
Research Journal of Applied Sciences, Engineering and Technology 13(8): 632-637, 2016 

DOI:10.19026/rjaset.13.3049 

ISSN: 2040-7459; e-ISSN: 2040-7467 

© 2016 Maxwell Scientific Publication Corp. 

Submitted:  July  19,  2015                        Accepted: August  20,  2015 Published: October 15, 2016 

 

Corresponding Author: C.S. Rajarajeswari, Research Scholar, Bharathiyar University, Coimbatore, Tamil Nadu, India 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

632 

 

Research Article 

Agent Based Load Balancing Mechanisms in Federated Cloud 
 

1
C.S. Rajarajeswari and 

2
M. Aramudhan 

1
Research Scholar, Bharathiyar University, Coimbatore, Tamil Nadu, India 

2
Department of IT, PKIET, Karaikal, India 

 

Abstract: Cloud computing is one of the recent innovation in the field of information technology, which provides 
services to user on demand and pay per utilization. Single cloud based service model lacks in performance factors 
like response time, throughput and deadline missing etc., when workload becomes heavy. To overcome this 
limitation, federated cloud management broker architecture was proposed. Since cloud traffic is unpredictable and 
busty in nature, there is a possibility of large number of incoming service requests for processing. Hence the 
workload varies dynamically, some service providers are overloaded and others may be under loaded. In order to 
balance this situation, to improve the performance of federated cloud broker architecture, load balancing techniques 
are incorporated at the place of Broker Manager and brokers. Broker Manager (BM) plays a vital role to select 
appropriate best broker for computing the incoming service requests. Agent based Round Robin Load Balancing 
Scheduling (ARRS) is proposed at BM for assigning the service requests among the selected brokers by considering 
the parameters such as workload and queue size of brokers. Another one called Decentralized Agent based Load 
Balancing (DALB) technique is proposed at the level of brokers to balance the assigned workload in the way of 
migrating the requests to the under loaded brokers. The result shows that the proposed load balance based broker 
architecture provides better performance compared to without load balancing based architecture. 

 
Keywords: Broker, broker manager, federated cloud, load balancing, load sharing, migration 

 
INTRODUCTION 

 
Cloud computing provides a wide range of cost 

effective, dynamic services to users based on the 
demand through internet. Even though the Service 
Level Agreement (SLA) is made between user and 
provider based on functional and non-functional 
parameters that promote Quality of Service (QoS) 
(Armbrust et al., 2009) due to the nature of internet 
traffic, extending QoS is a challenging task in cloud 
environment (Rajarajeswari and Aramudhan, 2014a). In 
order to maintain the QoS, various changes have been 
carried out at the level of architecture. 

Cloud computing performance depends on the 
scheduling and proper load balancing algorithms 
(Kunamneni, 2012). Scheduling algorithms provide a 
sequence of proper resource allocation in turn 
throughputs are increased (Randles et al., 2010), 
whereas load balancing algorithm divides the workload 
between the available resources. Load balancing 
mechanism is needed to distribute equal workloads to 
the cloud service providers to achieve optimum outset. 
Load balancing strategies may be either static or 
dynamic. Static strategies use information about the 
average performance of the system and the transfer 
decisions are independent of the current system state. 

Dynamic strategies use system state information to 
make load distribution decisions. Due to uneven job 
arrival patterns and unequal computing capabilities, 
some cloud service providers may be overloaded while 
others may be underutilized. Hence, load balancing is 
required to redistribute the workload among the 
available resources in order to achieve optimal resource 
utilization, maximize throughput, minimum response 
time and avoid overload.  

In federated cloud model, load balancing 
techniques are used to balance the workloads of cloud 
service providers by distributing the workload among 
the brokers. Almost all the load balancing techniques 
are centralized decision making for forwarding the 
requests for execution in the federated cloud. The 
architecture based on the centralized decision making 
leads to congestion in addition to single point of failure 
in the federated cloud. The federated cloud architecture 
proposed by the authors in Rajarajeswari and 
Aramudhan (2014b) suggested the need of load 
balancing at the level of BM and brokers to promote 
QoS. To address these issues two load balancing 
algorithms namely Agent based Round Robin Load 
Balancing Scheduling (ARRS) and Decentralized 
Agent based Load Balancing (DALB) techniques are 
proposed in this study to maintain the QoS. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(8): 632-637, 2016 

 

633 

ARRS sits at dispatcher in BM and collects the 
workload of brokers. Based on the information service 
requests will be distributed among the selected broker 
in round robin fashion. DALB is a decentralized load 
balancing technique that will be invoked by broker. By 
analyzing the workload of other brokers, perform 
service request migration. 
 

LITERATURE REVIEW 
 

In algorithms (Xu and Huang, 2009; Rimal et al., 
2009) the processes are divided between all processors. 
Each process is assigned to the processor in a round 
robin order. The process allocation order is maintained 
locally independent of the allocations from remote 
processors. Though the work load distributions between 
processors are equal but the job processing time for 
different processes are not same. So at any point of time 
some nodes may be heavily loaded and others remain 
idle. This algorithm is mostly used in web servers 
where http requests are of similar nature and distributed 
equally. 

Load balancing algorithm (Werstein et al., 2006) 
can also be based on least connection mechanism which 
is a part of dynamic scheduling algorithm. It needs to 
count the number of connections for each server 
dynamically to estimate the load. The load balancer 
records the connection number of each server. The 
number of connection increases when a new connection 
is dispatched to it and decreases the number when 
connection finishes or timeout happens. 

Equally spread current execution algorithm (Nitika 
et al., 2012) process handle with priorities. It distribute 
the load randomly by checking the size and transfer the 
load to that virtual machine which is lightly loaded or 
handle that task easy and take less time and give 
maximize throughput. It is spread spectrum technique 
in which the load balancer spread the load of the job in 
hand into multiple virtual machines. 

Throttled algorithm (Nitika et al., 2012) is 
completely based on virtual machine. In this client first 
requesting the load balancer to check the right virtual 
machine which access that load easily and perform the 
operations which is give by the client or user. In this 
algorithm the client first requests the load balancer to 
find a suitable Virtual Machine to perform the required 
operation. 

Fang et al. (2010) and Buyya et al. (2010) 
discussed a two-level task scheduling mechanism based 
on load balancing to meet dynamic requirements of 
users and obtain high resource utilization. It achieves 
load balancing by first mapping tasks to virtual 
machines and then virtual machines to host resources 
thereby improving the task response time, resource 
utilization and overall performance of the cloud 
computing environment. 

Min-Min Algorithm begins with a set of all 
unassigned tasks. First of all, minimum completion 
time for all tasks is found. Then among these minimum 
times the minimum value is selected which is the 

minimum time among all the tasks on any resources. 
Then according to that minimum time, the task is 
scheduled on the corresponding machine. Then the 
execution time for all other tasks is updated on that 
machine by adding the execution time of the assigned 
task to the execution times of other tasks on that 
machine and assigned task is removed from the list of 
the tasks that are to be assigned to the machines. Then 
again the same procedure is followed until all the tasks 
are assigned on the resources. But this approach has a 
major drawback that it can lead to starvation (Ray and 
Sarkar, 2012). 

Max-Min is almost same as the min-min algorithm 
except the following: after finding out minimum 
execution times, the maximum value is selected which 
is the maximum time among all the tasks on any 
resources. Then according to that maximum time, the 
task is scheduled on the corresponding machine. Then 
the execution time for all other tasks is updated on that 
machine by adding the execution time of the assigned 
task to the execution times of other tasks on that 
machine and assigned task is removed from the list of 
the tasks that are to be assigned to the machines 
(Kokilavani and Amalarethinam, 2011). 

Historical based service submission records 
(Sotiriadis et al., 2012) explored the performance of an 
Inter-Cloud to measure the utilization levels among 
their sub-clouds for various job submissions. The 
experimental analysis shows that based on basic 
historical records, an Inter-Cloud can decide the 
number of datacenters to be utilized based on the 
number of jobs submitted to the system. A future 
direction is to incorporate cloud datacenters and allow 
tasks to be migrated between different hosts belonging 
to various datacenters. 
 

LOAD BALANCING TECHNIQUE FOR 

FEDERATED CLOUD BROKER 

ARCHITECTURE 
 

At the start, users submit request to Broker 

Manager (BM) (Rajarajeswari and Aramudhan, 2014a). 

Dispatcher component is used to schedule the incoming 

requests of Broker Manager. Since the cloud traffic is 

dynamic and unpredictable, dispatcher disseminates the 

incoming workload to the brokers with the help of 

Broker Monitoring Agent (BMA).  

 

Broker Monitoring Agent (BMA): BMA monitors the 

workload of all the brokers and inform the status to 

broker manager. BMA also maintains a BLI (Broker 

Load Index) table which records the information such 

as broker-id, length of jobs in a waiting queue, length of 

jobs in service etc. for each broker. At each time t, 

BMA counts the number of request in the queue and 

update into the load index table.  

 

Dispatcher: Dispatcher component uses this BLI table 

to schedule the incoming jobs. Dispatcher decision is   



 

 

Res. J. Appl. Sci. Eng. Technol., 13(8): 632-637, 2016 

 

634 

 
 

Fig. 1: Functional architecture of federated cloud 

 

based on the total time needed for the completion of the 
previous assigned request in the brokers. Dispatcher 
component is used to allocate or reallocate the 
incoming user request to the selected broker.  

The functional model of the federated cloud broker 
architecture is shown in Fig. 1. 

Workload of a broker is defined as the number of 
service requests assigned to the specific broker by the 
broker manager and time taken to execute all the 
assigned requests. To balance the workload, two load 
balancing techniques are proposed at the level of broker 
manager and brokers. The proposed load balancing 
techniques are given below: 
 

• Agent based Round Robin Load Balancing 
Scheduling Algorithm (ARRS) 

• Decentralized Agent based Load Balancing 
Algorithm (DALB) 

 
Agent based Round Robin Load Balancing 

scheduling is similar to round robin scheduling of CPU 
that assigns the service requests among the selected 
brokers. To balance the workload of brokers, a 
Decentralized Agent based Load Balancing (DALB) is 
proposed at the level of brokers. 

In the proposed federated cloud broker model, 
service requests that are arrived at the broker manager 
are forwarded to the dispatcher. The functionality of the 
dispatcher is to redistribute the incoming service 
request among the selected broker for the task. The 
selected brokers are ranked by using Poincare plot 
method (Sotiriadis et al., 2012). Each cloud service 
provider is managed with a broker. Broker Monitoring 
Agent (BMA) in the proposed architecture is used to 

monitor the workload of brokers, inform periodically to 
the dispatcher about the workload status of brokers. 
 

PROPOSED LOAD BALANCING MODEL 
 

To balance the workload of the federated cloud 
broker environment two load balancing techniques are 
proposed at the level of broker manager and brokers. 
The load balancing techniques are: 
 

• Agent based Round Robin Load Balancing 
Scheduling Algorithm (ARRS) 

• Decentralized Agent based Load Balancing 
Algorithm (DALB) 

 

Agent based Round Robin Scheduling algorithm 
(ARRS): BM assigns unique ID for each service 
request and selects broker for computing the task. It is 
working on the principle of centralized decision making 
technique. Generally BM chooses the top broker for 
executing the incoming request (Rajarajeswari and 
Aramudhan, 2014b).This leads to congestion at the 
level of brokers. This congestion can be avoided with 
the help of ARRS load balancing technique. 

To balance the workload at BM, a round robin 
scheduling is used as a load balancing technique to 
assign the service requests equally among the selected 
brokers. ARRS sits at dispatcher, to distribute the 
service workload among the selected brokers by BM. 
ARRS performs among the selected brokers, identify 
least workload and assign the task based on Poincare 
plot method and compatibility decision matrix 
(Rajarajeswari and Aramudhan, 2014a) provided by 
BM. 



 

 

Res. J. Appl. Sci. Eng. Technol., 13(8): 632-637, 2016 

 

635 

The function of BM in case of failure of the 
dispatcher is identified as follows. If the dispatcher 
fails, BM can act as a dispatcher for short time and 
inform the status of failure to the cloud administrator. 
BMA informs the status of brokers to the dispatcher. If 
BMA fails to receive any response from dispatcher 
before exceed of timer value, re-inform the status to the 
broker manager. Timer value is twice the propagation 
delay between the dispatcher and the BMA. 

Consider simple scenario; there are 5 brokers 
namely B1, B2, B3, B4 and B5 in the federated cloud 
broker architecture. B2, B4 and B5 are selected as 
matched brokers for the incoming service requests and 
store in the compatibility decision matrix. B2, B4 and 
B5 are ranked using Poincare plot method. Dispatcher 
verifies the workload of the ranked brokers and assigns 
the service request to the selected broker using round 
robin technique. 
 
Decentralized Agent based Load Balancing 
technique (DALB): This technique is performed at the 
level of brokers, by considering the service completion 
time. Service may be migrated among the selected 
brokers that execute the service earlier. In decentralized 
load balancing technique, each selected broker has 
making decision, either to execute the request or 
transfer to any under loaded brokers. Each broker 
provides three agents namely Stationary Agent (SA), 
Decision Making Agent (DA) and Migration Agent 
(MA).  

Stationary agent sits permanently at the broker, 
monitors the workload of the broker and informs the 
status of workload to the decision making agent. 
Decision making agent collects the workload 
information of other brokers through BMA and decide 
any service request in the queue that may have possible 
transfer to other under loaded broker by considering the 
value of the performance index.  

Performance Index (PI) is calculated as the 
difference between the time taken by the request to 
execute in the broker assigned by the dispatcher and the 
time taken for request transfer, waiting time and 
execution time of the request in other under loaded 
brokers. Performance index consists of two values +1 
and -1.  

If the time difference between assigned broker is 
less than the under loaded broker then the performance 
index value is +1, otherwise the performance index 
value is -1. If the performance index value is -1 then 
decision making agent transfers the service request to 
the under loaded broker, otherwise it will be executed 
in the broker assigned by the dispatcher.  

Migration agent is invoked by the decision making 
agent, to transfer service request from the queue to 
other under loaded broker based on the performance 
index value.  

Let A, B, C be the brokers that are connected with 
different cloud service providers. Let queuelengthA, 
queuelengthB, queuelengthC be the queue size of the 
brokers respectively at a given point of time. The 

brokers A, B, C collect the information from Broker 
Monitoring Agent (BMA). The broker which transfers 
the services to other brokers is considered as source and 
the broker where the services are received and 
manipulated is considered as the destination. Job re-
direction between brokers is based on the following 
algorithm. 
 
Step 1: If queuelengthDesiination> (queuelengthSource1 and 

queuelengthSource2 and… queuelengthSourcen)  

then 

Step 2: Compute qx such that qx = min 

(queuelengthSource1, queuelengthSource2 … 

queuelengthSourcen) 

Step 3: Compute n such that n = (queuelengthDestination- 

qx)/2 

Step 4: Transfer the last n jobs from 

queuelengthDestination to qx broker, if it holds 

condition 1. 

 

 A job ‘j’ on broker ‘x’ is reallocated to a broker 

‘y’ only when: 

 
1

1

_ _

j i

ix x xy iy jy

i i n

p j rt j rp p p

=

= =

+ + +∑ ∑f                (1) 

 

where, 

Pix  =  Processing Time of i
th
 request at broker x 

j_rtx  = Transmission Time of j
th
 request by broker x  

j_rpxy = Propagation Time of j
th
 request from broker x 

to broker y 

piy  =  Processing Time of i
th
 request at broker y 

pjy  =  Processing Time of j
th
 request at broker y 

 

Algorithm 1: Decentralized agent based load 

balancing: The purpose of computing n is to 

redistribute the jobs in order. 

 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

The proposed framework is implemented in 

Cloudsim (Calheiros et al., 2009; Barrett et al., 2011) 

using Java. A software simulator was designed and 

implemented to model the DALB load balancing 

technique in the federated cloud broker environment.  

The workload of a broker is determined by the 

number of requests processed at each broker. DALB is 

applied to minimize the workload difference between 

the brokers. The performance of DALB load balancing 

scheme is evaluated and compared with without load 

balancing scheme.  

Table 1 compares the load distribution generated 

by the DALB scheme and without load balancing 

scheme on three brokers at different moment. It also 

includes the average deviation of load on the three  



 

 

Res. J. Appl. Sci. Eng. Technol., 13(8): 632-637, 2016 

 

636 

Table 1: Load distribution on three brokers 

Load Balancing 

using DALB 

Total no. of 

requests 

Brokers  

------------------------------------------------------------------------ Average 

deviation 

Overall average 

deviation B1  B2 B3 

 100 39 21 40 8.22  

 200 103 59 38 24.22  

 300 93 66 141 27.33  
 400 140 127 133 4.44  

 500 195 125 180 24.44  

 600 280 179 141 53.33 27.64 
 700 240 196 264 24.89  

 800 292 233 275 22.44  

 900 271 309 320 19.33  
 1000 255 310 435 67.77  

Without load 

Balancing  

Total no. of 

requests 

Brokers  

----------------------------------------------------------------------- Average 

deviation 

Overall average 

deviation B1  B2 B3 

 100 48 11 41 14.89  
 200 140 55 5 48.88  

 300 75 65 160 40  

 400 150 115 135 12.22  
 500 205 91 204 50.44  

 600 303 144 153 68.66 54.81 
 700 215 99 286 89.55  

 800 302 188 310 52.44  

 900 215 322 363 36.66  
 1000 156 309 535 34.44  

 
brokers. It shows that DALB scheme has lower 
deviation than without load balancing scheme in most 
of the cases. That means DALB can distribute user 
request more evenly to the cloud service providers.  

Overall average deviation in Table 1 is the mean of 
the average deviation of all moments. The overall 
average deviation of the DALB scheme is lower than 
without load balancing scheme strategy. Overall 
average deviation of DALB is twice lesser than the 
existing without load balancing technique in federated 
cloud management system.  

Proposed load balancing algorithm executes the 
incoming request based on the current load of cloud 
service providers with the help of the agents in each 
broker. 
 

CONCLUSION 
 

This study examines two new algorithms for 
improving the performance of the federated cloud 
broker architecture through load balancing approach. 
ARRS algorithm distributes the service workload 
among the selected brokers by broker manager. It is 
working on the principle of centralized decision making 
technique. But load imbalance is still persists in the 
architecture. Proposed DALB algorithm has several 
advantages. First, decision making in brokers is 
decentralized and improves the response time. Second, 
use of Stationary agent, Decision Making Agent and 
Migration Agent provides high flexibility in the 
migration process. Third, the result shows that no 
providers remain idle at any time while other providers 
are processing more requests. Thus the proposed DALB 
framework proves that the effective distribution of 
workload among the brokers in the federated cloud 
broker environment is achieved. 

REFERENCES 

 

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph, R.H. 

Katz, A. Konwinski, G. Lee, D.A. Patterson, A. 

Rabkin, I. Stoica and M. Zaharia, 2009. Above the 

clouds: A berkeley view of cloud computing. 

Technical Report No. UCB/EECS-2009-28, 

University of California at Berkeley, pp: 1-25.  

Barrett, E., E. Howley and J. Duggan, 2011. A learning 

architecture for scheduling workflow applications 

in the cloud. Proceeding of the 9th IEEE European 

Conference on Web Services, pp: 83-90. 

Buyya, R., R. Ranjan and R.N. Calheiros, 2010. 

InterCloud: Utility-oriented federation of cloud 

computing environments for scaling of application 

services. Proceeding of the 10th International 

Conference on Algorithms and Architectures for 

Parallel Processing, pp: 13-31. 

Calheiros, R.N., R. Ranjan, C.A.F. De Rose and R. 

Buyya, 2009. CloudSim: A novel framework for 

modeling and simulation of cloud computing 

infrastructures and services. Technical Report No. 

GRIDS-TR-2009-1, Grid Computing and 

Distributed Systems Laboratory, the University of 

Melbourne, Australia. 

Fang, Y., F. Wang and J. Ge, 2010. A Task Scheduling 

Algorithm Based on Load Balancing in Cloud 

Computing. In: Wang, F.L. et al. (Eds.), Web 

Information Systems and Mining. Lecture Notes in 

Computer Science, Springer, Berlin, Heidelberg, 

6318: 271-277. 

Kokilavani, T. and D.I.G. Amalarethinam, 2011. Load 

balanced min-min algorithm for static meta-task 

scheduling in grid computing. Int. J. Comput. 

Appl., 20(2): 43-49.  



 

 

Res. J. Appl. Sci. Eng. Technol., 13(8): 632-637, 2016 

 

637 

Kunamneni, V., 2012. Dynamic load balancing for the 
cloud. Int. J. Comput. Sci. Electr. Eng., 2315: 33-
37. 

Nitika, M., G. Shweta and G. Raj, 2012. Comparative 
analysis of load balancing algorithms in cloud 
computing. Int. J. Adv. Res. Comput. Eng. 
Technol., 1(3): 34-38.  

Rajarajeswari, C.S. and M. Aramudhan, 2014a. 
Differentiated services at application level for SLA 
resource provisioning management. Proceeding of 
the International Conference on Mathematical 
Sciences, pp: 639-642.  

Rajarajeswari, C.S. and M. Aramudhan, 2014b. 
Ranking model for SLA resource provisioning 
management. Int. J. Cloud Appl. Comput., 4(3): 
68-80. 

Randles, M., D. Lamb and A. Taleb-Bendiab, 2010. A 
comparative study into distributed load balancing 
algorithms for cloud computing. Proceeding of the 
IEEE 24th International Conference on Advanced 
Information Networking and Applications and 
Workshops, pp: 551-556. 

Ray, S. and A.D. Sarkar, 2012. Execution analysis of 
load balancing algorithms in cloud computing 
environment.  Int. J. Cloud  Comput.  Serv. Archit., 
2(5): 1-13. 

Rimal, B.P., E. Choi and I. Lumb, 2009. A taxonomy 
and survey of cloud computing systems. 
Proceeding of the 5th International Joint 
Conference on INC, IMS and IDC, pp: 44-51. 

Sotiriadis, S., N. Bessis and N. Antonopoulos, 2012. 

Exploring inter-cloud load balancing by utilizing 

historical service submission records. Int. J. 

Distrib. Syst. Technol., 3(3): 72-81. 

Werstein, P., H. Situ and Z. Huang, 2006. Load 

balancing in a cluster computer. Proceeding of the 

7th International Conference on Parallel and 

Distributed Computing, Applications and 

Technologies, pp: 569-577. 

Xu, Z. and R. Huang, 2009. Performance study of load 

balancing algorithms in distributed web server 

systems. CS213 Parallel and Distributed 

Processing Project Report. 

 

 

 

 

 

 

 


