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Abstract: There are many application problems that emerge in the areas of engineering simulations, scientific 
computing, information retrieval and economics which use matrixes where non-zero elements are a significant 
minority with less than 10%. These are universal in many mathematical and scientific applications. These matrixes 
enable the reduction of storage and computational requirements by storing and carrying out arithmetic with, only the 
non-zero elements. This is the sparse matrix which must be compressed for these applications. The sparse matrix 
compression represents non-zero matrix entries. This study presents a novel algorithm for compressing a sparse 
matrix, which involves three steps. Firstly it involves the division of sparse matrix into sub-matrixes; secondly 
conducting several transformations; finally coding them. The novel algorithm is called folding. The compressed 
matrix reduces memory requirement with a good rate compared with the original sparse matrix. C++ is used in the 
implementation of this algorithm. 
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INTRODUCTION 

 
Sparse matrixes are normally of considerable size 

with comparatively limited non-zero elements unlike 
dense matrixes that possess non-zero elements on 
almost all positions of the matrix (Kourtis, 2010). 
Sparse matrixes are present in several applications such 
as structural analysis, computational fluid dynamics, 
modeling in economics, numerical analysis, numerical 
optimization, statistical modeling, analysis of power 
network, electromagnetics, meteorology, medically-
related imaging, data mining, finite-element 
simulations, systems that support decision making in 
management practice, simulating of circuits, retrieving 
of information and many other applications (Farzaneh 
et al., 2009). In most applications involving sparse 
matrixes the size of the matrix is very large. Storing 
such large matrixes is impossible, even on super 
computers. Besides, most of the storage and 
calculations would be wasted on zeros (Stanimirović 
and Tasić, 2009). The storage and computational 
requirements of these matrixes can be minimized by 
different approaches (Stanimirović and Tasić, 2009; 
Kourtis, 2010; Neelima and Raghavendra, 2012; 
Farzaneh et al., 2009). Compression can be considered 
as trading data for computation: which leads to a 
reduction in data and higher computational over head 
and more space. There have been several significant 
developments in sparse matrix computations in recent 
years and some of them have involved the compression 
of sparse matrix by minimizing its zero elements which 

are Compressed Row Storage, the Jagged Diagonal 
Formator Compressed Diagonal Storage format 
(Kourtis, 2010; Farzaneh et al., 2009). As each method 
depends on the benefits derived from the characteristic 
of a particular sparse matrix, hence results vary in 
levels of space efficiency. Sparse matrixes are operated 
by direct utilization of their storage formats which 
should offer economy of storage and computational 
activity. Sparse matrix has the advantage over dense 
matrix in that it can handle substantial problems that 
dense matrix is incapable. Sparse matrixes comprise 
structured and unstructured types. In the case of a 
structured matrix its non-zero entries have a consistent 
pattern along a few diagonals. Also, it could comprise 
the non-zero elements in blocks such as similarly-sized 
dense sub matrixes, which shape a consistent pattern 
along a few block diagonals. In comparison, an 
irregularly structured matrix has irregular entries 
(Kourtis, 2010). In this study a novel proposal to 
compress large sparse matrix into a dense matrix is 
introduced. This proposal can work on structured and 
unstructured sparse matrixes. Early results indicate that 
this proposed algorithm possesses excellent results that 
are related to memory requirement.  
 

LITERATURE REVIEW 
 

The related works are as follows: Firstly: the initial 
works relate to the improved application performance 
that is sparse-based on different representations 
numbering more than thirteen. Compressed Sparse Row  
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Fig. 1: CSR format 
 

 
 
Fig. 2: COO format 
 
(CSR), Compressed Sparse Column (CSC) and 
Coordinate format (COO) are the significant are 
popularly used storage techniques (Farzaneh et al., 
2009). 

Compressed Sparse Row (CSR) was a proposal of 
A. Brameller and D.J. Rose, which has beena widely-
used method to store very sizeable sparse matrixes.CSR 
provides storage for the sparse matrixes arranged in a 
series of sparse vectors (one for each row) and permits 
random access to whole rows. In specific terms, the 
storage of the matrix is in three arrays: values, row_ptr 
and col_ind. The values array provides storage for the 
non-zero elements of the matrix in row-major order, 
where as the other two arrays provide storage for 
indexing information: row_ptr containing the location 
of the first (non-zero) element of each row within the 
values array and col_ind containing the column number 
for every non-zero element. A sample of the CSR 
format is shown in Fig. 1 (Farzaneh et al., 2009; 
Kourtis, 2010; Stanimirović and Tasić, 2009). 

Compressed Sparse Column (CSC) is comparable 
to CSR, except for the consecutive storage in columns 
of the non-zero elements (Stanimirović and Tasić, 
2009; González-Domínguez et al., 2013). 

Coordinate Format (COO) is a very simple sparse 
storage format. In CCO the compression of a sparse 
matrix is directly transformed from the dense format 
which retains the non-zero elements together with their 
corresponding indices in their matrix location. For 
example, the COO format for a vector is referred to as a 
compressed sparse vector or just sparse vector, within 
which the non-zeroes are maintained contiguously in an 

array val and the indices of these elements are 
maintained in another array ind. This means that val[i] 
maintains the element in position ind[i]. An instance of 
the COO format is shown in Fig. 2 (Vazquez et al., 
2009; Kourtis, 2010). 
 
Secondly: The related works that try to enhance sparse 
matrixes in different direction; some of them are 
mentioned as follows:  

A new format of the sparse matrix for 
representation is produced. This format is subjected to 
graphics processor architecture and gives 2x to 5x better 
performance than Compressed Row Format (CSR) and 
Coordinate Format (COO). It is also 3x to 10x better in 
performance in comparison with CSR vector format. 
Furthermore it provides 10% to 133% improvement in 
transferring memory (of only access information of 
sparse matrix) between CPU and GPU (Neelima and 
Raghavendra, 2012). 

A new coefficient and method for storage 
coefficient of a large sparse matrix was presented. This 
method is simple and in expensive. The aim of this 
technique is to decrease the storage of substantial non-
symmetric sparse matrixes. Consequently it is shown 
that the suggested technique is significantly inexpensive 
in comparison with other available techniques including 
Coordinate format, Compressed Sparse Row (CSR) 
format and Modified Sparse Row (MSR) format 
(Farzaneh et al., 2009). 

Comprehensive comparison and evaluation of the 
storage efficiency for various sparse matrices storage 
such as CSR, Compressed Sparse Column CSC and 
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COO are presented. The performance results of matrix-
vector multiplication using these storage formats are 
also presented (Stanimirović and Tasić, 2009). 
 

PROPOSED FOLDING TECHNIQUE 
 
When and where this study was conducted: 2017 -
Iraq-Kerbala university. 

This proposed Folding Technique consists of three 
steps: 

 
• Dividing sparse matrix into four quarters 

equivalent to sub matrices 
• Applying transformation based on permutation 

concept with the sub matrices  
• Coding the sub matrices. However, before 

describing the proposal, the three steps are 
explained in detail in the following sections. 

 
Dividing sparse matrix into four quarters equivalent 
to sub matrixes: In this step sparse matrix is divided 
into four quarters named as A, B, C, D. and all 
dimensions of quarts are equal. In this step all the 
following cases are taken into considering:  
 
• If the sparse matrix is square and has odd 

dimensions; one zero column and row are added.  
Mathematically this can be described as: 

o Let ��×� = ����	 be a sparse matrix 

and � �� 
�
�, � = �� , then � = �� �� ��, where ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×� =����	.  
o Let ��×� = ����	 be a sparse matrix 

and � �� ���, � = ���� , then � = �� �� ��, where ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×� =����	. 
• If the sparse matrix is not square, the following 

action is performed: 
o Suggest sparse matrix has dimensions 30, 50; 50 

minus 30 is performed which is equal to 20. 
o  Add 20 zero rows to the matrix then divide it to 

four quarters as described above 
 

Mathematically this can be described as: 
  �  � > �, "ℎ
� ∃% ∈ ' �(�ℎ "ℎ�" �= � + % then �= �� �� �� , where  ��×� = ����	, ��×� = ����	, ��×� = ����	, ��×�= ����	.  �  � > �, "ℎ
� ∃% ∈ ' �(�ℎ "ℎ�" �= � + % then �= �� �� �� , where ��×�= ����	, ��×� = ����	, ��×�= ����	, ��×� = ����	 

Applying transformations based on the premutation 
with the sub matrixes: A permutation is the simple 
exchange in the positions of elements within a message, 
vector and matrix. Mathematically, a permutation 
process generates a permutation of the input data, that 
is, the data is simply rearranged. For example, the 
group of all permutations of n elements is referred to as 
the symmetric group 1� and it is not difficult to verify 
that there are �! Permutations in 1� (Davis, 2003; 
Mulholland, 2013). In this proposal, permutation is 
conducted on the elements of four sub-matrixes as 
transformation. Briefly, we will explain these 
transformations on one of the sub-matrixes called A. 
In mathematical notation, consider: 
 

��×� = 3��� ������ ���… ���… ���⋮ ⋮��� ��� ⋮ ⋮… ���
6 

 
Is square matrix and P is resultant matrix after 

conducting transformations on the elements of �. 
Four transformations were conducted as follows: 
 7�����	 = ��� , ∀�, 9 = 1,2, … , � 
 

This transformation replaces all the rows of a given 
matrix with columns and vice-versa as follows: 
 

7�<�= = 3��� ������ ���… ���… ���⋮ ⋮��� ��� ⋮ ⋮… ���
6 

 7�����	 = ��><�>�=� , ∀�, 9 = 1,2, … , � 
 

This transformation reverses the order of the 
columns. First column will be last column and vice-
versa as follows: 

 

7�<�= = 3��� �<�>�=���� �<�>�=�… ���… ���⋮ ⋮��� �<�>�=� ⋮ ⋮… ���
6 

  7?����	 = ���><�>�=, ∀�, 9 = 1,2, … , � 
 

This transformation reverses the order of the rows. 
First row will be last row and vice-versa as follows: 

 

7?<�= = 3 ��� �����<�>�= ��<�>�=… ���… ��<�>�=⋮ ⋮��� ��� ⋮ ⋮… ���
6 

   7@����	 = ��><�>�=�><�>�=, ∀�, 9 = 1,2, … , � 
 

This transformation reverses the order of the rows 
and columns. First row will be last row and vice-versa 
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as well as the first column will be last column as 
follows: 
 

7@<�= = 3 ��� �<�>�=���<�>�= �<�>�=<�>�=… ���… ��<�>�=⋮ ⋮��� �<�>�=� ⋮ ⋮… ���
6 

  
Coding the sub matrixes: Coding involves the 
organization and categorization of data. Codes offer an 
option for labeling, compiling and organizing data, 
which can be carried out in several ways but normally 
involves categorizing words, phrases, numbered or 
symbols in various appropriate coding categories 
systematically (Baralt, 2012). In this proposal coding is 
defined as follows: 

Give code value to every three symmetric 
elements: ��� , ��� , ��� , ��� are zeroes and one of ��� , ��� , ��� , ��� is not zero for �, 9 = 1, 2, … … , �.  

An example of how coding is conducted is shown 
below: 
 0, 0, 0, 1 give code value equal to 1.  0, 0, 1, 0 give code value equal to 2. 0, 1, 0, 0 give code value equal to 3. 1, 0, 0, 0 give code value equal to 4. 0, 0, 0, 2 give code value equal to 5. 0, 0, 2, 0 give code value equal to 6 and so on.  
 

The following procedure illustrates the coding 
operation. 
Procedure coding elements of matrixes 
Input: a, b, c and d as integer elements 
Output: x as integer value 
if a, b, c and d are equal 0 then set x = 0 
If a, b and c are equal 0 and d greater than 0 then set x = 
4*(d-1) +1 

If a, b and d are equal 0 and c greater than 0 then 
set x = 4*(c-1) +2 

If a, c and d are equal 0 and b greater than 0 then 
set x = 4*(b-1) +3 

If b, c and d are equal 0 and a greater than 0 then 
set x = 4*(a-1) +4 
 
Describing the folding technique: In this technique 
the sparse matrix is divided into four sub-matrixes as 
described in above Section. Coding procedure will be 
conducted on the elements of the sub-matrixes, of 
which at least every three elements must equal to zero 
as described in above Section, otherwise use 
transformations to change positions of the elements in 
each sub-matrix as described in above section. This 
transformation which satisfies the case that at least 
three of the symmetric elements ��� , ��� , ��� , ��� are 
zeroes for �, 9 = 1, 2, … … , �. Table 1 describes a part 
from the transformations which is applied on four sub-
matrixes. Then  coding  procedure  will be conducted to  

Table 1: Part of the transformations on the sub-matrixes 
No. Transformations 
1 ��� , ��� , ��� , ��� 
2 ��� , ���><�>�=, ��><�>�= �><�>�=, ��><�>�= � 
3 ��� , ���><�>�=, �� �><�>�=, ���  
4 ��� , ��><�>�=� , ��� , ��><�>�=� 
5 ��><�>�=�><�>�=, ��� , �� � , �� � 
6 ��� , ��><�>�=�><�>�=, �� � , ��� 
7 ��� , ��� , ��><�>�=�><�>�=, �� � 
8 ��� , ��� , ��� , ��><�>�=�><�>�= 
14 ��� , ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�= 
15 ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�= 
16 ��><�>�=�><�>�=, ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�= 
17 ��><�>�=�><�>�=, ��><�>�=�><�>�=, �� � , ��><�>�=�><�>�= 
18 ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��� 
19 ��� , ��><�>�=�><�>�=, ��><�>�=�><�>�=, ��><�>�=�><�>�= 
--- --- 
--- --- 
51 ��� , ��� , ��� , ��� 
52 ��� , ��� , ��� , ��� 
53 ��� , ��� , ��� , ��� 
54 ��� , ��� , ��� , ��� 
55 ��� , ��� , ��� , ��� 
56 ��� , ��� , ��� , ��� 
57 ��� , ��� , ��� , ��� 
--- --- 
--- --- 
81 ��><�>�=�><�>�=, ��� , ��� , ��� 
82 ��� , ��><�>�=�><�>�=, ��� , ��� 
83 ��� , ��><�>�=�><�>�=, ��� , ��� 
84 ��� , ��><�>�=�><�>�=, ��� , ��� 
85 ��� , ��� , ��><�>�=�><�>�=, ��� 
86 ��� , ��� , ��><�>�=�><�>�=, ��� 
87 ��� , ��� , ��><�>�=�><�>�=, ��� 
 

get new coded matrix. The symbol “---“ in Table 1 
means other transformations exist between row 19 and 
row 51, as well as between row 57 and row 81. Folding 
Algorithm is described in algorithm 1. Unfolding 
algorithm retrieves the original sparse matrix from 
compressed matrix as described in algorithm 2. 

 

Folding algorithm 1: 

1. Input: X is a sparse array. 
2. Output: Y is coded array of X, T is a list of 

transformer numbers and D1 is a list of dimensions 
of array of each division. 

3. Divide array X into 4 quarters, each quarter is a 
square array and all of them have same size as 
described in Section above. 

4. Store first quarter in array A, second quarter in 
array B, third quarter in array C and last quarter in 
array D. 

5. Find the transformation that can be applied to all 
elements in arrays A, B, C and D.  

6. If the transformation exists, encode the elements in 
arrays A, B, C, D using encoding procedure, set 
X=Y, store the transformation number in list T, 
store the dimension of Y in list D1. 

7.  If the transformation does not exist, end algorithm. 
8.  Go to 3. 
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Fig. 3: Sparse matrix with 599x599 

 

 
 
Fig. 4: Sparse matrix with 300x300 in first division 
 
Unfolding algorithm 2: 
1. Input: Y is coded array and T is a list of the 

transformation numbers of each division and D1 is 
a list of dimensions of array of each division. 

2. Output: X is decoded array of Y. 
3. For each transformation number in list T after 

applying it, perform steps 4 to 6. 
4. Find Arrays A, B, C and D from array Y using 

decoding procedure. 
5. Merge the arrays A, B, C and D to get array X. 
6. Set Y = X. 
 
Procedure in decoding elements of matrixes: 
Input: x is integer number 
Output: A, B, C and D are integer numbers 
Set a = 0, b = 0, c = 0 and d = 0 

If x> 0 and x mod 4 = 0 then set A= x/4 
If x> 0 and x mod 4 = 1 then set B = x/4 +1 
If x> 0 and x mod 4 = 2 then set C = x/4 + 1 
If x> 0 and x mod 4 = 3 then set D = x/4 +1 
End. 

 

EXPERIENTIAL RESULTS 

 

In this section several experiments are carried out 
to compress sparse matrix with different dimensions as 
follows: 

Figure 3 shows part of sparse matrix with 
dimension 599x599, where as Fig. 4 to 7 show the first 
to fourth divisions with dimensions 300x300, 150x150, 
75x75 and 38x38 respectively. In Fig. 8 the  dimensions  
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Fig. 5: Sparse matrix with 150x150 in second division 
 

 
 
Fig. 6: Sparse matrix with 75x75 in third division 
 

 
 
Fig. 7: Sparse matrix with 38x38 in fourth division 
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Fig. 8: Divison stages 5 and 6 

 

 
 
Fig. 9: Divison stages 6 and 7 

 

 
 
Fig. 10: Sparse matrix with 1000x1000 
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of the fifth and sixth divisions were 19x19 and 10x10 
respectively. Figure 9 shows the sixth and seventh 
divisions with dimensions 10x10 and 5x5 respectively. 
The number of transformations applied was 1 in all 
divisional stages except the seventh division which was 
5. The compress matrix was the matrix in the seventh 
division with dimension 5x5. 

Figure 10 shows part of sparse matrix with 
dimension 1000x1000, while Fig. 11 to 15 shows the 
first to fifth divisions with dimensions 500x500, 250x 
250, 125x125, 63x63, 32x32 respectively. Figure 16 
illustrates the sixth and seventh divisions which have 
dimensions  16x16  and  8x8  respectively.  The number  

 

 
 
Fig. 11: Sparse matrix with 500x500 in first division 
 

 
 
Fig. 12: Sparse matrix with 250x250 in second division 
 

 
 
Fig. 13: Sparse matrix with 125x125 in third division 
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Fig. 14: Sparse matrix with 63x63 in fourth division 
 

 
 
Fig. 15: Sparse matrix with 32x32 in fifth division 

 

 
 
Fig. 16: Divison stages 6 and 7 with compressed matrix 
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Fig. 17: Eighth and ninth divisions 
 
of the transformation applied was 1 in all divisional 
stages. The compress matrix was the matrix in the 
seventh division with dimension of 8x8. 

Briefly the sparse matrix with dimension 3000 x 
3000 is present only in the two last divisions where the 
compressed matrix resulted from the ninth division with 
dimension of 6x6 as shown in Fig. 17. 

From the above results it can be noticed that any 
matrix can be compressed with any dimension. 
 

CONCLUSION AND RECOMMENDATIONS 
 

The research addressed the limitation of the sparse 
matrix which utilizes a large memory to store numerous 
zero elements. It is unsuitable for small devices with 
limited memory. The novel algorithm should satisfy the 
important requirement which is reducing memory 
requirement. The sparse matrix requires memory 4.76 
MB with dimension 1000 x 1000 while after 
compressing it requires memory 400 bytes only. Also 
the sparse matrix requires 6 MB with dimension 3000 x 
3000 but after compressing it requires 264 bytes only. It 
can be shown the memory requirements decreased 
when the size of the sparse matrix is compressed.  

Future research could investigate the reduction of 
memory requirements and overhead in computation by 
compressing the sparse matrix through one division 
only. 
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