
Research Journal of Applied Sciences, Engineering and Technology 14(3): 124-131, 2017

DOI:10.19026/rjaset.14.4155

ISSN: 2040-7459; e-ISSN: 2040-7467

© 2017 Maxwell Scientific Organization Corp.

Submitted: December 14, 2016 Accepted: February 14, 2017 Published: March 15, 2017

Corresponding Author: Bossy Mohamed, Department of Mathematics and Computer Science, Faculty of Science, Port Said

University, Port Said, Egypt
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

124

Research Article

Dynamic Job Scheduling Algorithms Based on Round Robin for Cloud Environment

1
Bossy Mohamed,

2
Noha E. AL-Attar,

1
Wael Awad and

3
Fatma A. Omara

1
Department of Mathematics and Computer Science, Faculty of Science,

Port Said University, Port Said, Egypt
2
Faculty of Engineering, Delta University for Science and Technology, Dakahlia, Egypt

3
Department of Computer Science, Faculty of Computers and Information, Cairo University, Cairo, Egypt

Abstract: This study attempts to solve the problem of the static scheduling algorithms by developing a dynamic

version of Round Robin scheduling algorithm; Dynamic Priority Round Robin and Enhanced Dynamic Priority

Round Robin. The proposed algorithms have been developed based on a dynamic manner of choosing the quantum

time according to the current status of the requested jobs in attempting to fulfill the user's requirements and improve

the overall system performance and resource utilization. The implementation of the developed algorithms is done by

the Cloudsim simulator. The results record that the two versions of dynamic scheduling algorithms achieve high

performance and resource utilization for the Cloud system comparing with the static scheduling algorithms like

Round Robin and others. Accordingly, they decrease the idle waiting, computational and turnaround time of the

requested jobs. By comparing the proposed algorithms with their corresponding static Round Robin versions, it is

found that; Dynamic Priority Round Robin (DPRR) algorithm has enhanced the saving in idle waiting time, the

response time and turnaround time are by 25, 51 and 32%, respectively. Similarly, the idle waiting time, response

time and turnaround time are decreased in the proposed Enhance Dynamic Priority Round Robin (EDPRR)

algorithm by 51, 44 and 30%, respectively. Furthermore, the resource utilization has also improved by 18% and 5%

for the both of developed algorithms (DPRR and EDPRR) respectively.

Keywords: Cloud computing, dynamic scheduling, round robin, static scheduling

INTRODUCTION

Over the last few years, there is a persistent

increase in the size and specifications of data used by
different users. This usage increasing led to the
appearance of what is called big data (Hashem et al.,
2015). Usually, the big data is characterized by five
main features:

• Volume; which represents the size of the data that
need to be processed

• Velocity; which refers to the rate of the data
growth and usage

• Variety; which means that there are different types
and formats of the data used in processing,

• Veracity; which means that both data results and
analysis have to be accurate

• Value; which is the added value and contribution
offered by data processing (Chen et al., 2012).

Due to the spread use of the big data in many fields

(e.g., healthcare, science, engineering, finance, business

and different society problems), it is a big challenge for
data users and providers to handle this growth rate by
the traditional computing infrastructure. Thus, Cloud
Computing may be one of the best solutions to face this
challenge (Hashem et al., 2015; Janakiraman, 2016).

Now a day, Cloud Computing gains popularity in
processing, managing and analyzing the big data. In
other words, it is considered as a way to get enough
storage and computing power to handle big data
without purchasing infrastructure assets (Chang and
Wills, 2016). Due to the pay-as-you-go fashion in
Cloud Computing, the user can ask for the resources
only as he needs and the cloud providers will provision
the required resources dynamically and process large
data sets in a parallel way (Katyal and Mishra, 2013).

Generally, when a user requests a service from the
Cloud environment, the cloud provider treats this
service as a job to be executed. In order to execute the
required job, many processes need to be carried out in
order to deliver the requested service as; job
scheduling, resources provisioning and resource
allocation. Simply, the master job controller in the

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

125

Cloud manages the order of executing the existed jobs
according to their priority, then the provisioning and
allocation processes begin to allocate the suitable
resources to the selected jobs (Vernier, 2016).

The job scheduling is a decision making process
which manages the order of executing the user's jobs
using a set of strategies. The main goal of the job
scheduling process is to increase the resource utilization
and minimize processing time of the jobs, which in turn
increases the system throughput (Salot, 2013; Singh
et al., 2014).

Generally, job scheduling algorithms can be

divided into two main types; Preemptive and Non-

Preemptive algorithms. In Preemptive algorithms; the

current running jobs are temporarily suspended

according to a specific condition. These jobs wait to be

re-executed after a specific predefined time called "time

quantum". This type of algorithms focuses on

decreasing the response time for the required jobs.

Round Robin (RR) is one of the significant examples of

the preemptive algorithms (Singh et al., 2014).
In Non-Preemptive algorithms; once a job is

selected to start its execution, it continues in running
until it finishes completely. Non-Preemptive algorithms
try to decrease the idle waiting time for the user's jobs.
First-Come-First-Served (FCFS) and Shortest Job First
(SJF) are examples of the non-preempt algorithms
(Katyal and Mishra, 2013). First-Come-First-Served is
considered the simplest and the default scheduling
algorithm. The idea of FCFS is that it does not
determine any priorities or conditions to execute the
jobs; just the first arrived job will be the first finished
job without any interruption. This means that the short
jobs may wait for a long time before starting its
execution (Chen et al., 2013) Shortest Job First (SJF)
algorithm tries to solve the problem of executing the
short jobs. In SJF algorithm, the jobs with small
processing time will have the highest priority to be
executed, so they do not have to wait the early arrived
large jobs to finish their execution (Siahaan, 2016).

In Cloud Computing, the Master Virtual Machine
(MVM) controller is responsible for scheduling the
incoming jobs and sending them to Slaves Virtual
Machines (SVMs) depending on the chosen scheduling
algorithm (Chen et al., 2013). Due to the existence of
multiple independent users who usually are more than
the Cloud available resources, the job scheduling
process becomes one of the main challenges that face
the Cloud Computing community (Ernemann et al.,
2002) Choosing the suitable scheduling algorithm
depends on six main parameters; Resource Utilization;
the ratio between the total busy time of the virtual
machine and the total execution time of the parallel
application, Throughput; the number of completed jobs
within a certain period of time, System Efficiency; the
busy time of each virtual machine, Response time; the
time taken to start responding to the job request), Idle
Waiting time; the waiting time taken by each job to

complete its execution and Turnaround time; the total
amount of time taken by the job) (Samal and Mishra,
2013).

One of the most famous scheduling algorithms in
Cloud Computing is Round Robin (RR) algorithm
because it is suitable for job scheduling in time-sharing
systems due to its simplicity, fairness and generality
(Siahaan, 2016).

In Round Robin, jobs are queued with the same
style in FCFS algorithm, but RR assigns a fixed equal
quantity of execution time to each job which is known
as Time Quantum (TQ). TQ is a fixed interval of time
used to interrupt the long jobs to give a chance to other
jobs to start their execution (Pinedo, 2012). After the
end of TQ, the uncompleted jobs will be stopped and
traced to the tail of the job queue (Salot, 2013)

RR algorithms are categorized into two types;
Static RR and Dynamic RR (Aravind and Chelladurai,
2016). In Static RR, a fixed Time Quantum is set. It
starts from the beginning of the jobs execution time till
they are finished. Static RR ignores any information
about deadline time, computation time, precedence
constraints and any expected delay time (Stankovic
et al., 1998). Thus, Static RR may suffer from many
drawbacks due to the fixed choice of TQ as it may
affect the performance of the system and resources'
utilization (e.g., If TQ is large, small jobs may finish
their execution after a small amount of time and
unutilized resources cannot be used until the end of TQ.
On the other hand, if TQ is small, the big jobs will be
surely interrupted after the end of the TQ and trace to
the tail of the job queue waiting for their new turn, this
may decrease the system efficiency) (Samal and
Mishra, 2013).

Dynamic RR is basically based on calculating TQ
according to the real processing time of the current
jobs, which means that the TQ will be dynamically
changed every turn (Noon et al., 2011). Dynamic RR
tries to enhance the static RR algorithm by increasing
the performance and stability of the system and
provides a self-adaptation system in which the system
adapts itself according to the incoming jobs (Matarneh,
2009).

In this study, two enhanced algorithms for dynamic
Round Robin algorithm have been proposed in order to
overcome RR drawbacks in the Cloud Computing
environment.

LITERATURE REVIEW

Many researches have been conducted in the field
of Cloud Computing scheduling algorithms. Some of
the researchers handled only the static scheduling
algorithm as Aravind and Chelladurai (2016). They
have focused on addressing scheduling fairness
between CPU-bound jobs and I/O-bound jobs by
developing a Fair-Share Round Robin Scheduling
Algorithm (FSRR). FSRR algorithm is considered an

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

126

enhanced version of the classical round robin to
decrease the unfairness problem in classical RR.

Other researchers tried to enhance the job

scheduling specially in Cloud Computing as Li (2016)

who has developed the Priority Based Weight Round

Robin (PBWRR) algorithm. According to PBWRR

algorithm, a weight for each job has been suggested

according to its presence in the waiting queue in order

to avoid long waiting time and minimize the response

time.

Liu et al. (2013) has presented a Generalized

Priority Algorithm for efficient execution of jobs. This

algorithm categorized each node's computing capacity

into two types; foreground virtual machines (e.g., high

CPU priority) and background virtual machines (e.g.,

low CPU priority). This algorithm aims to increase

resources utilization in the system.

Another enhancement for RR algorithm has been

introduced by Mohamed et al. (2016) They have

introduced an Enhanced Priority Round Robin (EPRR)

which is based on listing the uncompleted jobs in a

priority queue depending on the remaining execution

time (i.e., the job with small remaining time will have

high priority). The advantage of this algorithm is to

decrease the average waiting and turnaround time of the

job.

Although, using the static job scheduling

algorithms is the most popular in cloud computing, it

cannot handle the rapid increase in the complicated

applications that are handled by the Cloud environment.

Thus, there is a significant need to use efficient

dynamic scheduling algorithms to manage and control

the available resources, as well as, increase the system

throughput.

Lee et al. (2011) have proposed a Dynamic Priority

Scheduling Algorithm (DPSA) which can change the

priorities of the available jobs during the scheduling

time. According to DPSA algorithm, the scheduler sets

a threshold value that limits the waiting time for jobs in

the job queue, if the job exceeds this threshold then it

will be sent to execute immediately.

Matarneh (2009) has presented a Self-Adjustment

Time Quantum in Round Robin (SARR) algorithm. The

SARR algorithm depends on Burst Time of the now

running processes. The idea of this algorithm is to

adjust the Time Quantum according to the burst time of

the running processing. It tries to minimize idle waiting

time, but it still needs better adjustment criteria for

Time Quantum.

MATERIALS AND METHODS

The goal of this study is to enhance the Round

Robin algorithm in such a way that it can deal with the

dynamic nature of job scheduling. The original form of

the RR algorithm is to use a static time quantum to

execute the job within it using the preemption style.

Determining this fixed time quantum is considered the

main drawback in the RR algorithm. So, the work in

this study will try to handle this problem by developing

two versions of the Round Robin algorithm using

dynamic quantum time. The two algorithms which have

been introduced are "Dynamic Priority Round Robin"

and "Enhanced Dynamic Priority Round Robin".

Dynamic Priority Round-Robin (DPRR) algorithm:

Dynamic Priority Round Robin (DPRR) is based

mainly on the dynamic change of the time quantum. At

the beginning of the scheduling process, the time

quantum is calculated according to the expected

processing time of the requested jobs and then it is

modified in every time slice depending on the

processing time of the existed jobs. The Time Quantum

(TQ) calculation is defined in Eq. (1):

TQ=AVG(ƩPT(JN)/N (1)

where,

PT(JN) = The processing time of every job in the

system

N = The number of requested jobs

DPRR uses two types of queues; Primary Job

Queue (PJQ) which stores the incoming jobs which

need to be processed in the Cloud system and Priority

Queue (PQ) which is used to list the uncompleted jobs

that will be executed depending on their priority which

is determined according to the condition in Eq. (2):

TRemain(j) <=TQ/2 (2)

where, TRemain(j) is the remaining time of the

uncompleted job (j).

Thus, DPRR algorithm is based on executing the

uncompleted jobs firstly depending on their remaining

time. According to Eq. (2), if the TRemain of the

uncompleted job is less than or equal half of the current

Time Quantum, then these jobs will be listed in the PQ,

otherwise, it will be queued in the tail of the PJQ.

Also, DPRR algorithm cares about achieving good

resource utilization during the run time. It determines

any virtual machines that become free before the end of

the Time Quantum. If a free VM is existed, the

scheduler will assign a new job from the head of PJQ to

be executed on the free VM.

The pseudo code of DPRR algorithm is illustrated

in Fig. 1. DPRR algorithm assumes that, m is the

number of the available Virtual Machines (VMs) and N

is the total number of the requested jobs over the Cloud

system. While TQ represents the calculated Time

Quantum and PT is the expected Processing Time of

the requested jobs.

Unfortunately, DPRR does not concern any criteria

for selecting the jobs during the runtime to be run. The

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

127

Fig. 1: Pseudo code of DPRR algorithm

scheduler in DPRR only checks for the free VMs and

then selects the job from the head of PJQ without

taking into consideration if the selected job has a proper

processing time to be executed on this resource or not,

which may lead to decrease the performance of the

system.

Enhanced Dynamic Priority Round-Robin (EDPRR)

Algorithm: Enhanced Dynamic Priority Round Robin

(EDPRR) algorithm is considered an enhancement of

DPRR algorithm. It is developed to overcome the main

drawback (i.e., the scheduler selects the new job to

assign in to free VM from the head of the PJQ without

considering any criteria for choosing the suitable job).

In EDPRR algorithm, after checking if there is an

existed free virtual machine during the runtime and

before the end of TQ, the scheduler selects a new job

from PJQ to be executed but under a condition. This

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

128

Fig. 2: Pseudo code of the enhanced part in the proposed

EDPRR algorithm

Table 1: A sample of ten requested jobs’ specifications

Job name Required capacity

J1 200

J2 60

J3 80
J4 20

J5 100

J6 70
J7 50

J8 30

J9 150
J10 40

condition concerns with selecting the suitable job that

can be executed on the free resource (i.e., VM) during

the remaining time of the TQ. Calculating the time of

the free virtual machine (VM) is defined in Eq. (3):

Tfree(VM) = TQ – PTfinished_job (3)

The pseudo code of the enhanced part in the

proposed EDPRR algorithm is described in Fig. 2.

RESULTS AND DISCUSSION

In order to implement and evaluate the

performance of the proposed scheduling algorithms

(i.e., DPRR and EDPRR), CloudSim simulator is used

(Buyya et al., 2009). It is a simple toolkit that is used to

simulate the cloud environment. It gives the ability of a

quick and easy change of the needed parameters to be

assumed in the simulation that provides a high degree

of configurability and flexibility (El-Attar et al., 2014).

The experimental study considers some

assumptions as follows:

• It is operated on a single Data Center with 5, 8 and

10 homogenous VMs. Each VM has the same type

of operating system and the same amount of

processing and capacity (e.g., ‘1GHz’ processor

and ‘2GB’ of RAM).

• The experiment is conducted with a varying

number of jobs ‘100’, ‘150’ and ‘200’.

• Each job has 2 parameters; Name and Required
Capacity (Table 1). Job's computation time will be
calculated using job's required processing capacity
which varies from one job to another.

According to the results of implementing the

proposed algorithms (DPPR and EDPPR), the
performance can be evaluated through some of the
essential parameters that measure the efficiency of the
scheduling process using the proposed algorithms. The
evaluation parameters are; the response time, idle
waiting time, turnaround time and utilization
performance. In this evaluation, the comparison has
been done among the two proposed algorithms (DPRR
and EDPRR) as dynamic scheduling algorithms from a
side and a static scheduling algorithm EPRR (i.e., it
depends only on listing the uncompleted jobs in a
priority queue with a static amount of time quantum
TQ) which have been presented before in Matarneh
(2009) on the other side. The comparative results of the
three algorithms based on the four evaluation
parameters (i.e., Idle Waiting time, Response Time,
Turnaround Time and Resource Utilization) are
presented in Table 2 to 5 respectively. Also, the
enhancement percentages of the proposed algorithms
are calculated according to Eq. (4):

Improving percentage = ���������

����
 % (4)

where, P1 is the default scheduling algorithm and P2
represents the enhanced algorithm to be compared.
While i, j are the jobs and the VMs respectively.

Resource utilization has been evaluated using
Eq. (5) which defines the utilization function as the
ratio between the total busy time of the virtual
machines and the total finish execution time of the
parallel application (Abdelkader and Omara, 2012):

Utilization =
	
 ��� ����

��� ����
 ∗ 100 (5)

As shown in Table 2 to 5, the performance

evaluation has been done over two phases. First, the
static scheduling (EPRR) algorithm is compared with
the first proposed dynamic (DPRR) algorithm.
According to this phase, it is found that the
performance of the proposed DPRR outperforms the
static EPRR algorithm by 79% and 65% for both
response and turnaround time respectively.
Furthermore, the proposed DPRR algorithm utilizes the
resources that are freed up during the run time by
selecting a new job from the PJQ. So, the idle waiting
time is decreased in the proposed DPRR algorithm by
75% with respect to the static EPRR algorithm. Also,
the resource utilization is enhanced by 17%.

On the other hand, for the dynamic algorithms, the

second proposed EDPRR algorithm has achieved a

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

129

Table 2: The idle waiting time comparison between the static (EPRR) and dynamic (EDPRR and DPRR) scheduling algorithms

No. of VMs No. of Jobs EPRR /sec DPRR /sec EDPRR /sec

Improve DPRR

Vs. EPRR (%)

Improve EDPRR

vs. DPRR (%)

5 100 699 300 280 57 6
 150 1110 583 530 47 8

 200 2963 730 695 75 5

8 100 400 250 235 38 6
 150 620 500 470 20 6

 200 799 680 647 15 5

10 100 300 238 211 20 11
 150 515 400 380 22 5

 200 730 550 533 25 3

Table 3: The response time comparison between the static (EPRR) and dynamic (EDPRR and DPRR) scheduling algorithms

No. of VMs No. of Jobs EPRR /Sec DPRR /Sec EDPRR /Sec

Improve DPRR

Vs. EPRR (%)

Improve EDPRR

Vs. DPRR (%)

5 100 5632 1420 1320 75 7

 150 7985 1756 1542 78 12
 200 11230 2314 1996 79 13

8 100 3263 1100 1025 66 7

 150 4896 1270 989 74 12
 200 6120 1267 1170 79 8

10 100 2750 988 950 62 4
 150 4632 1023 965 77 6

 200 6000 1136 1110 78 4

Table 4: The turnaround time comparison between the static (EPRR) and dynamic (EDPRR and DPRR) scheduling algorithms

No. of VMs No. of Jobs EPRR/Sec DPRR /Sec EDPRR /Sec

Improve DPRR

Vs. EPRR (%)

Improve EDPRR

Vs. DPRR (%)

5 100 6978 2400 2210 65 8

 150 9786 2839 2546 71 10
 200 12740 4414 3568 65 19

8 100 4578 2088 1997 54 4

 150 5640 2640 2403 53 9
 200 7250 3136 2989 57 5

10 100 3500 1967 1845 43 6

 150 5100 2635 2330 48 12
 200 6436 3022 2478 53 18

Table 5: The resource utilization comparison between the static (EPRR) and dynamic (EDPRR and DPRR) scheduling algorithms

No. of VMs No. of Jobs EPRR (%) DPRR (%) EDPRR (%)
Improve DPRR
Vs. EPRR (%)

Improve EDPRR
Vs. DPRR (%)

5 100 67 80 83 16 4

 150 68 83 88 18 6

 200 68 82 89 17 8
8 100 68 86 88 21 2

 150 69 87 89 21 2
 200 69 85 89 18 4

10 100 70 88 90 20 2

 150 70 85 88 18 3
 200 71 86 90 17 4

better performance than that the first proposed (DPRR)

algorithm. The overall performance of the system after

using EDPRR algorithm is improved by decreasing the

idle waiting time, the response time and the turnaround

time of jobs with 5, 13 and 19%, respectively with

respect to the proposed DPRR algorithm. Also, EDPRR

algorithm improves the resources utilization by 8%

with respect to DPRR algorithm.

The performance evaluation also handles the effect

of changing the number of the available virtual

machines. The proposed DPRR and EDPRR have been

implemented using 5, 8 and 10 VMs, with the same

amount of requested jobs (i.e., 100, 150 and 200).

According to the implementation results, it is found that

the increasing of the number of virtual machine

enhances the scheduling process, where by increasing

the number of virtual machine to 8 instead of 5, the idle

waiting time, the response time and turnaround time are

decreased in the proposed DPRR algorithm by 25, 51

and 32%, respectively. Similarly, the response time and

turnaround time are decreased in the proposed EDPRR

algorithm by 51, 44 and 30%, respectively.

Furthermore, the resource utilization has also improved

by 18% and 5% for DPRR and EDPRR algorithms

respectively (Fig. 3 to 6).

Finally, as it is shown in the above comparison, the

dynamic scheduling algorithms have enhanced the

performance of the system better than the static ones.

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

130

Fig. 3: Idle waiting time comparison

Fig. 4: Response time comparison

Fig. 5: Turnaround time comparison

Fig. 6: Resource utilization comparison

The performance comparison between the static

EPRR, DPRR and EDPRR algorithms is plotted in

Fig. 7.

Fig. 7: Dynamic and static algorithms comparison

CONCLUSION AND FUTURE

RECOMMENDATION

In this study, two dynamic enhanced algorithms of

Round Robin (Dynamic Priority Round Robin (DPRR)

and Enhanced Dynamic Priority Round Robin

(EDPRR)) have been proposed and developed to

overcome the problem of fixed TQ. The proposed

DPRR algorithm is based on calculating a dynamic

quantum time according to the requested jobs

processing time. Also, it utilizes the free resource by

assigning a new job to it until the end of the time

quantum. The main drawback of the proposed DPRR

algorithm is that it does not concern any criteria to

select jobs to be executed on the free resource. Thus,

the second version of dynamic scheduling algorithms

which is called EDPRR has been introduced. According

to the proposed EDPRR algorithm, the selection of the

new job to be executed on the free resource is based on

its execution time to be suitable for execution upon the

free resource. According to the implementation results

of the proposed DPRR and EDPRR algorithms, it can

be concluded that:

• The proposed DPRR and EDPRR algorithms

outperform the static scheduling (EPRR) algorithm

for both response and turnaround time respectively.

• Furthermore, the idle waiting time is decreased in

the proposed DPRR algorithm with respect to the

static EPRR algorithm. Also, the resource

utilization is enhanced.

• In addition, the proposed EDPRR algorithm

enhances the average of idle waiting time, response

time, turnaround time and System Utilization

relative to the proposed DPRR algorithm.

More investigation is needed to overcome the time

overhead due to the selection of new jobs to be

executed on the free VM(s). This will be considered in

the future work.

600

500

400

100

0

T
im

e
in

 M
in

s

5 8 10

Number of Virtual Machines

DPRR

EDPRR

200

300

2000

1500

1000

500

0

T
im

e
 i
n
 M

in
s

5 8 10

Number of Virtual Machines

DPRR

EDPRR

2000

1500

1000

500

0

T
im

e
 i
n
 M

in
s

5 8 10

Number of Virtual Machines

DPRR

EDPRR

88%

86%

84%

78%

76%

R
e
so

u
rc

e
 U

ti
li
za

ti
o
n
 P

e
rc

e
n
ta

g
e

5 8 10

Number of Virtual Machines

DPRR

EDPRR

80%

82%

90%

T
im

e
 i
n
 M

in
s

14000

12000

10000

8000

6000

4000

2000

0

Idel waiting Time

Turnaroung TimeResponse Time

EPRR DPRR EDPRR

Res. J. Appl. Sci. Eng. Technol., 14(3): 124-131, 2017

131

REFERENCES

Abdelkader, D.M. and F. Omara, 2012. Dynamic task

scheduling algorithm with load balancing for
heterogeneous computing system. Egypt. Inform.
J., 13(2): 135-145.

Aravind, A. and J. Chelladurai, 2016. Fair-share Round
Robin CPU Scheuling Algorithms. Retrieved from:
http://web.unbc.ca/~csalex/papers/aj05.pdf. (Last
Accessed on: July 19-Aug. 18, 2016 at 12 AM)

Buyya, R., R. Ranjan and R.N. Calheiros, 2009.
Modeling and simulation of scalable cloud
computing environments and the cloudsim toolkit:
Challenges and opportunities. Proceeding of the
International Conference on High Performance
Computing and Simulation (HPCS, 2009), pp:
1-11.

Chang, V. and G. Wills, 2016. A model to compare
cloud and non-cloud storage of Big Data. Future
Gener. Comp. Sy., 57: 56-76.

Chen, H., R.H.L. Chiang and V.C. Storey, 2012.
Business intelligence and analytics: From big data
to big impact. MIS Quart., 36(4): 1165-1188.

Chen, J., D. Wang and W. Zhao, 2013. A task
scheduling algorithm for hadoop platform. J.
Comput., 8(4): 929-936.

El-Attar, N., W. Awad and F. Omara, 2014.
RPOAWLB: Resource provisioning optimization
approach based on RPOA with load balance. Int. J.
Comput. Appl., 105(7): 34-41.

Ernemann, C., V. Hamscher, U. Schwiegelshohn, R.
Yahyapour and A. Streit, 2002. On advantages of
grid computing for parallel job scheduling.
Proceeding of the 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid,
China.

Hashem, I.A.T., I. Yaqoob, N.B. Anuar, S. Mokhtar, A.
Gani and S.U. Khan, 2015. The rise of “big data”
on cloud computing: Review and open research
issues. Inform. Syst., 47: 98-115.

Janakiraman, P., 2016. Big Data Cloud Database and
Computing. Retrieved from: https://www.qubole.
com/resources/article/big-data-cloud-database-
computing/.

Katyal, M. and A. Mishra, 2013. A comparative study
of load balancing algorithms in cloud computing
environment. Int. J. Distrib. Cloud Comput., 1(2):
14.

Lee, Z., Y. Wang and W. Zhou, 2011. A dynamic
priority scheduling algorithm on service request
scheduling in cloud computing. Proceeding of the
International Conference on Electronic and
Mechanical Engineering and Information
Technology, China.

Li, H., 2016. PWBRR Algorithm of Hadoop Platform.

Retrieved from: https://www.thelibrarybook.

net/pdf-research-on-job-schedulingalgorithm-in-

hadoop.html. (Last Accessed on: July 17, 2016 at 4

AM)

Liu, X., C. Wang, B.B. Zhou, J. Chen, T. Yang and

A.Y. Zomaya, 2013. Priority-based consolidation

of parallel workloads in the cloud. IEEE T. Parall.

Distrib. Syst., 24(9): 1874-1883.

Matarneh, R.J., 2009. Self-adjustment time quantum in

round robin algorithm depending on burst time of

the now running processes. Am. J. Appl. Sci.,

6(10): 1831-1837.

Mohamed, B., W. Awad, S.A. El Hafeez and F. Omara,

2016. Job schedulers based on round robin strategy

on the cloud environment. Eur. J. Sci. Res., 141(2):

141-153.

Noon, A., A. Kalakech and S. Kadry, 2011. A new

round robin based scheduling algorithm for

operating systems: Dynamic quantum using the

mean average. Int. J. Comput. Sci. Issue., 8(3):

224-229.

Pinedo, M., 2012. Scheduling: Theory, Algorithms and

Systems. 4th Edn., Springer, New York, London.

Salot, P., 2013. A survey of various scheduling

algorithm in cloud computing environment. Int. J.

Res. Eng. Technol., 2(2): 131-135.

Samal, P. and P. Mishra, 2013. Analysis of variants in

round robin algorithms for load balancing in cloud

computing. Int. J. Comput. Sci. Inform. Technol.,

4(3): 416-419.

Siahaan, A.P.U., 2016. Comparison analysis of CPU

scheduling: FCFS, SJF and round robin. Int. J. Eng.

Develop. Res., 4(3): 124-131.

Singh, P., V. Singh and A. Pandey, 2014. Analysis and

comparison of CPU scheduling algorithms. Int. J.

Emerg. Technol. Adv. Eng., 4(1): 91-95.

Stankovic, J.A., M. Spuri, K. Ramamritham and G.

Buttazzo, 1998. Deadline Scheduling for Real-

Time Systems. 1st Edn., In: EDF and Related

Algorithms. The Springer International Series in

Engineering and Computer Science. Springer, US,

460: 273.

Vernier, D., 2016. How Does Cloud Computing Work?

Retrieved from: http://www.thoughtsoncloud.

com/2014/02/how-does-cloud-computing-work/.

