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Abstract: This study suggests an adaptive Artificial Neural Network (ANN) controller that based on Stochastic 

Fractal Search algorithm (SFS), the purpose of the Adaptive Neural Controller (ANC) is to track a proposed 

velocities and path trajectory with the minimum required error, in the presence of mobile robot parameters time 

variation and dynamical system model uncertainties. The proposed ANC will consist of two sub-neural controllers; 

the Kinematic Neural feedback Controller (KNC) and the Dynamic Neural feedback Controller (DNC). The external 

feedback kinematic neural controller is responsible for generating velocity tracking signals that track the mobile 

robot linear and angular velocities depending on the robot posture error and the desired velocities, while the internal 

dynamic neural controller is used to enhance the mobile robot against parameters uncertainty, parameters time 

variation and disturbance noise. The stochastic fractal search algorithm is a Metaheuristic Optimization Algorithm 

(MOA) that has been used to optimize the Neural Networks (NNs) weight connections to has the behavior of an 

adaptive nonlinear trajectory tracking controller of a differential drive wheeled mobile robot. The proposed 

controller has the capability to prepare an appropriate dynamic control left and right torque signals to drive various 

mobile robot platforms using the same offline optimized weight connections. Metaheuristic optimization algorithms 

have been used due to theirs unique characteristics especially theirs free of derivative, ability to optimize discretely 

and continuous nonlinear functions and their ability to get rid of local minimum solution trapping. 

 

Keywords: Artificial neural networks, meta-heuristic algorithms, mobile robot, stochastic fractal search, trajectory 

tracking controller 

 

INTRODUCTION 

 
Since the first launch of the Artificial Neural 

Networks (ANNs) and they have been used in many life 
fields and applications such as; image and signal 
processing (Lee and Kipke, 2006), systems 
identification (Kim et al., 1994), robotic control (De 
Sousa Junior and Hemerly, 2000), classification and 
clustering of data pattern sets. The ANNs have the 
ability to approximate any nonlinear model by using 
parallel computation techniques (Hines, 1996). One of 
the major topics related to the ANNs theory is the 
learning process of the Neural Networks (NNs). Many 
algorithms have been used for the learning purpose, one 
of the most famous and well-known algorithms is the 
error back propagation algorithm, which has been 
extensively used for the NNs learning purpose. 
However, this algorithm appears to be suffering from 
several problems such as easy being trapped into local 
minimum solution and its low convergence speed (Gori 
and Tesi, 1992). Many papers have been made to 
develop the performance of the back propagation 
algorithm, while other have just left this concept and 

migrate to other types of algorithms that called 
Metaheuristic Optimization Algorithms (MOA) 
(Siddique and Tokhi, 2001; Rakitianskaia and 
Engelbrecht, 2009; Bai and Xiong, 2009) especially in 
the training phase of the NNs. 

The neural based controllers of the robotic systems 
have been gained a great significance in the few recent 
years. These networks were recommended for their 
learning ability, intelligent, adaptive behavior and their 
high performance. An intelligent Mobile Robots (MRs) 
have become an exciting choice for many scientific 
types of research and industrial applications. Therefore, 
a lot of care have been spent to enhance and introduce 
new controllers, especially in the adaptive field and 
artificial intelligence. 

This study suggests an Adaptive Neural Controller 
(ANC), that's trained offline using a MOA, called 
Stochastic Fractal Search algorithm (SFS) (Salimi, 
2015) that is motivated by the development of regular 
phenomenon, inspired from the fractal mathematical 
idea and from the diffusion feature that seen often in 
random. The used controller tracks the desired 
trajectory of a differential drive mobile robot. This 
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controller will be applied to the wheeled mobile robotin 
the presence of parameters time variation and 
uncertainties using the same fixed trained weight. 

 

MATERIALS AND METHODS 
 

Adaptive neural controller has been proposed by 

this study to track a desired designed trajectory, in 

which the NN has been trained using a recently 

proposed MOA called SFS algorithm due to its free 

derivative, faster convergence and ability to escape 

local minima solution. The proposed controller has the 

ability to track the trajectory in the presence of noise 

and parameters time variation also it could be applied to 

multiple mobile robot platforms with the same fixed 

optimized weights. 

 

Stochastic Fractal Search (SFS) algorithm: Is a 

population-based metaheuristic algorithm motivated 

from the development of regular phenomenon, that uses 

fractal mathematical concept and the diffusion feature 

that seen regularly in random. SFS algorithm uses two 

chief procedures for problem optimization which are: 

Diffusing and the appraising processes. The diffusing 

process is in charge for exploitation feature that raises 

the chance of an agent to catch the global minimum 

solution and also prevent an agent from being stacked 

into a locallyoptimal solution. A statically diffusion 

process is considered, which means that the best agent 

of the diffusing process is the only agent that will be 

taken into concern, while other agents are rejected. On 

the other hand, The appraising process is random 

approaches that lead to an exploration feature. The 

Gaussian walks in the diffusion process have been 

shown by: 

 ��� = �����	 , �  + (���� − ����)               (1) 

 ��� = �(��	, �)                                                 (2) 

 � = ����(�)� (�� − ��)�                 (3) 

 

where, �� and ��  = Two random numbers ∈ [0,1] ��  = The best solutionagent ��   = Anagent in the population �(��, �)  = The Gaussian distribution function with 

mean (mn) and standard deviations (�). 

 ���	 , ��	are equal to ��  and ��  respectively, k is 

the iteration number, 
!"#(�)�  is used to reduce Gaussian 

jumps size. When all points are randomly initialized, 
each agent fitness is calculated and the best-obtained 

agent (��) is evaluated. For the purpose of the search 
space exploitation in the diffusion process, all agents in 
the population most move around their current location. 

Two statistical procedures expected to increase the 
exploration of the search space; the first procedure acts 
on each different vector index; while the second 
procedure applied to all agents. During the first 
statistical procedure, all agents are ranked with respect 
to the fitness of the agents, then these agents will be 
given a probability value that follows a simple 
distribution as shown in Eq. (4): 
 �	� = $%&�(	')	"	(�)                 (4) 

 
Equation (4) shows that the better point has the 

better probability. Where popsize is the population size 
of the algorithm. Therefore, it is used to raise the 
chance of varying the position of agents which have got 

a bad fitness solution. The l
th

 component of ��agent, is 
updated according to Eq. (5) if the following condition �	� < � is true, where a is a random number ∈ [0, 1], 

else it remains unchanged: 
 ���+�(,) =  �(�(,) − �(�-�(,) − �� �(,))             (5) 

 

where, �( and �- are two random agents in the 
population. 

In the second statistical procedure, all agents 
obtained from (5) will be ranked as in (4), if the 

condition �	� < �is true again but for ���+�, the recent ���+�is updated based on Eq. (6) and (7), otherwise no 

change occurs: 
 ��& = ���+� − .(�(�+� − ��) /01 . ≤ 0.5            (6) 

 ��& = ���+� + .��-5+� − �(5+� /01 . > 0.5        (7) 

 

where, �(�+� and �-�+� are two random agents selected 

from the first statistical procedure and . is a random 

number formed by Gaussian distribution. ���+� will be 

changed by agent ��& if it has better solution fitness 
(Salimi, 2015). Table 1 will show the general SFS 
pseudo code. 
 
SFS Optimizing NN weights: As we have seen in the 
last section, SFS algorithm has madea random 
population of agents in the search space as the first step 

toward optimization. The agents, in general, ∈ 7	"	(�)8∗:�;. The role of SFS algorithm is firstly; To 
bound and check the candidate solutions in the 
population, then update the solutions in an iteration 
process to get the best fitness solution. However, for 
supervised training NNs the objective function is the 
Mean Square Error (MSE) function, so that when the 
weights of the network is fully optimized we will get 
very minimum or zero MSE. 

In order to make the SFS algorithm as a supervised 
NN learning algorithm, we have considered that the 
input and hidden layers weights of the NNs are the 
agent   vector  in   the  population,  where each agent 
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Table 1: General SFS pseudo code 

1:  InitializeSFS algorithm random population and parameters. 

2: While not (best solution is foundor maximum number of 
iteration reached) 

3: Fori=1 : popsize 
4: For m = 1 to maximum diffusion number 
5: Create a new agent based oneq. (1) and (2). 
6:                    End      
7:             End 
8: Use eq. (4) to rank  population agents 
9:             For i=1:popsize 
10:    For each l in �� 
11:                     If �	� < � for �� then 

12:                    Use (5) to modify lthagent 
13:                    Else 
14:                     Keep ��unchanged 
15:                   End if 
16:    End 
17:            Use (4) to rank  agents of thepopulation.        
18: For each  ���+� in the population 
19: If �	� < � for   ���+�then 

20: Modify   ���+�  according to (6) and (7) 
21: Else 
22: Keep   ���+�without modification. 
23: End if 
24:   End 
25: End 
26: Loop while. 

 

 
 

Fig. 1: Differential drive wheeled MR geometrical structure 

 
signifies a candidate weight solution, the purpose of 
this agent weights vector is to minimize the objective 
MSE function of the NN. The weights will be bounded 
between the minimum and maximum search space 
values. The iteration process will last for a number of 
epochs (cycle) where each epoch represents a number 
of iteration process, the original weights will be 
initialized randomly in the first epoch, while in the next 
epoch the weights will be the best-obtained agent 
weights obtained from the last epoch. For stopping 
iteration criteria, we have put three conditions; if an 
agent converged to the best solution, or if an over 
fitting occurred during iteration, or if the maximum 
number of epochs are reached. 
 
Differential drive wheeled MR modeling: For the 
kinematic and dynamic MR modeling, we have 
supposed the model proposed by Fukao et al. (2000). 

Figure 1 shows a general differential drive wheeled MR 
geometrical structure, in which the point B represents 
the central point between the driver wheels, b is the 
straight distance between the center of gravity A and 
the wheel axis. The MR position will be described by ρ 
= [X, Y, <]

T
, where X and Y are the axis of point A. < 

is the mobile robot steering rotation angle. The MR 
kinematic model is given by Eq. (8-10): 
 => = ?(=)@                               (8) 
 
where, @=[@r, @l]

T
, are the right and left wheels 

angular velocities: 
 

?(=)= 

AB
BC

$� cos (<) $� cos (<)$� GH� (<) $� GH� (<)$� I − $� I JK
KL                (9) 

 

@ = M�$ �$�$ − �$
N O               (10) 

 
where, O = [ v, w]

T
, are the linear and angular velocities 

of the wheeled MR. 
Substituting Eq. (9) and (10) in (8) we obtain the 

kinematic system model equations of the differential 
drive robot in terms of linear and angular velocities as 
shown in Eq. (11): 
 

=> = PQ0G (<) 0GH� (<) 00 1R O               (11) 

 
For non-slipping and pure rolling condition the 

non-holonomic constraint will be shown in Eq. (12) 
(Fierro and Lewis, 1998): 
 S>GH �(<) − T> Q0 G(<)= 0              (12) 
 

Let m be the mass of the robot platform, mm the 
mass of the wheel and motor, I the moment of inertia of 
the robot platform about the perpendicular axis over B, 
Im the wheel and motor moment of inertia around the 
wheel axis and Ii is the wheel and motor moment of 
inertia around the wheel diameter. The dynamic robot 
model is represented by Eq. (13-18) as follow: 
 U(=)O> + V(=, => )O = W(=)X              (13) 
 
where, X = [Xr, Xl] stand for the right and left torques 
applied on the wheels, while M, N, B are represented 
by: 
 U(=) =
M $Y

Z:Y (�[\� + ][) + ]; $Y
Z:Y (�[\� − ][) 

$Y
Z:Y (�[\� − ][) $Y

Z:Y (�[\� + ][) + ];)N     (14) 
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Fig. 2: The DNC training phase 

 

V(^, ^> ) = M 0 $Y
�: (�\_)

− $Y
�: (�\_) 0 N             (15) 

 W = `1 00 1a                (16) 

 

where It, mt represent the total moment of inertia and 

the total mobile robot mass shown in Eq. (17 and 18). 

 ][ = �\� + ] + 2�;I� + 2]�               (17) 

 �[ = �+2�;               (18) 

 

THE PROPOSED ANC 

 

This study trying to develop a trajectory tracking 

controller based on NNs that has been optimized using 

SFS algorithm for the differential drive MR of the Fig. 

1. We have assumed that there is uncertainty in the 

dynamic system model. Furthermore, distance b, 

platform mass m, wheel radius r and the platform width 

plare all varying with time. After we have finished the 

NN training phase, we assumed the controller will be 

tough against parameters variation and will track the 

proposed trajectory at the dynamical and kinematic 

controller levels.  

If we suppose that there is a predefined desired 

trajectory given by Eq. (19): 

 

=:> = PQ0G (<:) 0GH� (<:) 00 1R O:              (19) 

 

where, =: = [S: , T: , <:]c,O: = [d: , _:]. The error 

between the desired and actual pose in the local robot 

frame are given by: 

 

Pe�e�ef
R = g Ph�h�hfR = P cos (<) sin (<) 0−sin (<) cos (<) 00 0 1R PS: − ST: − T<: − <R         

                                                                                   (20) 

The control inputs VandW which make E1, E2, E3 

converge to zero are given by Eq. (21) (Kolmanovsky 

and McClamroch, 1995): 

 ` kla = mcos (ef) 0noe� 1p `d:_:a + m nqe�nrsin (ef)p       (21) 

 

where, kx, ky, k<> 0, represent positive constants. 

The DNC is designed to learn the collected 

input/output data from the dynamic model system Eq. 

(13-18) and learns the torque signals which will transfer 

the MR from velocity at time (t) to upcoming (t+1) 

velocity. The DNC offers, after a good training, an 

adaptive performance with fixed trained weight 

connections. However, we have to train the DNC for all 

possible parameters variation combinations of the 

dynamical model, especially the values b, m, pl and r. 

Figure 2 will show the DNC training phase block 

diagram. 

The robot nominal values are proposed as follow; r 

= 0.033 m, m = 0.575 kg, pl = 0.15 m, b = 0.04 m. 

While for the training of the DNC purpose, we have 

assumed that m varied between the values [0.45, 1.2] 

kg, the distance b is varied in the interval of [0.03, 0.1] 

m, pl varied in between [0.12, 0.2] m, r will be varied 

between [0.03, 0.07] m. The training torques input data 

sets are proposed randomly uniformly distributed in 

between [-0.01, 0.01] N.m. On the other hand, the KNC 

is proposed to learn the behavior of the back stepping 

feedback controller system Eq. (21) and to raise its 

robustness against disturbance position data. For the 

purpose of training the KNC, A random trajectory ρr 

was created and a noisy data having zero mean and 0.01 

variation level Gaussian distributed was added to the 

training data. The training input data of the KNC were 

the randomly created trajectory reference velocities and 

the error between the random trajectory and the 

kinematic model trajectory output plus the noisy 

Gaussian distributed data. Figure 3 shows the KNC 

training phase block diagram.  

We have generated 10,000 samples data sets, these 

patterns  data  sets  are  divided into two sub-data; 5000  
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Fig. 3: The KNC training phase 

 

 

Fig. 4: Overall ANC block diagram 

 

sets have been taken for the training purpose, while the 

other 5000 sets have been taken for the testing of the 

trained network. The used NNs architecture for both 

internal DNC and the external KNC 

single hidden layer with 4 hidden processing neurons 

and 2 output neurons. The DNC has 4 input neurons for 

the desired and real velocities, while KNC has 5 input 

neurons for the random reference velocities and the 

error posture with disturbance. The synaptic weights 

connections were randomly initialized between [

+1]. Linear identity activation function has been 

proposed for both input and hidden layers. We have 

used 10 training epochs (cycle) for both DNC and 

KNC, each epoch has 1000 maximum iterations 

and 30 agents population size (popsizes

algorithm will stop the iterations according to three 

proposed stopping conditions which are:

 

• If any agent converged to the predefined global 

error value, which is zero MSE in our 

• When the testing MSE exceeds the training MSE 

by10% of its value. 
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sets have been taken for the training purpose, while the 

other 5000 sets have been taken for the testing of the 

trained network. The used NNs architecture for both 

internal DNC and the external KNC consisted of the 

single hidden layer with 4 hidden processing neurons 

. The DNC has 4 input neurons for 

the desired and real velocities, while KNC has 5 input 

neurons for the random reference velocities and the 

bance. The synaptic weights 

connections were randomly initialized between [−1, 

+1]. Linear identity activation function has been 

proposed for both input and hidden layers. We have 

) for both DNC and 

ximum iterations (mit) 

popsizes), the SFS 

algorithm will stop the iterations according to three 

proposed stopping conditions which are: 

If any agent converged to the predefined global 

error value, which is zero MSE in our case. 

When the testing MSE exceeds the training MSE 

• When the algorithm completes the whole iteration 

epochs.  

 

If the algorithm finished an epoch without over 

fitting the next epoch will continue from the last 

reached point of the last valid epoch and the network 

weights will be the last known valid weights.

The overall ANC structure is shown in Fig. 4, 

where it commonly consists of two feedback control 

loops; external feedback KNC controller to generate the 

control velocity signals, that will track the desired 

trajectories, while the second loop is the internal control 

loop that will represent the DNC feedback loop that is 

designed to improve the controller robustness against 

parameters uncertainty and time variations.

For the purpose of checking the wheeled MR 

tracking performance, we have assumed that the mobile 

robot parameters are changing randomly as shown in 

the Table 2. 

The MSE of the MR position and velocities are 

evaluated by Eq. (20) and (21): 

 

 

s the whole iteration 

If the algorithm finished an epoch without over 

fitting the next epoch will continue from the last 

valid epoch and the network 

weights will be the last known valid weights. 

The overall ANC structure is shown in Fig. 4, 

of two feedback control 

loops; external feedback KNC controller to generate the 

control velocity signals, that will track the desired 

trajectories, while the second loop is the internal control 

loop that will represent the DNC feedback loop that is 

ed to improve the controller robustness against 

parameters uncertainty and time variations. 

For the purpose of checking the wheeled MR 

tracking performance, we have assumed that the mobile 

robot parameters are changing randomly as shown in 

MSE of the MR position and velocities are 
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Table 2: Dynamic parameters time variations 

Parameters nominal values

b (m) 0.04 m

pl (m) 0.15 m
r (m) 0.033 m

m (kg) 0.575kg

 
Table 3: Velocities trajectories 

t 0 ≤ s ≤ 157.2 

157.3 ≤ s ≤ 300 

 

 

Fig. 5: First epoch SFS training algorithm, KNC

 e11� =  �f ve�� + e�� + ef�   

 e11d = �� v(d: − d)� + (_: − _)
 

The desired velocities generated for the path 
tracking are shown in the Table 3. 

The desired posture will be found integrating Eq. 
(19).  
 

RESULTS AND DISCUSSION
 

The SFS algorithm first training epoch for KNC 
and DNC are shown in Fig. 5 and 6. 

After 10 training epochs without overfitting

KNC we have recorded maximum MSE of 0.00019 for 

the linear velocity while 0.40611 for the angular 

velocity, the average angular and linear

was 0.2031 which is relatively high MSE, due to the 

large set of training input sets, the average testing MSE 

was 0.203. For the second DNC network, we have 

recorded 2.31e-10 MSE for the left torque signal and 

2.09e-10 for the right torque signal, the average MSE of 

both torques was equal 2.2e-10 with testing average 

MSE of 2.174e-10. This very low value actually is due 

 

 

Appl. Sci. Eng. Technol., 13(11): 871-878, 2016 

 

876 

nominal values Maximum values 

0.04 m 0.14 m 

0.15 m 0.5 m 
0.033 m 0.093 m 

0.575kg 3 kg 

vd wd 0.05(1 − cos w3s10x) 0.05
0.05(1 − cos (3s10)) −0.

 

Fig. 5: First epoch SFS training algorithm, KNC 

            (20) 

)�                  (21) 

The desired velocities generated for the path 

The desired posture will be found integrating Eq. 

DISCUSSION 

The SFS algorithm first training epoch for KNC 

overfitting of the 

KNC we have recorded maximum MSE of 0.00019 for 

the linear velocity while 0.40611 for the angular 

linear velocities MSE 

was 0.2031 which is relatively high MSE, due to the 

large set of training input sets, the average testing MSE 

was 0.203. For the second DNC network, we have 

10 MSE for the left torque signal and 

10 for the right torque signal, the average MSE of 

10 with testing average 

10. This very low value actually is due 

to the tiny torque signals that have amaximum

0.0001 N.m. The mobile robot position MS

velocities MSE (Errv) are shown in Fig. 7 and 8.

The velocity and the position MSE for the MR with 

nominal parameters without time-varying

varying parameters are less than 4-

the real and desired x-y trajectories tracking.

 

CONCLUSION

 

In this study we have proposed an inverse ANC 

trajectory tracking wheeled MR that consists of two 

subs NNs; KNC and DNC using two internal and 

external feedback loops; the internal DNC feedback 

loop will make the robot more robust against 

parameters uncertainty and parameter time variations, 

the second external KNC was responsible

the desired angular and linear velocities of the WMR 

and hence the posture X, Y and <. We have

of NNs using a recently proposed meta

population based SFS algorithm, applying 10 iteration

epochs each with 1000 maximum iterations for both of 

networks. We have used as minimum as possible 

hidden processing neurons, getting the higher

Minimum values 

0 m 

0.1 m 
0.023 m 

0.25 kg 

 

05(1 − cos w2s10x) 

.05(1 − cos (2s10)) 

have amaximum value of 

0.0001 N.m. The mobile robot position MSE (Errp), 

) are shown in Fig. 7 and 8. 

The velocity and the position MSE for the MR with 

varying and the time 

-03. Figure 9 shows 

y trajectories tracking. 

CONCLUSION 

In this study we have proposed an inverse ANC 

trajectory tracking wheeled MR that consists of two 

NNs; KNC and DNC using two internal and 

external feedback loops; the internal DNC feedback 

more robust against 

parameters uncertainty and parameter time variations, 

the second external KNC was responsible for tracking 

angular and linear velocities of the WMR 

. We have trained both 

of NNs using a recently proposed meta-heuristic 

population based SFS algorithm, applying 10 iteration 

epochs each with 1000 maximum iterations for both of 

orks. We have used as minimum as possible 

processing neurons, getting the higher
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Fig. 6: First epoch SFS training algorithm, DNC

 

 
Fig. 7: Mobile robot Errp MSE 

 

 

Fig. 8: Mobile robot Errv MSE 
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Fig. 6: First epoch SFS training algorithm, DNC 
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Fig. 9: X-Y trajectory tracking 

 

possible performance. Figure 7 and 8 show the position 

and velocity MSE, from these figures we notice that the 

controller succeeded in tracking the MR under fixed 

nominal parameters values and with dynamic 

parameters time variation. The ANC performance 

generally doesn't affected by the parameters variation 

even when some parameters have been increased by 

more than 400%. Therefore this controller has shown a 

great performance against parameters variation with 

only 8 hidden neurons for both KNC and DNC and 

without any over fitting during data training process 

using the SFS algorithm due to the used techniques to 

observe the training and testing data at the same time. 

Since the training was offline and have been carried 

only once (10 epochs), we haven’t need mo

therefore, we haven’t take the SFS processing time into 

consideration. 
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