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Modeling and Simulation of Double Gate Field Plate In0.2Ga0.8 As/Al0.3 Ga0.7 as HEMT 

using Gaussian Process Regression for Sensor Application 
 

Yousfi Abderrahim, Dibi Zohir, Guermoui Mawloud and Aissi Salim 

Department of Electronics, Advanced Electronic Laboratory (LEA), Batna-2-University, Avenue 

Mohamed El-Hadi Boukhlouf, 05000, Batna, Algeria 
 

Abstract: We propose a new approach for modeling a High Electron Mobility Transistor (HEMT) using that of 

Gaussian Process Regression one (GPR), to improve the current-voltage characteristics of HEMT transistor for 

using in electronic and biological domain or any other domain that needs it. The study and development of a new 

Atlas Silvaco device are taking into account the impact of several geometric and electric parameters; we focus on 

the electrical performances of the double gate field plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double hetero-

structure; we compare the numerical simulation using 2D Atlas Silvaco simulator with the extracted experimental 

results. Then we validate our model by GPR approach. The GPR approach opens promising opportunities for 

devices modeling without knowing too much the device physics properties. The obtained results give better 

performances which lead to fabricate devices with better electrical properties for promoting further investigation. 
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INTRODUCTION 

 
A few years ago HEMTs based on GaAs attracted 

the attention of researchers in several domains due to its 
variety of applications such as: military 
communications, radar, intelligence applications and 
sensors (DNA and image) (Wang et al., 2015; Lai et al., 
2007). According to the increase in its transfer 

characteristics drain-source current ��� functions of the 

drain-source voltage ��� consumption are of primary 
importance in designs and preferred transistor 
technology for demanding millimeter-wave electronics 
where power gain, signal to noise ratio (Chen et al., 
2000). Many Machine Learning algorithms have been 
proposed to simulate and modeling the behavior 
designs by knowing and exploiting only the geometric 
parameters. Several articles treated with different 
category of regression methods and obtain good results, 
which followed by a certain parameters like: CorrCoef, 
RMSE, RRMSE and MABE2 as they did in the 
following articles: organic field effect transistor 
(OFET) using artificial neural networks (MLP) 
(Benacer and Dibi, 2014), HEMT Transistor Noise 
modeling using generalized radial basis function 
(Hayati et al., 2008), HEMTs based on artificial neural 
networks (Hayati and Akhlaghi, 2013), Improving Ion-
Sensitive Field-Effect Transistor Selectivity with Back 

propagation Neural Network (MLP) (Abdullah et al., 
2010), Double gate MOSFET modeling based on 
adaptive neuro-fuzzy inference system for nanoscale 
circuit simulation (ANFIS) (Hayati et al., 2010), 
Modeling and Design of Inverter Threshold 
Quantization Based Current Comparator using 
Artificial Neural Networks (MLP) (Bhatia et al., 2016), 
RBF Network Optimization of Complex Microwave 
Systems Represented by Small FDTD Modeling Data 
Sets (Murphy and Yakovlev, 2006), Overview of 
Microwave Device Modeling Techniques Based on 
Machine  Learning  (SVM,  SVR,  GA,  ANN)  (Zhao 
et al., 2013). 

In the present study, we need to design a minimize 
model based on a numerical study platform of double 
gate field plat In0.2Ga0.8As/Al0.3Ga0.7As HEMT 
including double hetero-structure. Our numerical 
modeling helps to downsizing the gate, channel length, 
channel width and double hetero structure which lead to 
the increase of the drain-source current that is 
proportional reversed with the gate-source voltage. 
Minimization benefits are very suitable for DNA and 
image sensor which are used in nanometric area 
accompanied with attractive short time response. 

The aim of this study is to propose a new modeling 
method based on numerical simulation and the GPR 
approach of double gate field plat 
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In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 
hetero-structure in order to improve the drain-source 
current, then high sensitivity and fast response time are 
all achieved. 

In this context, the numerical simulation using 2-D 

Atlas Silvaco (Atlas user's Manual, 2012) of the 

proposed and conventional designs of In0.2 Ga0.8 

As/Al0.3Ga0.7As HEMT is presented where the proposed 

design shows high performances in terms of transfer 

characteristics over the experimental results obtained by 

Wang et al. (2015). The effectiveness of the proposed 

design is proved by using GPR approach. 

This study is organized as follows. First, we show 

the numerical simulation via Atlas Silvaco simulator of 

double gate field plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT 

including double hetero-structure. After that, we make a 

comparison between the numerical results and the 

extracted experimental results. Finally, we validate our 

model by the use of (GPR) approach. 

 

MODELING METHODOLOGY 

 

This study took three years ago, simulated at the 

university of Batna-2-Algeria, through 2D Atlas 

Silvaco and Matlab simulator. The GPR approach used 

to modulated and prove the transfer characteristic 

current-voltage of HEMT transistor. 

The modelofdouble gate field plate 

In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 

hetero-structure used in DNA sensor as we mentioned 

(Wang et al., 2015). For us, we want to employ HEMT 

in image sensor for the next work based on this model 

to get better one. 

In the following section, we study the numerical 

modeling of the geometrical parameters needed for the 

performance enhancement of double gate field plate 

In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 

hetero-structure using 2D Atlas Silvaco and Gaussian 

process regression approach. 

 
Numerical simulation: The structure of double gate 
field plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT including 
double hetero-structure is modulated and simulated via 
Atlas 2D Silvaco. Our contribution will be the insertion 
of a second gate field plate, second hetero-structure, the 
two regions of the drain and source are chosen as 
separate areas. The cross section schematic device of 
double gate field plat In0.2Ga0.8As/Al0.3Ga0.7As HEMT 
including double hetero-structure is shown in Fig. 1. 
The device structure consists of a symmetrical design 
from the top gate to channel and bottom gate to 
channel, the drain and source are heavily doped to 
insure the best control of the channel current via the 
double gate field plate voltage. Source and drain are 
two regions of GaAs doped of 3×10

18
cm

-3
. Table 1 

describes the dimensions of our model. 

The mesh uses in the interface of hetero-structure 

In0.2Ga0.8As/Al0.3Ga0.7As  are  carefully  chosen  as very  

 
 

Fig. 1: Structure of double gate field plate In0.2 Ga0.8 

As/Al0.3Ga0.7As HEMT including double hetero-
structure 

 
Table 1: The dimensions of a double gate field plate In0.2 Ga0.8 As/ 

Al0.3Ga0.7As HEMT including double hetero-structure 

Layer 

Device dimension 
----------------------------------------------------- 

Doping (cm-3) Thickness (nm) 

Channel In0.2Ga0.8As Undoped 15 
Spacer  Al0.3Ga07As Undoped 4 
Si δ-doping 2,8×1018cm-3 4 
Barrier  Al0.3Ga07As Undoped 15 

 
smaller spacing regions with specific values. The 2DEG 
(two Dimensional Electron Gaz) appears between the 
hetero-structure In0.2Ga0.8As/Al0.3Ga0.7As is insured 
with silicon δ-doping layer (Lin et al., 2007). 

The present model of double gate field plat 
In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 
hetero-structure offers a high drain-source current with 
a lower applied voltage drain to source accompanied 
with high electron mobility, the characteristic current-
voltage (I-V) offers good performances for sensor 
applications as DNA and image. 
 
Theory of Gaussian Process Regression (GPR): GPR 
has become increasingly a powerful statistical tool for 
data-driven modeling. GPR models are a Bayesian non 
parametric approach that can be applied to solve 
classification and regression supervised ML problems. 
It has been applied to response surface modeling (Yuan 
et al., 2008), system identification (Chan et al., 2013), 
calibration of spectroscopic analyzers (Ni et al., 2014; 
Wang et al., 2011) and ensemble learning (Liu and 
Gao, 2015). 

The main idea of GPR modeling is to place a prior 

directly on the space of functions. The combination of 

the prior and the data leads to the posterior distribution 

over functions. We focus on using the GPR approach 

for modeling the DGSR over the semi arid area.  

We consider a regression of x group which 

containing d variables. In machine-learning approach 

the main objective is to learn the functional relationship 

between the inputs of d-dimensional dRx∈ and the 

output variable y: 
 

)(xfy =
                 (1) 

 
Hence R and f(x) denote respectively the real space 

and the unknown function. The unknown function f can 
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be approximated by the following linear combination of 
the basic function: 
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represent a set of basis function which could 

be linear or nonlinear and [ ]TMwww ,...,1= is the unknown 

vector for M basis function of the unknown function f . 
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In Eq. (3) ε  represents the error term. In general 

wide range of linear and nonlinear regression models 

uses a set of training data { }N
iYXD 1, == of N

observation to estimate the unknown weights W and 

the basis function Φj(x) can be seen as a transformation 
of the data from the original space into high 
dimensional space which is not the case in GPR 
models, as will be shown below.  

In their study, Rasmussen and Williams (2006) 
mentioned that the basic block of GPR is GP that 
assumes Gaussian priors for function values specified 
which is specified by its second order statistics: 
 

)),(),(()( xxkxmGPxf ≈
                            (4) 

 
where, M(x), k(x, �̅) represent the mean and the 
covariance function of the unknown function f. By 
definition GP is a finite set of random variables with 
joint Gaussian distribution (Sun et al., 2014). Under 
GP, the prior distribution of f

 
is Gaussian: 

 

),0(, KNXfp ≈θ
                             (5) 

 
The mean of f is assumed to be zero and the N × N 

matrix K is a covariance matrix of function f with its 
hyper parameters denoted by θ. 

If the error term ε in Eq. (3) is independent and 

identically Gaussian distributed, the likelihood function 
of the training target is also Gaussian: 
 

),(, 22 σσ fNfyp ≈
                            (6) 

 
where, σ

2
  and I denote the variance of model error and 

identity matrix respectively. Then the posterior 
distribution of the function f can be obtained by 
applying the Bayes’ rule: 
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              (7) 

Note that the posterior distribution of the function f 
is also Gaussian, since both the prior and likelihood 
function is Gaussian. From Rasmussen and Williams 
(2006) the mean and covariance of posterior 
distribution are: 
 

)( 12 yIKK T −+= σµ
                (8) 
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                             (9) 

 
We note that the covariance function K(..,.)  is 

referred to as Kernel function in machine learning. In 
GPR literature are commonly used kernel functions 
including squared exponential or Gaussian kernel 
(Rasmussen and Williams, 2006): 
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And the matern family of covariance function is: 
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In Eq. (10) and (11) the term r = |x - �̅| denote the 

Euclidean distance between two points and θ represent 
the hyper parameters associated with each covariance 
function. The variance noise σ

2
 is a set of additional 

parameters that are determined during the training 
phase. The marginal probability distribution can be 
estimated by integration over the unknown function f: 
 

,, 2 dfxfpfypxyp ∫= θσ
             (12) 

 
The log marginal likelihood is obtained: 
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The unknown parameters (θ, σ

2
) can be estimated 

from Eq. (13) using gradient based algorithm. Since the 
posterior of f is determined through training data, we 
can evaluate the predictive distribution of any test data  
x* and we obtain the function conditioned on training 
results: 
 

,,,,
2σθXyxfp ∗∗

              (14) 
 

From Liu and Gao (2015) which could be shown 
that the predictive distribution of Eq. (14) is Gaussian 

with mean m and variance 2υ  given by: 
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where, µ andΣ are the posterior mean and variance of 

f. The prior mean was assumed to zeros and the kernel 

function used in the present work is squared 

exponential. 
 

RESULTS AND DISCUSSION 
 

To verify the effectiveness of the proposed design, 
the 2D Atlas Silvaco (ATLAS User's Manual, 2012) is 
used to simulate the transfer characteristic )(VI .  

In order to validate the accuracy of the designed 
device, the obtained results are implemented in 
Gaussian Process Regression algorithm (GPR) as data 
base input. 

A close matching is achieved between the extracted 
experimental results (Wang et al., 2015) and its 
numerical simulation which is well done in this study as 
shown in Fig. 2, the transfer characteristics Ids versus of 
Vds   with   different   values   of   Vgs  which is selected 

 

 

Fig. 2: Numerical and experimental results for the conventional AlGaAs/InGaAs high electron mobility transistors (Wang et al., 

2015)
 

 

 
 
Fig. 3: Comparison between numerical results of double gate field plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 

hetero-structure and experimental results of AlGaAs/InGaAs HEMT (Wang et al., 2015)
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Fig. 4: Comparison between numerical results of the designed HEMT and experimental results for Ids-Vgs characteristic 

 
between -100 mV to 400 mV, Vds range varies up from 0 
to 3 mV and the output drain current ranges from 0 to 
0.48 mA. A high drain current is observed when the 
gate voltage minimized as seen in Fig. 2. The good 
agreement  between  the  conventional  design  (Wang 
et al., 2015) and our numerical simulation is due to the 
accurate modeling using 2D Atlas Silvaco simulator. 

In Fig. 3, the transfer characteristics of the current-

voltage of the proposed design are plotted and a high 

drain current is observed when the gate voltage gets 

lower values as seen in Fig. 3. The obtained results of 

the proposed design shows a higher drain current (Ids = 

0.61mA) over the conventional design (experimental 

data) (Ids = 0.48mA). This enhancement is due to the 

decisive impact of the geometrical parameters which 

has an important effect on the drain current and, 

therefore, the electrical performances of the HEMT. 

Figure 4 illustrates the variation of drain current 

functions of gate voltage. The proposed design shows 

upper drain current over the conventional design; 

according to this Fig. 4, the model also offers high 

performances in terms of downscaling device and low 

power consumption.  

In this section of comparison, we obtain a good 

agreement that is shown in Fig. 3 and 4 which give a 

higher values of current for double gate field plate 

In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 

hetero-structure versus the model of Wang et al. (2015). 

 

MODEL VALIDATION METHODS 

 

In this study, the performance of GPR modeling for 

the drain-source current is evaluated by comparing the 

estimated values with the measured values using 

different statistical indexes such as Mean Absolute Bias 

Error (MABE), Root Mean Square Error (RMSE), 

Relative Root MeanSquare Error (RRMSE), 

Determination Coefficient (R
2
) and Correlation 

Coefficient (r).The MABE gives the mean absolute 

values of bias error obtained by: 
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                             (17) 

 

where, H and H are respectively the estimated and the 

measured values. The RMSE represents the difference 

between the predicted values estimated by the model 

and the measured values. In fact, RMSE identifies the 

model's accuracy calculated by: 
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The RRMSE is calculated by dividing the RMSE 

to the average of measured data as: 
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The ranges of RRMSE define the model 

performance as: 

Excellent if: RMSE p  10%  

Good if: 10% p  RMSE p 20% 

Fair if: 20% p  RMSE p 30%  

Poor if: RMSE f 30%  
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Table 2: Data ranges for inputs used in this simulation 

Coefficient 

Value 

---------------------------------------------- 

input Min  Max 

Vds(V) 0.6 -0.1 

Vgs(mV) 400 -100 

L (µm) 80  60 

Thickness (nm) 17  12 

Output   

Ids(mA) 0  0.061 

 
Table 3: Coefficients and values of GPR approach 

Coefficient Value 

CorrCoef 0.9998 

RMSE 0.0081 

RRMSE 4.4045 

MABE2 0.0069 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. 5: Illustration of predicted and measured Drain-Source 

current via GPR 

 

The r indicates the strength of a linear relationship 

between the measured and predicted values is 

calculated as follows: 
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The data range of the maximum and minimum 

values for the transfer characteristic and the data of 

GPR modeling are resumed in Table 2. 

Figure 5 shows current-voltage characteristic of 

double gate field plat In0.2Ga0.8As/Al0.3Ga0.7As HEMT, 

a close matching of the predicted and the measured 

drain-source current along the channel. Figure 6 

presents the comparison between the numerical results 

and the predicted results using the GPR approach, good 

agreement illustrated between the two lines. 

Table 3 contains the values of regression 

coefficients for the present approach which is done by 

GPR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6: Comparison between numerical and predicted results 

using GPR 

 

CONCLUSION 
 

The numerical modulation of double gate field 
plate In0.2Ga0.8As/Al0.3Ga0.7As HEMT including double 
hetero-structure using 2D Atlas Silvaco is presented. 
The effectiveness of the proposed design is approved by 
using the Gaussian Process Regression approach 
(GPR). The obtained values show high electrical 
performances and low cost fabrication over the 
conventional design. The proposed methodology opens 
promising opportunities for devices modeling without 
sufficient knowledge of the device physics properties. 
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