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Abstract: Discretization is a frequently used data preprocessing technique for enhancing the performance of data 

mining tasks in knowledge discovery from clinical data. It is used to transform the real-world quantitative data into 

qualitative data. The aim of this study is to present an experimental analysis of the variation in performance of two 

trivial unsupervised discretization methods with respect to different classification approaches. Equal width 

discretization and equal frequency discretization methods are applied for four benchmark clinical datasets obtained 

from the University of California, Irvine, machine learning repository. Both the methods were applied for 

transforming quantitative attributes into qualitative attributes with three, five, seven and ten intervals. Six 

classification approaches were evaluated using four evaluation measures. From the results of this experimental 

analysis, it can be observed that there is a variation in the performance of classification algorithms. Accuracy of 

classification varies with respect to the discretization method used and also with respect to the number of intervals 

of discretization. Moreover it can be inferred that different classification approaches require different discretization 

methods. No method can be deemed to be ‘the best-suitable’ for all applications; hence the choice of an appropriate 

discretization method depends on data distribution, data interpretability, correlation, classification performance and 

domain of application. 
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INTRODUCTION 

 

Data mining is one of the emerging research areas 

in computer science and information technology. It is a 

process of extracting patterns, useful information or 

trends, from retrospective, massive and 

multidimensional data. Some application areas of data 

mining techniques for knowledge extraction include 

business, academics and medicine. Generally, clinical 

decisions on medical data are often made based on 

doctor’s perception and experience rather than on the 

knowledge hidden in the database. This might lead to 

bias, errors and excessive medical costs which affects 

the quality of service provided to patients. Therefore, 

Knowledge Discovery in Databases (KDD) is 

commonly used to improve the quality of service. 

Integration of KDD process with medical data could 

reduce medical errors, provide clinical decision support 

and improve the diagnostic process. Data mining is an 

important step in KDD and is used for various aspects 

in the medical domain such as diagnosis, prognosis and 

decision support (Christopher et al., 2015; Jane et al., 

2016; Nahato et al., 2015; Susmi et al., 2015; Sweetlin 

et al., 2016). KDD involves the process of finding and 

interpreting knowledge from data which is described by 

the following steps: 1)understanding of domain 2) data 

set selection, 3) data cleaning and preprocessing, 4) 

data reduction and projection, 5) matching the objective 

into a data mining method (association rule mining, 

classification, clustering, regression etc.,), 6) choice of 

the algorithm for pattern searching, 7) searching for 

pattern of interest (data mining),8) data interpretation 

and 9) use of the discovered knowledge (Fayyad et al., 

1996). Most prior work on KDD focuses on step 7, the 

data mining step. Data mining applications often 

involve quantitative data. However many learning 

algorithms are intended to handle qualitative data 

(Kohavi and Sahami, 1996). Algorithms that directly 

deal with quantitative data, learning is less efficient and 

less effective (Richeldi and Rossotto, 1995). In many 



 

 

Res. J. Appl. Sci. Eng. Technol., 14(2): 67-72, 2017 

 

68 

machine learning techniques we need to transform such 

quantitative data into qualitative data. This process is 

called data discretization. Data discretization refers to 

partitioning the data into discrete set of intervals. Each 

interval is treated as a category.  

Data discretization simplifies the original data and 

also improves the efficiency of prediction. It has several 

advantages in machine learning and data mining tasks. 

In particular, it increases the understandability of the 

classification models that uses rule sets (Liu et al., 

2002; Fu, 2011). It also reduces the computation time 

needed for processing the continuous data by dividing 

data into reduced set of intervals (Mittal and Cheong, 

2002). Maslove et al. (2013) have evaluated six 

discretization methods: two supervised methods 

(minimum descriptive length-based and ChiMerge), 

three unsupervised methods (equal width, equal 

frequency and K-means) and one method specific to 

clinical data with both supervised and unsupervised 

components (reference range based). They have 

examined the impact of discretization on three 

evaluation parameters: accuracy, consistency and 

simplicity. To evaluate the six discretization methods 

for accuracy, each of the discretization methods are 

examined with decision tree and naïve-bayes 

classification approach. They have evaluated the 

discretization methods for consistency by deriving the 

inconsistency count for each discretization experiment. 

For evaluating simplicity, they count the number of 

nodes in each decision tree generated by each of the 

discretization methods. For the evaluation of 

discretization methods, they use both laboratory data 

and physiologic data derived from adult patients in the 

intensive care unit. From the result, they observed that 

supervised methods were more accurate than 

unsupervised. Among the supervised methods, equal 

frequency and K-means performed well.  

Yang and Webb (2009) have proved that 

discretization is an effective technique for probability-

based learning. In their study it was inferred that, the 

effectiveness of discretization in naïve-bayes learning 

has impact on the performance of naïve-bayes 

classifiers. They make use of classification error as a 

performance measure for naïve-bayes classifier. In 

order to minimize the classification error, they analyze 

two factors with respect to discretization: 1) Decision 

boundaries and 2) the error tolerance of probability 

estimation for each quantitative attribute. From the 

analysis    they     conclude    that     discretization   with  

these factors can affect the classification bias and 

variance of the classifiers. The effects are named as 

discretization bias and discretization variance. To 

manage the discretization bias and variance, they use 

the concepts called interval frequency and interval 

number. Moreover, they propose two efficient 

unsupervised discretization methods called proportional 

discretization and fixed frequency discretization for 

managing discretization bias and variance. They 

evaluate these two methods against four discretization 

methods for naïve-bayes classifier on 29 benchmark 

datasets from UCI machine learning repository. The 

results have demonstrated that the new proposed 

discretization methods reduce naïve-bayes classification 

error when compared to current established 

discretization methods. 

This study focuses on two unsupervised 

discretization techniques: Equal width Discretization 

and Equal Frequency Discretization. Continuous-valued 

attributes are discretized into several intervals and the 

classification performances of five classification 

approaches are analyzed. The novel observations and 

findings of the experimental analysis can serve as 

guiding principles for preprocessing of clinical data.  

 

MATERIALS AND METHODS 

 

The clinical datasets used in this experimental 

study were selected from the University of California 

Irvine (UCI) Machine Learning repository. Datasets 

which contain categorical, discrete and continuous data 

were chosen. The list of datasets is presented in Table 

1. The description about the Cleveland Heart Disease 

(CHD) dataset, Chronic Kidney Disease (CKD) dataset, 

Pima Indians Diabetes (PID) dataset and BUPA Liver 

Disorder (BLD) dataset are presented in Table 2 to 5 

respectively. In particular, the PID dataset consists the 

details of 768 Pima Indian Women.  

The continuous-valued attributes in these datasets 

were discretized using Equal width discretization and 

equal frequency discretization methods. The former 

method divides the continuous-valued feature 'f ' into k 

intervals of equal width, where k is a user-defined 

parameter. Thus each interval has a width (w), where w 

= (max-min) /k and interval boundaries are min+w, 

min+2w, ... , min+(k-1)w. The latter method divides the 

range of continuous-valued feature into k equally sized 

bins. Each interval contains approximately same 

number of    instances,     where   k   is  a    user-defined  

 
Table 1: Datasets used 

Dataset  Number of instances Number of features 

Pima Indians Diabetes (PID) 768 9 

BUPA Liver  Disorder (BLD) 345 7 

Cleveland Heart Disease (CHD) 303 76 

Chronic Kidney Disease (CKD) 400 25 
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Table 2: Description ofcleveland heart disease dataset  

Attribute name Description Type Range 

Age Age of  the person Discrete 29-77 

Sex Sex of the person Categorical 0-1 

Cp Chest pain type Categorical 1-4 

Trestbps Resting blood pressure Continuous 94-200 

Chol Serum cholestoral Continuous 126-564 

Fbs Fasting blood sugar Categorical 0-1 

Restecg Resting electrocardiographic results Categorical 0-2 

Thalach Maximum heart rate achieved Continuous 71-202 

Exang Exercise induced angina Categorical 0-1 

Oldpeak ST depression induced by exercise relative to rest Continuous 0-6.2 

Slope The slope of the peak exercise ST segment Categorical 1-3 

Ca Number of major vessels (0-3) colored by flourosopy Categorical 0-3 

Thal Defect types Categorical 3-7 

Class Presence /Absence of heart disease Categorical 0-4 

 
Table 3: Description of chronic kidney disease dataset 

Attribute name Description Type Range 

Age Age in years Discrete 12-90 

Bp Blood pressure Continuous 50-180 

Sg Specific gravity Categorical 1.005, 1.010, 1.015, 1.020, 1.025 

Al Albumin Categorical 0-5 

Su Sugar Categorical 0-5 

Rbc Red blood cells Categorical Normal, abnormal 

Pc Pus cell Categorical Normal, abnormal 

Pcc Pus cell clumps Categorical Present, not present 

Ba Bacteria Categorical Present, not present 

Bgr Blood glucose random Continuous 22-490 

Bu Blood urea Continuous 1.5-391 

Sc Serum creatinine Continuous 0.4-76 

Sod Sodium Continuous 4.5-163 

Pot Potassium Continuous 2.5-47 

Hemo Hemoglobin Continuous 3.1-17.8 

Pcv Packed cell volume Continuous 9-54 

Wc White blood cell count Continuous 2200-26400 

Rc Red blood cell count Continuous 2.1-8 

Htn Hypertension Categorical Yes, no 

Dm Diabetes mellitus Categorical Yes, no 

Cad Coronary artery disease Categorical Yes, no 

Appet Appetite Categorical Good, poor 

Pe Pedal edema Categorical Yes, no 

Ane Anemia Categorical Yes, no 

Class Presence/Absence of kidney disease Categorical ckd, notckd 

 
Table 4: Description of pima Indian diabetes dataset 

Attribute name  Description Type  Range 

Preg Number of times pregnant  Discrete 0-17 

Glucose Plasma glucose concentration a 2 h in an oral glucose tolerance test Continuous 0-199 

Bp Diastolic blood pressure  Continuous 0-122 

Skin Triceps skin fold thickness  Continuous 0-99 

Insulin 2-Hour serum insulin Continuous 0-846 

BMI Body mass index  Continuous 0-67.1 

Pedi Diabetes pedigree function Continuous 0-2.42 

Age Age of  the person Discrete 21-81 

Class Diabetes/Non-Diabetes Categorical 0-1 

 
Table 5: Description of liver disorder dataset 

Attribute name  Description Type  Range 

Mcv Mean corpuscular volume Continuous 65-103 

Alkphos Alkaline phosphotase Continuous 23-138 

Sgpt Alamine aminotransferase Continuous 4-155 

Sgot Aspartate aminotransferase Continuous 5-82 

Gammagt Gamma-glutamyltranspeptidase Continuous 5-297 

Drinks Number of half-pint equivalents of alcoholic beverages drunk per day Continuous 0-20 

Class Diagnosis of disease Categorical Present/Absent 
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parameter. Thus each interval contain n/k values, where 
'n' is the total number of instances (records) in the 
dataset. The discretized data is split into training and 
testing data. The former is used for obtaining the 
classifier using an induction algorithm and the latter is 
used for evaluating the performance of the classifier 
using performance evaluation measures. 

Cross-Validation (CV) with ‘k’ folds is a technique 

whereby the dataset ‘D’, is randomly split into k folds 

of approximately equal size. The classifier (model) is 

trained and tested k times. Each time (k-1) folds are 

used for training and the remaining one fold is used for 

testing. In classification, k-fold cross-validation is the 

best method to use for validating and selecting a 

classifier (Kohavi, 1995). Associative classifier (CBA), 

Decision tree classifier (C4.5), Support Vector Machine 

(SVM), Multi-Layer Perceptron classifier (MLP), 

Naïve Bayes classifier (NB) and k-Nearest Neighbour 

classifier (kNN) are validated (Han and Kamber, 2006). 

In this experimental study, six trivial classification 

approaches were used. Each approach differs from the 

other in two aspects: first, the induction (learning) 

algorithm used for training the classifier; and second, 

the knowledge-representation form used to represent 

the classification model. The six classification 

approaches are as follows: first, a decision tree 

classifier (Quinlan, 1986), induced (trained) using the 

C4.5 algorithm is used. The classifier (knowledge 

model) is represented in the form of a tree; second, the 

naïve Bayes classifier uses a probabilistic induction 

approach and the knowledge model is represented in the 

form of probabilistic values; third, the Class-Based 

Associative (CBA) (Liu et al., 1998) classifier uses an 

Apriori-based (Agrawal and Srikant, 1994) 

classification rule induction approach and the 

knowledge model is represented in the form of IF-

THEN associative classification rules; fourth, the 

Multilayer Perceptron (MLP) (Rosenblatt, 1958) is 

induced using a gradient descent-based 

backpropagation algorithm and the knowledge is 

represented by a trained feed-forward Neural Network; 

fifth, the Support Vector Machine (Boser et al., 1992) is 

induced using the Sequential Minimal Optimization 

(SMO) algorithm and the knowledge model is 

represented in the form of support vectors and the 

separating hyper planes; sixth, the K-NN classifier 

trained using distance-based approach and the classifier 

is represented in terms of distance measures from 

neighboring instances. The choice of a classification 

approach and an appropriate classifier depends on the 

need and purpose of the classifier for that domain of 

application. Moreover, factors such as data distribution, 

entropy of discretization may also be considered.  

In this experimental study, four performance 

evaluation measures were used. The four measures 

namely, Sensitivity, Specificity, Fmeasure and 

Accuracy differ in their evaluation focus. Sensitivity is 

used to evaluate the effectiveness of a classifier to 

identify positive labels whereas Specificity evaluates 

how effectively a classifier identifies negative labels. 

Fmeasurerelates between data’s positive labels and 

those given by a classifier based on per-class average 

and finally Accuracy evaluates the overall classification 

efficiency of the classifier. 

 

RESULTS AND DISCUSSION 

 

The evaluation of classification performance of six 

classification approaches for equal width discretization 

and equal frequency discretization is presented in Table 

6. A discussion on the observations, findings and 

important inferences are presented below. 

For the PID dataset, bayes classifier achieves the 

highest accuracy of 76.307% for EW discretization with 

7 intervals whereas the bayes classifier with 7 intervals 

for EF discretization yields 73.96%. The highest 

accuracy for EF discretization for the PID dataset is 

achieved by C4.5 algorithm (74.867%). Though 

entropy of the partitions (intervals) are proportional to 

the number of partitions, a drop in classification 

accuracy for increase in the number of partitions can be 

inferred. This accuracy-drop is due to the inter-

correlation between the attribute-subset and also the 

correlation between the attribute and the class attribute. 

A diminish in the former and a rise in the latter is 

preferred. 

A change in the choice of the attribute selection 

order or the attribute-subset, for the construction of a 

decision tree, may result in a variation in classification 

performance. For example, the highest classification 

accuracy for EF discretization, for the BLD dataset was 

achieved by the C4.5 classifier trained using 3 intervals. 

Moreover, the increase in the number of intervals 

enhanced the information gain of the individual 

attributes. But during tree construction, the attribute-

subsets for lower levels of the trees yields different 

combination of attributes; different combination of 

attributes in the attribute-subsets differ in the level of 

inter-correlation. Hence a fall in accuracy for EF 10-

interval can be observed.  

In some scenarios, as the number of intervals 

increase the number of pure partitions also increase; a 

pure partition has low entropy and hence it is a 

desirable characteristic for classification. For example, 

in the case of the CKD dataset, a drop in accuracy for 

the five-interval data can be observed. This is due to the 

disproportionate change in the number of pure 

partitions for a linear increase in the number of 

intervals.  
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Table 6: Classification performance evaluation for Equal Width (EW) and Equal Frequency (EF) discretization methods 

Dataset Method 
No. of 
Intervals 

SVM 

------------------------------------------- 

KNN 

------------------------------------------- 

C4.5 

------------------------------------------- 

*Acc Sen Spec Fmes Acc Sen Spec Fmes Acc Sen Spec Fmes 

PID EW 3 73.823 0.589 0.818 0.606 72.650 0.604 0.792 0.605 73.043 0.563 0.820 0.587 
  5 68.628 0.246 0.922 0.353 71.476 0.537 0.810 0.563 73.963 0.529 0.852 0.583 
  7 69.137 0.320 0.890 0.412 68.749 0.485 0.796 0.517 74.475 0.607 0.818 0.619 
  10 64.985 0.272 0.852 0.350 67.984 0.463 0.796 0.501 73.307 0.428 0.896 0.521 
 EF 3 73.438 0.544 0.836 0.583 68.630 0.623 0.720 0.580 75.133 0.566 0.850 0.611 
  5 70.965 0.366 0.894 0.462 72.920 0.672 0.760 0.633 74.867 0.570 0.844 0.606 
  7 66.541 0.250 0.888 0.338 69.405 0.571 0.760 0.563 73.706 0.489 0.870 0.560 
  10 63.156 0.026 0.956 0.047 66.806 0.560 0.726 0.539 72.262 0.462 0.862 0.531 

CHD EW 3 81.151 0.807 0.818 0.821 77.892 0.861 0.679 0.810 76.237 0.808 0.708 0.787 
  5 81.473 0.868 0.752 0.837 80.441 0.885 0.709 0.834 77.538 0.827 0.716 0.799 
  7 82.817 0.855 0.795 0.847 79.806 0.903 0.673 0.831 77.194 0.819 0.715 0.795 
  10 80.204 0.813 0.788 0.819 78.161 0.903 0.636 0.822 79.183 0.850 0.724 0.815 
 EF 3 82.452 0.867 0.773 0.845 80.161 0.892 0.694 0.833 77.183 0.826 0.709 0.795 
  5 79.839 0.849 0.737 0.822 80.817 0.879 0.723 0.834 77.860 0.844 0.701 0.807 
  7 79.484 0.860 0.714 0.823 77.161 0.848 0.680 0.802 77.527 0.838 0.701 0.801 
  10 75.505 0.842 0.649 0.791 82.430 0.909 0.722 0.853 78.204 0.839 0.716 0.805 

BLD EW 3 58.277 0.049 0.970 0.085 59.479 0.423 0.720 0.460 55.941 0.177 0.835 0.220 
  5 57.689 0.111 0.915 0.157 53.286 0.407 0.625 0.418 55.908 0.166 0.845 0.200 
  7 60.017 0.350 0.780 0.419 55.924 0.530 0.580 0.496 54.815 0.386 0.665 0.416 
  10 64.916 0.413 0.820 0.495 62.622 0.648 0.610 0.597 61.151 0.438 0.735 0.478 
 EF 3 64.655 0.386 0.835 0.473 64.353 0.655 0.635 0.607 70.983 0.522 0.845 0.9 
  5 64.429 0.459 0.780 0.512 60.555 0.594 0.615 0.555 66.420 0.407 0.850 0501 
  7 60.908 0.366 0.785 0.434 59.975 0.600 0.600 0.554 65.513 0.477 0.785 0.536 
  10 62.655 0.271 0.885 0.368 56.496 0.551 0.575 0.517 64.681 0.450 0.790 0.495 

CKD EW 3 96.000 0.936 1.000 0.966 94.750 0.916 1.000 0.955 98.000 0.988 0.967 0.984 
  5 92.250 0.896 0.967 0.935 88.750 0.820 1.000 0.898 98.000 0.972 0.993 0.983 
  7 94.250 0.948 0.933 0.954 88.750 0.824 0.993 0.897 98.000 0.976 0.987 0.984 
  10 94.500 0.948 0.940 0.955 88.750 0.824 0.993 0.898 96.250 0.956 0.973 0.970 
 EF 3 95.500 0.944 0.973 0.963 92.250 0.876 1.000 0.931 97.000 0.956 0.993 0.975 

  5 96.250 0.960 0.967 0.969 91.500 0.868 0.993 0.926 98.250 0.976 0.993 0.986 
  7 95.250 0.956 0.947 0.962 92.000 0.876 0.993 0.930 97.500 0.964 0.993 0.979 
  10 92.550 0.936 0.907 0.939 91.750 0.868 1.000 0.928 97.250 0.960 0.993 0.977 

Dataset Method 
No. of 
Intervals 

CBA 
------------------------------------------- 

Bayes 
------------------------------------------- 

MLP 
---------------------------------------------

Acc Sen Spec Fmes Acc Sen Spec Fmes Acc Sen Spec Fmes 

PID EW 3 65.106 0.000 1.000 0.000 73.561 0.562 0.828 0.591 71.625 0.534 0.814 0.561 
  5 63.93 0.422 0.756 0.307 75.267 0.604 0.832 0.625 70.444 0.515 0.806 0.544 
  7 65.106 0.000 1.000 0.000 76.307 0.653 0.822 0.656 68.628 0.503 0.784 0.525 
  10 67.196 0.759 0.624 0.580 75.533 0.645 0.814 0.646 73.706 0.605 0.808 0.615 
 EF 3 67.051 0.873 0.562 0.650 74.880 0.672 0.790 0.649 69.667 0.578 0.760 0.570 
  5 63.937 0.248 0.848 0.179 74.228 0.675 0.778 0.645 72.667 0.579 0.806 0.597 
  7 65.106 0.000 1.000 0.000 73.968 0.682 0.770 0.646 70.960 0.582 0.778 0.578 
  10 65.106 0.000 1.000 0.000 75.005 0.686 0.784 0.654 71.885 0.575 0.796 0.585 

CHD EW 3 74.570 0.673 0.832 0.740 82.796 0.837 0.825 0.844 78.215 0.820 0.737 0.805 
  5 74.237 0.624 0.884 0.721 83.462 0.856 0.818 0.853 82.473 0.836 0.810 0.839 
  7 70.989 0.577 0.869 0.661 83.462 0.861 0.803 0.852 79.871 0.814 0.781 0.814 
  10 68.419 0.518 0.884 0.614 84.140 0.868 0.810 0.857 83.118 0.849 0.809 0.847 
 EF 3 76.849 0.739 0.803 0.776 85.108 0.873 0.825 0.867 79.161 0.813 0.765 0.812 
  5 67.753 0.542 0.836 0.617 85.430 0.873 0.832 0.868 80.505 0.812 0.796 0.818 
  7 67.753 0.542 0.836 0.617 84.118 0.855 0.825 0.857 80.172 0.825 0.774 0.820 
  10 67.753 0.542 0.836 0.617 83.129 0.843 0.817 0.846 80.828 0.831 0.780 0.826 

BLD EW 3 57.983 0.000 1.000 0.000 61.193 0.388 0.775 0.451 55.975 0.378 0.695 0.390 
  5 57.983 0.000 1.000 0.000 55.050 0.301 0.730 0.348 57.034 0.406 0.690 0.441 

  7 57.983 0.000 1.000 0.000 63.479 0.489 0.740 0.517 55.109 0.421 0.645 0.438 
  10 57.983 0.000 1.000 0.000 65.269 0.504 0.760 0.547 64.353 0.566 0.700 0.568 
 EF 3 57.983 0.000 1.000 0.000 68.706 0.469 0.845 0.560 64.950 0.609 0.680 0.91 
  5 57.983 0.000 1.000 0.000 64.092 0.456 0.775 0.514 63.521 0.581 0.675 0.570 
  7 57.983 0.000 1.000 0.000 66.109 0.498 0.780 0.549 67.571 0.628 0.710 0.617 
  10 57.983 0.000 1.000 0.000 62.353 0.476 0.730 0.513 66.731 0.609 0.710 0.603 

CKD EW 3 97.500 0.972 0.980 0.980 98.000 0.968 1.000 0.983 98.250 0.976 0.993 0.986 
  5 96.250 0.976 0.940 0.970 97.250 0.956 1.000 0.977 98.000 0.980 0.980 0.984 
  7 96.750 0.976 0.953 0.974 97.250 0.956 1.000 0.977 98.250 0.976 0.993 0.986 
  10 96.750 0.976 0.953 0.974 97.750 0.964 1.000 0.981 98.500 0.984 0.987 0.988 
 EF 3 96.750 0.976 0.953 0.974 97.000 0.952 1.000 0.975 98.750 0.992 0.980 0.990 

  5 96.750 0.976 0.953 0.974 96.250 0.940 1.000 0.968 99.250 0.988 1.000 0.994 
  7 96.750 0.976 0.953 0.974 97.750 0.964 1.000 0.981 98.750 0.992 0.980 0.990 
  10 96.750 0.976 0.953 0.974 97.750 0.964 1.000 0.981 98.750 0.988 0.987 0.990 

* Acc- Accuracy; Sen- Sensitivity; Spec- Specificity; Fmes- Fmeasure/FScore
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CONCLUSION 

 

Clinical data usually consist of sensor readings 

from medical equipments, temperature readings 

fromthermometers,height and weight measurements 

from appropriate devices; however representation of 

such values in an easy human-interpretable form 

requires the data to be discretized. Improper use of 

discretization approaches can penalize the efficiency of 

the data mining tasks such as classification. Moreover 

appropriate use of discretization, improves the data 

representation and data interpretability. The 

observations and findings of this study enable engineers 

to choose a fitting discretization approach while 

designing clinical knowledge-based systems. This study 

is focused on the use of unsupervised approaches for 

clinical datasets. This study may further be extended by 

analyzing the effect of many more discretization 

approaches over various domains. Experimental 

analysis of more datasets and approaches may yield 

novel findings which may improve the performance of 

the systems that use typical data mining tasks. 
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