect 

the electrochemical behavior of a metal in a corrosive 

environment. The metal inhibitor interactions can also 

be influenced by this factor. Figure 5 shows the 

variation of the measured Ecorr with time exposure in 

the test solution in both conditions (brine with and 

without inhibitor). Corrosion potential significantly 

changes as a function of temperature and the corrosion 

potential evolution as a function of time is the best 

qualitative method for monitoring interface 

modification between a metal and its environment 

(Alawadhi and Robinson, 2011).The OCP (Open 

Circuit Potential) of mild steel was monitored over 60 

minutes, from the moment of immersion in the test 

solution, at three different temperatures (room, 50 and 

70°C). The influence of the rotation speed of 5000 rpm 

on the open circuit potential of the HAZ at room 

temperature stabilized between -0.7 mV and -0.69 mV 

under uninhibited conditions, but when the inhibitor 

was added, the sample showed the effect of the forming 

inhibitor layer, increasing the OCP linearly in the 

positive direction. In addition, it is important to note 

that at 50°C, either with or without the inhibitor, the 

corrosion potential values slightly increase with time. 

Ecorr values with the inhibitor are slightly higher than 

those observed without the inhibitor. This behavior 

shows that the Ecorr of the HAZ zone of the welded 

carbon steel has been slightly affected by the inhibitor 

in the test environment. At 70°C, it was found that the 

OCP becomes more positive in inhibited solution than 

in uninhibited solution. This means that the surface 

becomes nobler in the presence of the inhibitor. 

Moreover, it becomes nobler with increased 

temperature due to the presence of more inhibitor on 

the metal surface, leading to the formation of an 

inhibitor film and increasingly positive values of OCP. 

According to some researchers, under uninhibited 

conditions, with a temperature below (60°C), 

thesolubility of FeCO3 is high; hence the protective 

films may still build up but are not protective. 

 

CONCLUSION 

 

A neural network has been developed for the 

prediction of HAZ corrosion in X65 carbon steel 

pipelines. Various aggressive temperatures and 

rotational speeds are taken into consideration, for both 

inhibited and uninhibited conditions. The data obtained 

showed a good agreement between the experimental 

data and simulation results, confirming that it is an 

effective approach for corrosion prediction. 
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Under uninhibited conditions, it was clear that both 
increasing temperature and rotational speed led to an 
increase in current density. In addition, current densities 
were considerably lower and this could be attributed to 
the effect of the inhibitor which seems to become better 
attached to the HAZ, providing good corrosion 
protection, especially at room temperature. 

Under aggressive conditions, high temperature and 
a high rotational speed of 5000 rpm, an increasing 
current density was noticed and this was thought to be 
due to the partial removal of the inhibitor film formed 
on the HAZ. 
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