Research Article
The Technology of Non-thermal Plasma Assisted NH₃-SCR Reduce Marine Diesel Emission and Aldehydes Byproducts Formation

1, 2 Lei Jiang, 3 Yixi Cai and 3 Yong Luo
1 School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212003, China
2 School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
3 Nantong Rainbow Offshore and Engineer Equipment Co., Ltd, Nantong, 226300, China

Abstract: This study describes briefly various after-treatment technologies in marine diesel engines and application difficulties of DPF and SCR are included. An experiment has been conducted using non-thermal plasma generated by Dielectric Barrier Discharge (DBD) process assisted NH₃-SCR catalyst to reduce the nitrogen oxides (NOx) from diesel engine exhaust. The formation mechanism of byproducts-type such as HCHO and CH₃CHO in the non-thermal plasma assisted NH₃-SCR hybrid system.

Keywords: Marine diesel, after-treatment technology, selective catalytic reduction, non-thermal plasma, aldehydes byproducts

INTRODUCTION

The high efficiency of the diesel engine has made it the primary propulsion source for marine applications worldwide (Müller et al., 2003). For the marine engine, the International Maritime Organization (IMO) issued the stringent Tier III standards requiring that by 2016 the NOx emissions from marines entering Emission Control Area (ECA) must be lower than 3.49 g/kWh, which is 80% less than that of Tier I in 2000. Among lots of techniques for the marine engine NOx abating, SCR is the most promising one for Tier III showed in Fig. 1 (Lei and Jun, 2013; Bin et al., 2011b).

Selective Catalytic Reduction (SCR), using urea as a reductant in the exhaust over a catalyst, can produce NOx reduction of ~90% or more. One alternative to SCR under consideration is Non-Thermal Plasma (NTP) and catalyst hybrid system where the reductant is a hydrocarbon-designated Plasma Assisted Catalytic Reduction (PACR). One potential advantage of the PACR approach is that the diesel fuel itself can be the reductant thus removing the need for a urea infrastructure (McAdams et al., 2008).

CURRENT TECHNOLOGY

SCR technology: One of the solutions is Selective Catalytic Reduction (SCR)-an emissions-reduction technology with the ability to deliver near-zero emissions of nitrogen oxides (NOx), a smog-causing pollutant and greenhouse gas. SCR's performance has been proved in millions of miles of real-world truck operations in other countries, as well as in long-term field tests in the U.S. SCR reduces NOx emissions to very low levels, while at the same time delivering excellent fuel economy and reliability. The system doesn't change the basic design or operation of the engine (Müller et al., 2003). The overview of SCR systems is shown in Fig. 2.

NOx in diesel exhaust is usually composed of >90% NO. Therefore, the main reaction of SCR (Koebel et al., 2000) with ammonia will be:

\[\text{4NH}_3 + \text{O}_2 \rightarrow \text{2N}_2 + 6\text{H}_2\text{O} \]
This reaction implies a 1:1 stoichiometry for NH₃
and NO and the consumption of some oxygen. The
reaction consuming no oxygen is much slower and is
therefore not relevant in lean combustion gases:

$$4NH_3 + 6NO \rightarrow 5N_2 + 6H_2O$$ \hspace{1cm} (2)

On the other hand, the reaction rate with equimolar
amounts of NO and NO₂ is much faster than that of the
main reaction (1):

$$4NH_3 + 2NO + 2NO_2 \rightarrow 4N_2 + 6H_2O$$ \hspace{1cm} (3)

It should be mentioned that the reaction with pure
NO₂ is again slower than reactions (1) and (3):

$$4NH_3 + 3NO_2 \rightarrow \frac{7}{2}N_2 + 6H_2O$$ \hspace{1cm} (4)

At high temperatures (>400 °C) the commonly
used catalysts based on TiO₂–WO₃–V₂O₅ tend to form
nitrous oxide. One of the possible reactions leading to
nitrous oxide is:

$$4NH_3 + 4NO + 3O_2 \rightarrow 4N_2O + 6H_2O$$ \hspace{1cm} (5)

At still higher temperatures, ammonia may be
oxidized to NO, thus limiting the maximum NOx
conversion:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$ \hspace{1cm} (6)

However, fuel sulfur content seems to be a major
issue common to all emissions after-treatment systems. The
SCR technology may not be significantly damaged
by higher than regulated sulfur fuel levels but the PM
emission limits would not be achieved. Especially when
an oxidation catalyst or a particulate trap is used,
increasing the fuel sulfur level results in progressively
increased PM mass fraction (Müller et al., 2003). The
drawback factors for SCR systems is shown in Fig. 3.

NTP technology: Plasma is called the forth form of
material besides solid, liquid and gas. According to
the particle temperature, it can be divided into thermal
Plasma and Non-Thermal Plasma (NTP). Non-thermal
plasma is mainly produced by gas discharge, discharge
gas electronic temperature typically up to tens of
kelvin, while the other particle temperature is 300–500
K. Non-thermal plasma reactors can be used as a
particulate trap or as a NOx converter. The effective
oxidation of NO to NO₂ is produced by active
compounds, which are generated in plasma. Particulate
trapping in a plasma reactor can be accomplished by
electrostatic precipitation. The oxidation of the carbon
fraction by NO₂ can be used to decrease the
concentration of particulate matter. The general gas
discharge generation of plasma belongs to low
temperature plasma (Chae, 2003).

Dielectric Barrier Discharge (DBD) is one of non-
thermal plasma techniques and it offers the advantage
to excite molecules for reaction processes on a low
temperature level in the near-atmospheric pressure
range (Lee et al., 2004) NOx is reduced at low
temperature when NO₂ is involved in the reaction
Mechanism. Therefore, if non-thermal plasma converts NO to NO\textsubscript{2}, the reduction rate of NO\textsubscript{x} will be greatly enhanced in the catalytic process even at a low temperature.

Figure 4 shows the plasma reactor used in the experiments. The reactor geometry was a concentric cylinder. The stainless steel discharge electrode has a smooth surface. Cylindrical dielectric barriers made of pyrex was wrapped with a copper film tape serving as a grounded electrode. Generally there are two kinds of DBD reactors. One is a single dielectric barrier discharge reactor that uses only one dielectric material around the internal or external electrodes. The other is a double DBD reactor that uses a dielectric material around both of electrodes. We used a single DBD type reactor.

Formation of active components as radical is induced by electron impacts with the main components of the exhaust gas: nitrogen, oxygen, water and carbon dioxide:

\begin{equation}
 e + O\textsubscript{2} \rightarrow e + O(\text{^3}P) + O(\text{^3}P)
\end{equation}

\begin{equation}
 e + O\textsubscript{2} \rightarrow e + O(\text{^3}P) + O(\text{^1}D)
\end{equation}

\begin{equation}
 e + N\textsubscript{2} \rightarrow e + N(\text{^4}S) + N(\text{^4}S)
\end{equation}

\begin{equation}
 e + N\textsubscript{2} \rightarrow e + O(\text{^4}S) + O(\text{^1}N)
\end{equation}

\begin{equation}
 e + H\textsubscript{2}O \rightarrow +e + O + OH
\end{equation}

\begin{equation}
 e + CO\textsubscript{2} \rightarrow e + O + CO
\end{equation}

OH radicals can be formed more efficient in reaction:

\begin{equation}
 O(\text{^1}D) + H\textsubscript{2}O \rightarrow OH + OH
\end{equation}

DPF technology: A Diesel Particulate Filter (DPF) is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine. The regeneration of a diesel filter is characterized by a dynamic equilibrium between the PM being captured in the filter and the PM being oxidized Chae et al. (2003). The rate of PM oxidation depends on the filter temperature. At temperatures typically found in diesel exhaust gases, the rate of PM oxidation is small. Therefore, to facilitate filter regeneration, either the exhaust gas temperature has to be increased or a catalyst has to be applied. The catalyst can be applied directly onto the filter media or dissolved in fuel as a fuel additive.

Figure 5 shows a typical wall flow monolith for Diesel Engine Particulate Filter (DPF). Most catalyzed diesel traps utilize monolithic wall flow substrates coated with a catalyst. The catalyst lowers the PM combustion temperature, allowing the filter to self-regenerate during periods of high exhaust gas temperature. A number of diesel filter catalysts have been developed, increasing both noble and base metal formulations. Bickel and Majewski (1993) and Hartwig (1985) suggested that a catalyzed ceramic traps exhibit very good diesel particulate matter filtration efficiencies, but were characterized by relatively high exhaust gas pressure drop.

EXPERIMENTAL SECTION AND ALDEHYDES BYPRODUCTS EVOLVEMENT RULES

Guan et al. (2012), He et al. (2010), Bin et al. (2011a), Gregorio et al. (2004), Koebel et al. (2001), Hammer et al. (2004), Young et al. (2003), Stefan and Thomas (2000) and Takayuki et al. (2010) had researched Non-thermal plasma assisted NH\textsubscript{3}-SCR hybrid system to reduce NO\textsubscript{x}, also found that the energy density has a significant effect on the NO\textsubscript{x} removal efficiency at low reaction temperatures (<250°C) and the effect almost disappears at higher temperatures in the range of 300-450°C (He et al., 2010).

Because the non-thermal plasma assisted NH\textsubscript{3}-SCR coupling system with all kinds of by-products, such as C\textsubscript{3}H\textsubscript{6} incomplete oxidation produce CO, formaldehyde (HCHO), acetaldehyde (CH\textsubscript{3}CHO), ozone (O\textsubscript{3}) and nitro methyl ester (CH\textsubscript{2}ONO\textsubscript{2}), formic acid (CH\textsubscript{2}O\textsubscript{2}), nitrous acid (HONO) and so on, also may with N species nonselective reaction generated HCN, N\textsubscript{2}O, N\textsubscript{2}O\textsubscript{5}, N\textsubscript{2}O\textsubscript{3} species, etc. For the non-thermal plasma assisted NH\textsubscript{3}-SCR coupling system, it is important not only to evaluate the efficiency of conversion of NO\textsubscript{x} (active) and resistance to SO\textsubscript{2}, but also to monitor, whole process of produce by-products such as CO, N\textsubscript{2}O, HCHO, CH\textsubscript{3}CHO.

The schematic diagram of the DBD facilitated NH\textsubscript{3}-SCR hybrid system is presented in Fig. 6 (Bin et al., 2011a). The reaction system by DBD reactor and
SCR will reactor in series composition. A corundum tube with 20 mm internal diameter and 25 mm external diameter were used as the dielectric. A diameter 14 mm screw stainless steel placed on corundum tube’s axis as a grounding electrode.

The outer surface of the corundum tube was wrapped with stainless steel net and linked to the high voltage which frequency is 50 Hz. The effective length of plasma discharge area is from 0 to 150 mm by changing the length of the stainless steel net. The SCR reactor is an inner diameter of 16 mm and a length of 800 mm quartz tube, which loaded the catalyst. And placed it into a tubular resistance furnace equipped with a temperature-programmed temperature controller. The DBD reactor was placed downstream of an electric tubular resistance furnace, in which the reacting gases can be heated up before entering the DBD reactor. Results and discussion are showed in article (Bin et al., 2011a).

Formaldehyde (HCHO) and acetaldehyde (CH\textsubscript{3}CHO) are determined as the major aldehydes-type unregulated byproduct constituents of partial oxidation of C\textsubscript{3}H\textsubscript{6} in the plasma process according to the selective absorption of gas on FTIR spectra. Using C\textsubscript{3}H\textsubscript{6} as an additive generating HCHO and CH\textsubscript{3}CHO in the DBD reactor and this can be explained from two aspects: the first is that C\textsubscript{3}H\textsubscript{6} can directly react with O radicals to produce HCHO via reaction (14) and the second is that several intermediate species of C\textsubscript{3}H\textsubscript{6} decomposition and fragments can further form HCHO and CH\textsubscript{3}CHO easily via the following reactions (14)-(23) listed in Table 1.

As shown in Fig. 7 is the Concentration of HCHO and CH\textsubscript{3}CHO formation at the outlet the DBD reactor as a function of energy density at different concentration of C\textsubscript{3}H\textsubscript{6}. It is observed from Fig. 7 that the generation amount of HCHO and CH\textsubscript{3}CHO with the increase of the input energy density and the added C\textsubscript{3}H\textsubscript{6} concentration increased, especially in the case of high energy density input and the high concentration of C\textsubscript{3}H\textsubscript{6}. Since the decomposition of C\textsubscript{3}H\textsubscript{6}, a large amount of HCHO and CH\textsubscript{3}CHO was emitted form the DBD reactor.

Reaction (23) for CH\textsubscript{3}CHO formation reaction, the reaction rate is proportional to the temperature, but as a
result of the reaction of reactant CH₃CHO generation rate and temperature is inversely proportional, eventually leading to generate CH₃CHO general rate and temperature is inversely proportional. Also, because the CH₃CHO SCR reactor in NO, NO₂, NH₃ reaction, cause only a small amount of CH₃CHO can be detected by DBD-SCR outlet.

CONCLUSION

- It have been confirmed that after-treatments device must be used in order to meet the more stringent emission regulations in the future. The technology which could remove oxide of NOx and PM from diesel exhaust simultaneously will have greater development potential and will become the focus of future research. The technology of non-thermal plasma assisted SCR is a very promising technique.
- The concentration of HCHO and CH₃CHO increases with the growing of energy density as well as the C₂H₆ addition increases and decreases with the reaction temperatures increasing. HCHO and CH₃CHO are almost completely removed when the feed gas is processed in the catalytic reactor, i.e., the concentration of HCHO and CH₃CHO at the outlet of the plasma catalytic reactor is only a few ppm, indicating that HCHO and CH₃CHO can make a difference to the NOx removal in the NH₃-SCR reactions.

ACKNOWLEDGMENT

This study was financially supported by the advantages of Jiangsu province college preponderant discipline (Naval Architecture and Marine Engineering).

REFERENCES

