
Research Journal of Applied Sciences, Engineering and Technology 13(11): 871-878, 2016

DOI:10.19026/rjaset.13.3429

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2016 Maxwell Scientific Publication Corp.

Submitted: October 4, 2016 Accepted: November 15, 2016 Published: December 05, 2016

Corresponding Author: Firas R. Mahdi, Electrical Engineering Department, University of Technology, Baghdad, Iraq
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

871

Research Article

Trajectory Tracking Controller of Mobile Robot under Time Variation Parameters based

on Neural Networks and Stochastic Fractal Algorithm

Hanan A.R. Akar and Firas R. Mahdi

Electrical Engineering Department, University of Technology, Baghdad, Iraq

Abstract: This study suggests an adaptive Artificial Neural Network (ANN) controller that based on Stochastic

Fractal Search algorithm (SFS), the purpose of the Adaptive Neural Controller (ANC) is to track a proposed

velocities and path trajectory with the minimum required error, in the presence of mobile robot parameters time

variation and dynamical system model uncertainties. The proposed ANC will consist of two sub-neural controllers;

the Kinematic Neural feedback Controller (KNC) and the Dynamic Neural feedback Controller (DNC). The external

feedback kinematic neural controller is responsible for generating velocity tracking signals that track the mobile

robot linear and angular velocities depending on the robot posture error and the desired velocities, while the internal

dynamic neural controller is used to enhance the mobile robot against parameters uncertainty, parameters time

variation and disturbance noise. The stochastic fractal search algorithm is a Metaheuristic Optimization Algorithm

(MOA) that has been used to optimize the Neural Networks (NNs) weight connections to has the behavior of an

adaptive nonlinear trajectory tracking controller of a differential drive wheeled mobile robot. The proposed

controller has the capability to prepare an appropriate dynamic control left and right torque signals to drive various

mobile robot platforms using the same offline optimized weight connections. Metaheuristic optimization algorithms

have been used due to theirs unique characteristics especially theirs free of derivative, ability to optimize discretely

and continuous nonlinear functions and their ability to get rid of local minimum solution trapping.

Keywords: Artificial neural networks, meta-heuristic algorithms, mobile robot, stochastic fractal search, trajectory

tracking controller

INTRODUCTION

Since the first launch of the Artificial Neural

Networks (ANNs) and they have been used in many life
fields and applications such as; image and signal
processing (Lee and Kipke, 2006), systems
identification (Kim et al., 1994), robotic control (De
Sousa Junior and Hemerly, 2000), classification and
clustering of data pattern sets. The ANNs have the
ability to approximate any nonlinear model by using
parallel computation techniques (Hines, 1996). One of
the major topics related to the ANNs theory is the
learning process of the Neural Networks (NNs). Many
algorithms have been used for the learning purpose, one
of the most famous and well-known algorithms is the
error back propagation algorithm, which has been
extensively used for the NNs learning purpose.
However, this algorithm appears to be suffering from
several problems such as easy being trapped into local
minimum solution and its low convergence speed (Gori
and Tesi, 1992). Many papers have been made to
develop the performance of the back propagation
algorithm, while other have just left this concept and

migrate to other types of algorithms that called
Metaheuristic Optimization Algorithms (MOA)
(Siddique and Tokhi, 2001; Rakitianskaia and
Engelbrecht, 2009; Bai and Xiong, 2009) especially in
the training phase of the NNs.

The neural based controllers of the robotic systems
have been gained a great significance in the few recent
years. These networks were recommended for their
learning ability, intelligent, adaptive behavior and their
high performance. An intelligent Mobile Robots (MRs)
have become an exciting choice for many scientific
types of research and industrial applications. Therefore,
a lot of care have been spent to enhance and introduce
new controllers, especially in the adaptive field and
artificial intelligence.

This study suggests an Adaptive Neural Controller
(ANC), that's trained offline using a MOA, called
Stochastic Fractal Search algorithm (SFS) (Salimi,
2015) that is motivated by the development of regular
phenomenon, inspired from the fractal mathematical
idea and from the diffusion feature that seen often in
random. The used controller tracks the desired
trajectory of a differential drive mobile robot. This

Res. J. Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

872

controller will be applied to the wheeled mobile robotin
the presence of parameters time variation and
uncertainties using the same fixed trained weight.

MATERIALS AND METHODS

Adaptive neural controller has been proposed by

this study to track a desired designed trajectory, in

which the NN has been trained using a recently

proposed MOA called SFS algorithm due to its free

derivative, faster convergence and ability to escape

local minima solution. The proposed controller has the

ability to track the trajectory in the presence of noise

and parameters time variation also it could be applied to

multiple mobile robot platforms with the same fixed

optimized weights.

Stochastic Fractal Search (SFS) algorithm: Is a

population-based metaheuristic algorithm motivated

from the development of regular phenomenon, that uses

fractal mathematical concept and the diffusion feature

that seen regularly in random. SFS algorithm uses two

chief procedures for problem optimization which are:

Diffusing and the appraising processes. The diffusing

process is in charge for exploitation feature that raises

the chance of an agent to catch the global minimum

solution and also prevent an agent from being stacked

into a locallyoptimal solution. A statically diffusion

process is considered, which means that the best agent

of the diffusing process is the only agent that will be

taken into concern, while other agents are rejected. On

the other hand, The appraising process is random

approaches that lead to an exploration feature. The

Gaussian walks in the diffusion process have been

shown by:

 ��� = �����	 , � + (���� − ����) (1)

 ��� = �(��	, �) (2)

 � = ����(�)� (�� − ��)� (3)

where, �� and �� = Two random numbers ∈ [0,1] �� = The best solutionagent �� = Anagent in the population �(��, �) = The Gaussian distribution function with

mean (mn) and standard deviations (�).

 ���	 , ��	are equal to �� and �� respectively, k is

the iteration number,
!"#(�)� is used to reduce Gaussian

jumps size. When all points are randomly initialized,
each agent fitness is calculated and the best-obtained

agent (��) is evaluated. For the purpose of the search
space exploitation in the diffusion process, all agents in
the population most move around their current location.

Two statistical procedures expected to increase the
exploration of the search space; the first procedure acts
on each different vector index; while the second
procedure applied to all agents. During the first
statistical procedure, all agents are ranked with respect
to the fitness of the agents, then these agents will be
given a probability value that follows a simple
distribution as shown in Eq. (4):
 �	� = $%&�(')	"	(�) (4)

Equation (4) shows that the better point has the

better probability. Where popsize is the population size
of the algorithm. Therefore, it is used to raise the
chance of varying the position of agents which have got

a bad fitness solution. The l
th

 component of ��agent, is
updated according to Eq. (5) if the following condition �	� < � is true, where a is a random number ∈ [0, 1],

else it remains unchanged:
 ���+�(,) = �(�(,) − �(�-�(,) − �� �(,)) (5)

where, �(and �- are two random agents in the
population.

In the second statistical procedure, all agents
obtained from (5) will be ranked as in (4), if the

condition �	� < �is true again but for ���+�, the recent ���+�is updated based on Eq. (6) and (7), otherwise no

change occurs:
 ��& = ���+� − .(�(�+� − ��) /01 . ≤ 0.5 (6)

 ��& = ���+� + .��-5+� − �(5+� /01 . > 0.5 (7)

where, �(�+� and �-�+� are two random agents selected

from the first statistical procedure and . is a random

number formed by Gaussian distribution. ���+� will be

changed by agent ��& if it has better solution fitness
(Salimi, 2015). Table 1 will show the general SFS
pseudo code.

SFS Optimizing NN weights: As we have seen in the
last section, SFS algorithm has madea random
population of agents in the search space as the first step

toward optimization. The agents, in general, ∈ 7	"	(�)8∗:�;. The role of SFS algorithm is firstly; To
bound and check the candidate solutions in the
population, then update the solutions in an iteration
process to get the best fitness solution. However, for
supervised training NNs the objective function is the
Mean Square Error (MSE) function, so that when the
weights of the network is fully optimized we will get
very minimum or zero MSE.

In order to make the SFS algorithm as a supervised
NN learning algorithm, we have considered that the
input and hidden layers weights of the NNs are the
agent vector in the population, where each agent

Res. J. Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

873

Table 1: General SFS pseudo code

1: InitializeSFS algorithm random population and parameters.

2: While not (best solution is foundor maximum number of
iteration reached)

3: Fori=1 : popsize
4: For m = 1 to maximum diffusion number
5: Create a new agent based oneq. (1) and (2).
6: End
7: End
8: Use eq. (4) to rank population agents
9: For i=1:popsize
10: For each l in ��
11: If �	� < � for �� then

12: Use (5) to modify lthagent
13: Else
14: Keep ��unchanged
15: End if
16: End
17: Use (4) to rank agents of thepopulation.
18: For each ���+� in the population
19: If �	� < � for ���+�then

20: Modify ���+� according to (6) and (7)
21: Else
22: Keep ���+�without modification.
23: End if
24: End
25: End
26: Loop while.

Fig. 1: Differential drive wheeled MR geometrical structure

signifies a candidate weight solution, the purpose of
this agent weights vector is to minimize the objective
MSE function of the NN. The weights will be bounded
between the minimum and maximum search space
values. The iteration process will last for a number of
epochs (cycle) where each epoch represents a number
of iteration process, the original weights will be
initialized randomly in the first epoch, while in the next
epoch the weights will be the best-obtained agent
weights obtained from the last epoch. For stopping
iteration criteria, we have put three conditions; if an
agent converged to the best solution, or if an over
fitting occurred during iteration, or if the maximum
number of epochs are reached.

Differential drive wheeled MR modeling: For the
kinematic and dynamic MR modeling, we have
supposed the model proposed by Fukao et al. (2000).

Figure 1 shows a general differential drive wheeled MR
geometrical structure, in which the point B represents
the central point between the driver wheels, b is the
straight distance between the center of gravity A and
the wheel axis. The MR position will be described by ρ
= [X, Y, <]

T
, where X and Y are the axis of point A. <

is the mobile robot steering rotation angle. The MR
kinematic model is given by Eq. (8-10):
 => = ?(=)@ (8)

where, @=[@r, @l]

T
, are the right and left wheels

angular velocities:

?(=)=

AB
BC

$� cos (<) $� cos (<)$� GH� (<) $� GH� (<)$� I − $� I JK
KL (9)

@ = M�$ �$�$ − �$
N O (10)

where, O = [v, w]

T
, are the linear and angular velocities

of the wheeled MR.
Substituting Eq. (9) and (10) in (8) we obtain the

kinematic system model equations of the differential
drive robot in terms of linear and angular velocities as
shown in Eq. (11):

=> = PQ0G (<) 0GH� (<) 00 1R O (11)

For non-slipping and pure rolling condition the

non-holonomic constraint will be shown in Eq. (12)
(Fierro and Lewis, 1998):
 S>GH �(<) − T> Q0 G(<)= 0 (12)

Let m be the mass of the robot platform, mm the
mass of the wheel and motor, I the moment of inertia of
the robot platform about the perpendicular axis over B,
Im the wheel and motor moment of inertia around the
wheel axis and Ii is the wheel and motor moment of
inertia around the wheel diameter. The dynamic robot
model is represented by Eq. (13-18) as follow:
 U(=)O> + V(=, =>)O = W(=)X (13)

where, X = [Xr, Xl] stand for the right and left torques
applied on the wheels, while M, N, B are represented
by:
 U(=) =
M $Y

Z:Y (�[\� +][) +]; $Y
Z:Y (�[\� −][)

$Y
Z:Y (�[\� −][) $Y

Z:Y (�[\� +][) +];)N (14)

Res. J. Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

874

Fig. 2: The DNC training phase

V(^, ^>) = M 0 $Y
�: (�_)

− $Y
�: (�_) 0 N (15)

 W = `1 00 1a (16)

where It, mt represent the total moment of inertia and

the total mobile robot mass shown in Eq. (17 and 18).

][= �\� +] + 2�;I� + 2]� (17)

 �[= �+2�; (18)

THE PROPOSED ANC

This study trying to develop a trajectory tracking

controller based on NNs that has been optimized using

SFS algorithm for the differential drive MR of the Fig.

1. We have assumed that there is uncertainty in the

dynamic system model. Furthermore, distance b,

platform mass m, wheel radius r and the platform width

plare all varying with time. After we have finished the

NN training phase, we assumed the controller will be

tough against parameters variation and will track the

proposed trajectory at the dynamical and kinematic

controller levels.

If we suppose that there is a predefined desired

trajectory given by Eq. (19):

=:> = PQ0G (<:) 0GH� (<:) 00 1R O: (19)

where, =: = [S: , T: , <:]c,O: = [d: , _:]. The error

between the desired and actual pose in the local robot

frame are given by:

Pe�e�ef
R = g Ph�h�hfR = P cos (<) sin (<) 0−sin (<) cos (<) 00 0 1R PS: − ST: − T<: − <R

 (20)

The control inputs VandW which make E1, E2, E3

converge to zero are given by Eq. (21) (Kolmanovsky

and McClamroch, 1995):

 ` kla = mcos (ef) 0noe� 1p `d:_:a + m nqe�nrsin (ef)p (21)

where, kx, ky, k<> 0, represent positive constants.

The DNC is designed to learn the collected

input/output data from the dynamic model system Eq.

(13-18) and learns the torque signals which will transfer

the MR from velocity at time (t) to upcoming (t+1)

velocity. The DNC offers, after a good training, an

adaptive performance with fixed trained weight

connections. However, we have to train the DNC for all

possible parameters variation combinations of the

dynamical model, especially the values b, m, pl and r.

Figure 2 will show the DNC training phase block

diagram.

The robot nominal values are proposed as follow; r

= 0.033 m, m = 0.575 kg, pl = 0.15 m, b = 0.04 m.

While for the training of the DNC purpose, we have

assumed that m varied between the values [0.45, 1.2]

kg, the distance b is varied in the interval of [0.03, 0.1]

m, pl varied in between [0.12, 0.2] m, r will be varied

between [0.03, 0.07] m. The training torques input data

sets are proposed randomly uniformly distributed in

between [-0.01, 0.01] N.m. On the other hand, the KNC

is proposed to learn the behavior of the back stepping

feedback controller system Eq. (21) and to raise its

robustness against disturbance position data. For the

purpose of training the KNC, A random trajectory ρr

was created and a noisy data having zero mean and 0.01

variation level Gaussian distributed was added to the

training data. The training input data of the KNC were

the randomly created trajectory reference velocities and

the error between the random trajectory and the

kinematic model trajectory output plus the noisy

Gaussian distributed data. Figure 3 shows the KNC

training phase block diagram.

We have generated 10,000 samples data sets, these

patterns data sets are divided into two sub-data; 5000

Res. J. Appl. Sci. Eng. Technol.,

Fig. 3: The KNC training phase

Fig. 4: Overall ANC block diagram

sets have been taken for the training purpose, while the

other 5000 sets have been taken for the testing of the

trained network. The used NNs architecture for both

internal DNC and the external KNC

single hidden layer with 4 hidden processing neurons

and 2 output neurons. The DNC has 4 input neurons for

the desired and real velocities, while KNC has 5 input

neurons for the random reference velocities and the

error posture with disturbance. The synaptic weights

connections were randomly initialized between [

+1]. Linear identity activation function has been

proposed for both input and hidden layers. We have

used 10 training epochs (cycle) for both DNC and

KNC, each epoch has 1000 maximum iterations

and 30 agents population size (popsizes

algorithm will stop the iterations according to three

proposed stopping conditions which are:

• If any agent converged to the predefined global

error value, which is zero MSE in our

• When the testing MSE exceeds the training MSE

by10% of its value.

Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

875

sets have been taken for the training purpose, while the

other 5000 sets have been taken for the testing of the

trained network. The used NNs architecture for both

internal DNC and the external KNC consisted of the

single hidden layer with 4 hidden processing neurons

. The DNC has 4 input neurons for

the desired and real velocities, while KNC has 5 input

neurons for the random reference velocities and the

bance. The synaptic weights

connections were randomly initialized between [−1,

+1]. Linear identity activation function has been

proposed for both input and hidden layers. We have

) for both DNC and

ximum iterations (mit)

popsizes), the SFS

algorithm will stop the iterations according to three

proposed stopping conditions which are:

If any agent converged to the predefined global

error value, which is zero MSE in our case.

When the testing MSE exceeds the training MSE

• When the algorithm completes the whole iteration

epochs.

If the algorithm finished an epoch without over

fitting the next epoch will continue from the last

reached point of the last valid epoch and the network

weights will be the last known valid weights.

The overall ANC structure is shown in Fig. 4,

where it commonly consists of two feedback control

loops; external feedback KNC controller to generate the

control velocity signals, that will track the desired

trajectories, while the second loop is the internal control

loop that will represent the DNC feedback loop that is

designed to improve the controller robustness against

parameters uncertainty and time variations.

For the purpose of checking the wheeled MR

tracking performance, we have assumed that the mobile

robot parameters are changing randomly as shown in

the Table 2.

The MSE of the MR position and velocities are

evaluated by Eq. (20) and (21):

s the whole iteration

If the algorithm finished an epoch without over

fitting the next epoch will continue from the last

valid epoch and the network

weights will be the last known valid weights.

The overall ANC structure is shown in Fig. 4,

of two feedback control

loops; external feedback KNC controller to generate the

control velocity signals, that will track the desired

trajectories, while the second loop is the internal control

loop that will represent the DNC feedback loop that is

ed to improve the controller robustness against

parameters uncertainty and time variations.

For the purpose of checking the wheeled MR

tracking performance, we have assumed that the mobile

robot parameters are changing randomly as shown in

MSE of the MR position and velocities are

Res. J. Appl. Sci. Eng. Technol.,

Table 2: Dynamic parameters time variations

Parameters nominal values

b (m) 0.04 m

pl (m) 0.15 m
r (m) 0.033 m

m (kg) 0.575kg

Table 3: Velocities trajectories

t 0 ≤ s ≤ 157.2

157.3 ≤ s ≤ 300

Fig. 5: First epoch SFS training algorithm, KNC

 e11� = �f ve�� + e�� + ef�

 e11d = �� v(d: − d)� + (_: − _)

The desired velocities generated for the path
tracking are shown in the Table 3.

The desired posture will be found integrating Eq.
(19).

RESULTS AND DISCUSSION

The SFS algorithm first training epoch for KNC
and DNC are shown in Fig. 5 and 6.

After 10 training epochs without overfitting

KNC we have recorded maximum MSE of 0.00019 for

the linear velocity while 0.40611 for the angular

velocity, the average angular and linear

was 0.2031 which is relatively high MSE, due to the

large set of training input sets, the average testing MSE

was 0.203. For the second DNC network, we have

recorded 2.31e-10 MSE for the left torque signal and

2.09e-10 for the right torque signal, the average MSE of

both torques was equal 2.2e-10 with testing average

MSE of 2.174e-10. This very low value actually is due

Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

876

nominal values Maximum values

0.04 m 0.14 m

0.15 m 0.5 m
0.033 m 0.093 m

0.575kg 3 kg

vd wd 0.05(1 − cos w3s10x) 0.05
0.05(1 − cos (3s10)) −0.

Fig. 5: First epoch SFS training algorithm, KNC

 (20)

)� (21)

The desired velocities generated for the path

The desired posture will be found integrating Eq.

DISCUSSION

The SFS algorithm first training epoch for KNC

overfitting of the

KNC we have recorded maximum MSE of 0.00019 for

the linear velocity while 0.40611 for the angular

linear velocities MSE

was 0.2031 which is relatively high MSE, due to the

large set of training input sets, the average testing MSE

was 0.203. For the second DNC network, we have

10 MSE for the left torque signal and

10 for the right torque signal, the average MSE of

10 with testing average

10. This very low value actually is due

to the tiny torque signals that have amaximum

0.0001 N.m. The mobile robot position MS

velocities MSE (Errv) are shown in Fig. 7 and 8.

The velocity and the position MSE for the MR with

nominal parameters without time-varying

varying parameters are less than 4-

the real and desired x-y trajectories tracking.

CONCLUSION

In this study we have proposed an inverse ANC

trajectory tracking wheeled MR that consists of two

subs NNs; KNC and DNC using two internal and

external feedback loops; the internal DNC feedback

loop will make the robot more robust against

parameters uncertainty and parameter time variations,

the second external KNC was responsible

the desired angular and linear velocities of the WMR

and hence the posture X, Y and <. We have

of NNs using a recently proposed meta

population based SFS algorithm, applying 10 iteration

epochs each with 1000 maximum iterations for both of

networks. We have used as minimum as possible

hidden processing neurons, getting the higher

Minimum values

0 m

0.1 m
0.023 m

0.25 kg

05(1 − cos w2s10x)

.05(1 − cos (2s10))

have amaximum value of

0.0001 N.m. The mobile robot position MSE (Errp),

) are shown in Fig. 7 and 8.

The velocity and the position MSE for the MR with

varying and the time

-03. Figure 9 shows

y trajectories tracking.

CONCLUSION

In this study we have proposed an inverse ANC

trajectory tracking wheeled MR that consists of two

NNs; KNC and DNC using two internal and

external feedback loops; the internal DNC feedback

more robust against

parameters uncertainty and parameter time variations,

the second external KNC was responsible for tracking

angular and linear velocities of the WMR

. We have trained both

of NNs using a recently proposed meta-heuristic

population based SFS algorithm, applying 10 iteration

epochs each with 1000 maximum iterations for both of

orks. We have used as minimum as possible

processing neurons, getting the higher

Res. J. Appl. Sci. Eng. Technol.,

Fig. 6: First epoch SFS training algorithm, DNC

Fig. 7: Mobile robot Errp MSE

Fig. 8: Mobile robot Errv MSE

Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

877

Fig. 6: First epoch SFS training algorithm, DNC

Res. J. Appl. Sci. Eng. Technol.,

Fig. 9: X-Y trajectory tracking

possible performance. Figure 7 and 8 show the position

and velocity MSE, from these figures we notice that the

controller succeeded in tracking the MR under fixed

nominal parameters values and with dynamic

parameters time variation. The ANC performance

generally doesn't affected by the parameters variation

even when some parameters have been increased by

more than 400%. Therefore this controller has shown a

great performance against parameters variation with

only 8 hidden neurons for both KNC and DNC and

without any over fitting during data training process

using the SFS algorithm due to the used techniques to

observe the training and testing data at the same time.

Since the training was offline and have been carried

only once (10 epochs), we haven’t need mo

therefore, we haven’t take the SFS processing time into

consideration.

REFERENCES

Bai, K. and J. Xiong, 2009. A method of improved BP

neural algorithm based on simulated

algorithm. Proceeding of the 3rd International

Conference on Genetic and Evolutionary

Computing (WGEC '09). Guilin, pp: 765

De Sousa Junior, C. and E.M. Hemerly, 2000. Neural

network-based controllers for mobile

robot. Proceeding of the 6th Brazilian Symposium

on Neural Networks. Rio de Janeiro, pp: 50

Fierro, R. and F.L. Lewis, 1998. Control of a

nonholonomic mobile robot using neural networks.

IEEE T. Neural Networ., 9(4): 589

Fukao, T., H. Nakagawa and N. Adachi, 2000.

Adaptive tracking control of a nonholonomic

mobile robot. IEEE T. Robotic. Autom.

609-615.

Appl. Sci. Eng. Technol., 13(11): 871-878, 2016

878

possible performance. Figure 7 and 8 show the position

and velocity MSE, from these figures we notice that the

controller succeeded in tracking the MR under fixed

nominal parameters values and with dynamic

parameters time variation. The ANC performance

erally doesn't affected by the parameters variation

even when some parameters have been increased by

more than 400%. Therefore this controller has shown a

great performance against parameters variation with

only 8 hidden neurons for both KNC and DNC and

thout any over fitting during data training process

using the SFS algorithm due to the used techniques to

observe the training and testing data at the same time.

Since the training was offline and have been carried

only once (10 epochs), we haven’t need more training

therefore, we haven’t take the SFS processing time into

Bai, K. and J. Xiong, 2009. A method of improved BP

neural algorithm based on simulated annealing

3rd International

Genetic and Evolutionary

Guilin, pp: 765-768.

e Sousa Junior, C. and E.M. Hemerly, 2000. Neural

based controllers for mobile

of the 6th Brazilian Symposium

Rio de Janeiro, pp: 50-55.

ro, R. and F.L. Lewis, 1998. Control of a

nonholonomic mobile robot using neural networks.

, 9(4): 589-600.

Fukao, T., H. Nakagawa and N. Adachi, 2000.

Adaptive tracking control of a nonholonomic

IEEE T. Robotic. Autom., 16(5):

Gori, M. and A. Tesi, 1992. On the

minima in backpropagation. IEEE T. Pattern Anal.

14(1): 76-86.

Hines, J.W., 1996. A logarithmic neural network

architecture for unbounded

approximation. Proceeding

International Conference on Neural Networks.

Washington, DC, 2: 1245-1250.

Kim, S.W., S.G. Hong, T.D. Ohm and J.J. Lee, 1994.

Neural network identification and control of

unstable systems using supervisory con

learning. Proceeding of the

Conference on Neural Networks and IEEE World

Congress on Computational Intelligence.

FL, 4: 2500-2505.

Kolmanovsky, I. and N.H. McClamroch, 1995.

Developments in nonholonomic control problems.

IEEE Contr. Syst., 15(6): 20-36.

Lee, J. and D. Kipke, 2006. Neural signal processing

using discrete wavelet transform fo

interfaces. Proceeding of the

Conference on Microtechnologies in Medicine and

Biology. Okinawa, pp: 169-172.

Rakitianskaia, A. and A.P. Engelbrecht, 2009. Training

neural networks with PSO in d

environments. Proceeding of the

Evolutionary Computation (CEC’09).

pp: 667-673.

Salimi, H., 2015. Stochastic fractal search: A powerful

metaheuristic algorithm. Knowl

18.

Siddique, N. and M.O. Tokhi, 2001. Training neur

networks: Backpropagation vs

algorithms. Proceeding of the International Joint

Conference on Neural Networks (IJCNN '01).

Washington, DC, 4: 2673-2678

Gori, M. and A. Tesi, 1992. On the problem of local

IEEE T. Pattern Anal.,

Hines, J.W., 1996. A logarithmic neural network

architecture for unbounded non-linear function

 of the IEEE

International Conference on Neural Networks.

1250.

Kim, S.W., S.G. Hong, T.D. Ohm and J.J. Lee, 1994.

Neural network identification and control of

unstable systems using supervisory control while

of the IEEE International

Conference on Neural Networks and IEEE World

Congress on Computational Intelligence. Orlando,

and N.H. McClamroch, 1995.

Developments in nonholonomic control problems.

36.

Lee, J. and D. Kipke, 2006. Neural signal processing

using discrete wavelet transform for neural

of the International

Conference on Microtechnologies in Medicine and

172.

elbrecht, 2009. Training

neural networks with PSO in dynamic

of the IEEE Congress on

Evolutionary Computation (CEC’09). Trondheim,

Salimi, H., 2015. Stochastic fractal search: A powerful

Knowl-Based Syst., 75: 1-

Siddique, N. and M.O. Tokhi, 2001. Training neural

networks: Backpropagation vs genetic

of the International Joint

Conference on Neural Networks (IJCNN '01).

2678.

