
Research Journal of Applied Sciences, Engineering and Technology 14(8): 310-319, 2017
DOI:10.19026/rjaset.14.4955
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2017 Maxwell Scientific Publication Corp.
Submitted: April 20, 2017 Accepted: May 23, 2017 Published: August 15, 2017

Corresponding Author: Ashwak Alabaichi, Computer Department, Sciences Collage, Kerbala University, Karbala, Iraq
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

310

Research Article

A Novel Compressing a Sparse Matrix using Folding Technique

Ashwak Alabaichi, Amjad Hamead Alhusiny and Elham Mohammed Thabit
Computer Department, Sciences Collage, Kerbala University, Karbala, Iraq

Abstract: There are many application problems that emerge in the areas of engineering simulations, scientific
computing, information retrieval and economics which use matrixes where non-zero elements are a significant
minority with less than 10%. These are universal in many mathematical and scientific applications. These matrixes
enable the reduction of storage and computational requirements by storing and carrying out arithmetic with, only the
non-zero elements. This is the sparse matrix which must be compressed for these applications. The sparse matrix
compression represents non-zero matrix entries. This study presents a novel algorithm for compressing a sparse
matrix, which involves three steps. Firstly it involves the division of sparse matrix into sub-matrixes; secondly
conducting several transformations; finally coding them. The novel algorithm is called folding. The compressed
matrix reduces memory requirement with a good rate compared with the original sparse matrix. C++ is used in the
implementation of this algorithm.

Keywords: Coding, dense matrix, folding, sparse matrix, transformation, unfolding

INTRODUCTION

Sparse matrixes are normally of considerable size

with comparatively limited non-zero elements unlike
dense matrixes that possess non-zero elements on
almost all positions of the matrix (Kourtis, 2010).
Sparse matrixes are present in several applications such
as structural analysis, computational fluid dynamics,
modeling in economics, numerical analysis, numerical
optimization, statistical modeling, analysis of power
network, electromagnetics, meteorology, medically-
related imaging, data mining, finite-element
simulations, systems that support decision making in
management practice, simulating of circuits, retrieving
of information and many other applications (Farzaneh
et al., 2009). In most applications involving sparse
matrixes the size of the matrix is very large. Storing
such large matrixes is impossible, even on super
computers. Besides, most of the storage and
calculations would be wasted on zeros (Stanimirović
and Tasić, 2009). The storage and computational
requirements of these matrixes can be minimized by
different approaches (Stanimirović and Tasić, 2009;
Kourtis, 2010; Neelima and Raghavendra, 2012;
Farzaneh et al., 2009). Compression can be considered
as trading data for computation: which leads to a
reduction in data and higher computational over head
and more space. There have been several significant
developments in sparse matrix computations in recent
years and some of them have involved the compression
of sparse matrix by minimizing its zero elements which

are Compressed Row Storage, the Jagged Diagonal
Formator Compressed Diagonal Storage format
(Kourtis, 2010; Farzaneh et al., 2009). As each method
depends on the benefits derived from the characteristic
of a particular sparse matrix, hence results vary in
levels of space efficiency. Sparse matrixes are operated
by direct utilization of their storage formats which
should offer economy of storage and computational
activity. Sparse matrix has the advantage over dense
matrix in that it can handle substantial problems that
dense matrix is incapable. Sparse matrixes comprise
structured and unstructured types. In the case of a
structured matrix its non-zero entries have a consistent
pattern along a few diagonals. Also, it could comprise
the non-zero elements in blocks such as similarly-sized
dense sub matrixes, which shape a consistent pattern
along a few block diagonals. In comparison, an
irregularly structured matrix has irregular entries
(Kourtis, 2010). In this study a novel proposal to
compress large sparse matrix into a dense matrix is
introduced. This proposal can work on structured and
unstructured sparse matrixes. Early results indicate that
this proposed algorithm possesses excellent results that
are related to memory requirement.

LITERATURE REVIEW

The related works are as follows: Firstly: the initial
works relate to the improved application performance
that is sparse-based on different representations
numbering more than thirteen. Compressed Sparse Row

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

311

Fig. 1: CSR format

Fig. 2: COO format

(CSR), Compressed Sparse Column (CSC) and
Coordinate format (COO) are the significant are
popularly used storage techniques (Farzaneh et al.,
2009).

Compressed Sparse Row (CSR) was a proposal of
A. Brameller and D.J. Rose, which has beena widely-
used method to store very sizeable sparse matrixes.CSR
provides storage for the sparse matrixes arranged in a
series of sparse vectors (one for each row) and permits
random access to whole rows. In specific terms, the
storage of the matrix is in three arrays: values, row_ptr
and col_ind. The values array provides storage for the
non-zero elements of the matrix in row-major order,
where as the other two arrays provide storage for
indexing information: row_ptr containing the location
of the first (non-zero) element of each row within the
values array and col_ind containing the column number
for every non-zero element. A sample of the CSR
format is shown in Fig. 1 (Farzaneh et al., 2009;
Kourtis, 2010; Stanimirović and Tasić, 2009).

Compressed Sparse Column (CSC) is comparable
to CSR, except for the consecutive storage in columns
of the non-zero elements (Stanimirović and Tasić,
2009; González-Domínguez et al., 2013).

Coordinate Format (COO) is a very simple sparse
storage format. In CCO the compression of a sparse
matrix is directly transformed from the dense format
which retains the non-zero elements together with their
corresponding indices in their matrix location. For
example, the COO format for a vector is referred to as a
compressed sparse vector or just sparse vector, within
which the non-zeroes are maintained contiguously in an

array val and the indices of these elements are
maintained in another array ind. This means that val[i]
maintains the element in position ind[i]. An instance of
the COO format is shown in Fig. 2 (Vazquez et al.,
2009; Kourtis, 2010).

Secondly: The related works that try to enhance sparse
matrixes in different direction; some of them are
mentioned as follows:

A new format of the sparse matrix for
representation is produced. This format is subjected to
graphics processor architecture and gives 2x to 5x better
performance than Compressed Row Format (CSR) and
Coordinate Format (COO). It is also 3x to 10x better in
performance in comparison with CSR vector format.
Furthermore it provides 10% to 133% improvement in
transferring memory (of only access information of
sparse matrix) between CPU and GPU (Neelima and
Raghavendra, 2012).

A new coefficient and method for storage
coefficient of a large sparse matrix was presented. This
method is simple and in expensive. The aim of this
technique is to decrease the storage of substantial non-
symmetric sparse matrixes. Consequently it is shown
that the suggested technique is significantly inexpensive
in comparison with other available techniques including
Coordinate format, Compressed Sparse Row (CSR)
format and Modified Sparse Row (MSR) format
(Farzaneh et al., 2009).

Comprehensive comparison and evaluation of the
storage efficiency for various sparse matrices storage
such as CSR, Compressed Sparse Column CSC and

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

312

COO are presented. The performance results of matrix-
vector multiplication using these storage formats are
also presented (Stanimirović and Tasić, 2009).

PROPOSED FOLDING TECHNIQUE

When and where this study was conducted: 2017 -
Iraq-Kerbala university.

This proposed Folding Technique consists of three
steps:

• Dividing sparse matrix into four quarters

equivalent to sub matrices
• Applying transformation based on permutation

concept with the sub matrices
• Coding the sub matrices. However, before

describing the proposal, the three steps are
explained in detail in the following sections.

Dividing sparse matrix into four quarters equivalent
to sub matrixes: In this step sparse matrix is divided
into four quarters named as A, B, C, D. and all
dimensions of quarts are equal. In this step all the
following cases are taken into considering:

• If the sparse matrix is square and has odd

dimensions; one zero column and row are added.
Mathematically this can be described as:

o Let ��×� = ����	 be a sparse matrix

and � ��
�
�, � = �� , then � = �� �� ��, where ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×� =����	.
o Let ��×� = ����	 be a sparse matrix

and � �� ���, � = ���� , then � = �� �� ��, where ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×� =����	.
• If the sparse matrix is not square, the following

action is performed:
o Suggest sparse matrix has dimensions 30, 50; 50

minus 30 is performed which is equal to 20.
o Add 20 zero rows to the matrix then divide it to

four quarters as described above

Mathematically this can be described as:
 � � > �, "ℎ
� ∃% ∈ ' �(�ℎ "ℎ�" �= � + % then �= �� �� �� , where ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×�= ����	. � � > �, "ℎ
� ∃% ∈ ' �(�ℎ "ℎ�" �= � + % then �= �� �� �� , where ��×�= ����	, ��×� = ����	, ��×�= ����	, ��×� = ����	

Applying transformations based on the premutation
with the sub matrixes: A permutation is the simple
exchange in the positions of elements within a message,
vector and matrix. Mathematically, a permutation
process generates a permutation of the input data, that
is, the data is simply rearranged. For example, the
group of all permutations of n elements is referred to as
the symmetric group 1� and it is not difficult to verify
that there are �! Permutations in 1� (Davis, 2003;
Mulholland, 2013). In this proposal, permutation is
conducted on the elements of four sub-matrixes as
transformation. Briefly, we will explain these
transformations on one of the sub-matrixes called A.
In mathematical notation, consider:

��×� = 3��� ������ ���… ���… ���⋮ ⋮��� ��� ⋮ ⋮… ���
6

Is square matrix and P is resultant matrix after

conducting transformations on the elements of �.
Four transformations were conducted as follows:
 7�����	 = ��� , ∀�, 9 = 1,2, … , �

This transformation replaces all the rows of a given
matrix with columns and vice-versa as follows:

7�<�= = 3��� ������ ���… ���… ���⋮ ⋮��� ��� ⋮ ⋮… ���
6

 7�����	 = ��><�>�=� , ∀�, 9 = 1,2, … , �

This transformation reverses the order of the
columns. First column will be last column and vice-
versa as follows:

7�<�= = 3��� �<�>�=���� �<�>�=�… ���… ���⋮ ⋮��� �<�>�=� ⋮ ⋮… ���
6

 7?����	 = ���><�>�=, ∀�, 9 = 1,2, … , �

This transformation reverses the order of the rows.
First row will be last row and vice-versa as follows:

7?<�= = 3 ��� �����<�>�= ��<�>�=… ���… ��<�>�=⋮ ⋮��� ��� ⋮ ⋮… ���
6

 7@����	 = ��><�>�=�><�>�=, ∀�, 9 = 1,2, … , �

This transformation reverses the order of the rows
and columns. First row will be last row and vice-versa

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

313

as well as the first column will be last column as
follows:

7@<�= = 3 ��� �<�>�=���<�>�= �<�>�=<�>�=… ���… ��<�>�=⋮ ⋮��� �<�>�=� ⋮ ⋮… ���
6

Coding the sub matrixes: Coding involves the
organization and categorization of data. Codes offer an
option for labeling, compiling and organizing data,
which can be carried out in several ways but normally
involves categorizing words, phrases, numbered or
symbols in various appropriate coding categories
systematically (Baralt, 2012). In this proposal coding is
defined as follows:

Give code value to every three symmetric
elements: ��� , ��� , ��� , ��� are zeroes and one of ��� , ��� , ��� , ��� is not zero for �, 9 = 1, 2, … … , �.

An example of how coding is conducted is shown
below:
 0, 0, 0, 1 give code value equal to 1. 0, 0, 1, 0 give code value equal to 2. 0, 1, 0, 0 give code value equal to 3. 1, 0, 0, 0 give code value equal to 4. 0, 0, 0, 2 give code value equal to 5. 0, 0, 2, 0 give code value equal to 6 and so on.

The following procedure illustrates the coding
operation.
Procedure coding elements of matrixes
Input: a, b, c and d as integer elements
Output: x as integer value
if a, b, c and d are equal 0 then set x = 0
If a, b and c are equal 0 and d greater than 0 then set x =
4*(d-1) +1

If a, b and d are equal 0 and c greater than 0 then
set x = 4*(c-1) +2

If a, c and d are equal 0 and b greater than 0 then
set x = 4*(b-1) +3

If b, c and d are equal 0 and a greater than 0 then
set x = 4*(a-1) +4

Describing the folding technique: In this technique
the sparse matrix is divided into four sub-matrixes as
described in above Section. Coding procedure will be
conducted on the elements of the sub-matrixes, of
which at least every three elements must equal to zero
as described in above Section, otherwise use
transformations to change positions of the elements in
each sub-matrix as described in above section. This
transformation which satisfies the case that at least
three of the symmetric elements ��� , ��� , ��� , ��� are
zeroes for �, 9 = 1, 2, … … , �. Table 1 describes a part
from the transformations which is applied on four sub-
matrixes. Then coding procedure will be conducted to

Table 1: Part of the transformations on the sub-matrixes
No. Transformations
1 ��� , ��� , ��� , ���
2 ��� , ���><�>�=, ��><�>�= �><�>�=, ��><�>�= �
3 ��� , ���><�>�=, �� �><�>�=, ���
4 ��� , ��><�>�=� , ��� , ��><�>�=�
5 ��><�>�=�><�>�=, ��� , �� � , �� �
6 ��� , ��><�>�=�><�>�=, �� � , ���
7 ��� , ��� , ��><�>�=�><�>�=, �� �
8 ��� , ��� , ��� , ��><�>�=�><�>�=
14 ��� , ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=
15 ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�=
16 ��><�>�=�><�>�=, ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=
17 ��><�>�=�><�>�=, ��><�>�=�><�>�=, �� � , ��><�>�=�><�>�=
18 ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�=, ���
19 ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�=
--- ---
--- ---
51 ��� , ��� , ��� , ���
52 ��� , ��� , ��� , ���
53 ��� , ��� , ��� , ���
54 ��� , ��� , ��� , ���
55 ��� , ��� , ��� , ���
56 ��� , ��� , ��� , ���
57 ��� , ��� , ��� , ���
--- ---
--- ---
81 ��><�>�=�><�>�=, ��� , ��� , ���
82 ��� , ��><�>�=�><�>�=, ��� , ���
83 ��� , ��><�>�=�><�>�=, ��� , ���
84 ��� , ��><�>�=�><�>�=, ��� , ���
85 ��� , ��� , ��><�>�=�><�>�=, ���
86 ��� , ��� , ��><�>�=�><�>�=, ���
87 ��� , ��� , ��><�>�=�><�>�=, ���

get new coded matrix. The symbol “---“ in Table 1
means other transformations exist between row 19 and
row 51, as well as between row 57 and row 81. Folding
Algorithm is described in algorithm 1. Unfolding
algorithm retrieves the original sparse matrix from
compressed matrix as described in algorithm 2.

Folding algorithm 1:

1. Input: X is a sparse array.
2. Output: Y is coded array of X, T is a list of

transformer numbers and D1 is a list of dimensions
of array of each division.

3. Divide array X into 4 quarters, each quarter is a
square array and all of them have same size as
described in Section above.

4. Store first quarter in array A, second quarter in
array B, third quarter in array C and last quarter in
array D.

5. Find the transformation that can be applied to all
elements in arrays A, B, C and D.

6. If the transformation exists, encode the elements in
arrays A, B, C, D using encoding procedure, set
X=Y, store the transformation number in list T,
store the dimension of Y in list D1.

7. If the transformation does not exist, end algorithm.
8. Go to 3.

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

314

Fig. 3: Sparse matrix with 599x599

Fig. 4: Sparse matrix with 300x300 in first division

Unfolding algorithm 2:
1. Input: Y is coded array and T is a list of the

transformation numbers of each division and D1 is
a list of dimensions of array of each division.

2. Output: X is decoded array of Y.
3. For each transformation number in list T after

applying it, perform steps 4 to 6.
4. Find Arrays A, B, C and D from array Y using

decoding procedure.
5. Merge the arrays A, B, C and D to get array X.
6. Set Y = X.

Procedure in decoding elements of matrixes:
Input: x is integer number
Output: A, B, C and D are integer numbers
Set a = 0, b = 0, c = 0 and d = 0

If x> 0 and x mod 4 = 0 then set A= x/4
If x> 0 and x mod 4 = 1 then set B = x/4 +1
If x> 0 and x mod 4 = 2 then set C = x/4 + 1
If x> 0 and x mod 4 = 3 then set D = x/4 +1
End.

EXPERIENTIAL RESULTS

In this section several experiments are carried out
to compress sparse matrix with different dimensions as
follows:

Figure 3 shows part of sparse matrix with
dimension 599x599, where as Fig. 4 to 7 show the first
to fourth divisions with dimensions 300x300, 150x150,
75x75 and 38x38 respectively. In Fig. 8 the dimensions

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

315

Fig. 5: Sparse matrix with 150x150 in second division

Fig. 6: Sparse matrix with 75x75 in third division

Fig. 7: Sparse matrix with 38x38 in fourth division

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

316

Fig. 8: Divison stages 5 and 6

Fig. 9: Divison stages 6 and 7

Fig. 10: Sparse matrix with 1000x1000

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

317

of the fifth and sixth divisions were 19x19 and 10x10
respectively. Figure 9 shows the sixth and seventh
divisions with dimensions 10x10 and 5x5 respectively.
The number of transformations applied was 1 in all
divisional stages except the seventh division which was
5. The compress matrix was the matrix in the seventh
division with dimension 5x5.

Figure 10 shows part of sparse matrix with
dimension 1000x1000, while Fig. 11 to 15 shows the
first to fifth divisions with dimensions 500x500, 250x
250, 125x125, 63x63, 32x32 respectively. Figure 16
illustrates the sixth and seventh divisions which have
dimensions 16x16 and 8x8 respectively. The number

Fig. 11: Sparse matrix with 500x500 in first division

Fig. 12: Sparse matrix with 250x250 in second division

Fig. 13: Sparse matrix with 125x125 in third division

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

318

Fig. 14: Sparse matrix with 63x63 in fourth division

Fig. 15: Sparse matrix with 32x32 in fifth division

Fig. 16: Divison stages 6 and 7 with compressed matrix

Res. J. Appl. Sci. Eng. Technol., 14(8): 310-319, 2017

319

Fig. 17: Eighth and ninth divisions

of the transformation applied was 1 in all divisional
stages. The compress matrix was the matrix in the
seventh division with dimension of 8x8.

Briefly the sparse matrix with dimension 3000 x
3000 is present only in the two last divisions where the
compressed matrix resulted from the ninth division with
dimension of 6x6 as shown in Fig. 17.

From the above results it can be noticed that any
matrix can be compressed with any dimension.

CONCLUSION AND RECOMMENDATIONS

The research addressed the limitation of the sparse
matrix which utilizes a large memory to store numerous
zero elements. It is unsuitable for small devices with
limited memory. The novel algorithm should satisfy the
important requirement which is reducing memory
requirement. The sparse matrix requires memory 4.76
MB with dimension 1000 x 1000 while after
compressing it requires memory 400 bytes only. Also
the sparse matrix requires 6 MB with dimension 3000 x
3000 but after compressing it requires 264 bytes only. It
can be shown the memory requirements decreased
when the size of the sparse matrix is compressed.

Future research could investigate the reduction of
memory requirements and overhead in computation by
compressing the sparse matrix through one division
only.

REFERENCES

Baralt, M., 2012. Coding Qualitative Data. In: Mackey,

A. and S.M. Gass (Eds.), Research Methods in
Second Language Acquisition. Wiley-Blackwell,
Malden, pp: 222-244.

Davis, T., 2003. Permutation Groups. No. 3, pp: 1-12.
Retrieved from: http://www.geometer.org/
mathcircles/perm.pdf.

Farzaneh, A., H. Kheiri and M.A. Shahmersi, 2009. An
efficient storage format for large sparse matrices.
Commun. Fac. Sci. Univ., Ank. Series A1, 58(2):
1-10.

González-Domínguez, J., Ó. García-López, G.L.
Taboada, M.J. Martín and J. Touriño, 2013.
Performance evaluation of sparse matrix products
in UPC. J. Supercomput., 64(1): 100-109.

Kourtis, A.K., 2010. Data compression techniques for
performance improvement of memory-intensive
applications on shared memory architectures. Ph.D.
Thesis, Athens, pp: 1-109. Retrieved from:
http://www.cslab.ntua.gr/~kkourt/phd/phd-en.pdf.

Mulholland, J., 2013. Permutation puzzles: A
mathematical perspective. Department of
Mathematics, Simon Fraser University, pp: 1-312.

Neelima, B. and P.S. Raghavendra, 2012. Effective
sparse matrix representation for the GPU
architectures. Int. J. Comput. Sci. Eng. Appl., 2(2):
151-165.

Stanimirović, I.P. and M.B. Tasić, 2009. Performance
comparison of storage formats for sparse matrices.
Facta Univ., (NIˇS) Ser. Math. Inform., 24: 39-51.

Vazquez, F., E.M. Garzon, J.A. Martinez and J.J.
Fernandez, 2009. The sparse matrix vector product
on GPUs. Proceeding of the International
Conference on Computational and Mathematical
Methods in Science and Engineering, pp: 1-13.

