Research Article

Effect of Shoes’ Heel Height on the Energy Cost during Jogging

Y.D. Gu and Z.Y. Li

School of Biological Science and Medical Engineering, Southeast University, Jiangsu 210096, P.R. China

Abstract: The purpose of this study is to examine the changes of energy cost during a high-heeled continuous jogging. Thirteen healthy female volunteers jointed in this study with heel height of the shoes varied from 1, 4.5 and 7 cm, respectively. Each subjects jogged on the treadmill with K4b2 portable gas analysis system. The results of this study showed that ventilation, relative oxygen consumption and energy expenditure increased with the increase of heel height and these values shows significantly larger when the heel height reached to 7 cm. Present study suggest that wearing high heel shoes jogging could directly increase energy consumption, causing neuromuscular fatigue.

Keywords: Energy cost, high-heeled shoes, jogging

INTRODUCTION

In today’s society, fashionable footwear designs are now becoming increasingly complex and incorporating high heels. Footwear purchase is dictated by fashion and not a sense of comfort; for many people fashion surpasses the need of comfort (Gu et al., 2010a). But high heeled shoes have come under much speculation as one of the causative factors for forefoot pain and discomfort. Dawson et al. (2002) reported that a prevalence proportion of foot problems in women were associated with wearing high-heeled shoes. A study in Netherlands found that 60% of women suffered foot problems directly caused by shoes (Postema et al., 1998). Studies on high heel shoes effect have become a hot issue in biomechanical field (Postema et al., 1998; Esenyel et al., 2003; Gu et al., 2010b). Biomechanical studies showed that walking in high-heeled shoes may alter lower-extremity joint function (Esenyel et al., 2003), raise the peak pressure in the fore foot (Mandato and Nester, 1999) and alter the load distribution on the media foot region (Eisengardt et al., 1996). However, few investigations available to discuss the detailed features of energy cost with high-heeled shoes.

People are often being in a hurry state to adapt to quickening of life pace. Therefore, jogging with high-heeled shoes becomes an unavoidable situation. Energy coast information about jogging under high-heeled shoes condition would be important to the modern life. It has been shown that heel height change could adjust lower limb musculature differently during locomotion (Gu et al., 2010b) Conversely, the variety in lower limb muscular activity (Bourgit et al., 2008) could change the energetic requirements. The purpose of this study is to examine the changes of energy cost along a continuum of heel heights to understand the physiology level alteration after heel heights variety.

MATERIALS AND METHODS

Fifteen young healthy females jointed in this study voluntarily without any injury likely to influence the jogging gait. They had no cardiovascular or neuromuscular disorders, either. The average age of the subjects was 22.75±0.83 years, average height was 165±1.22 cm and average weight was 54.75±3.11 kg. Foot size of subjects is 37 EUR and fit for the experimental shoes. All subjects habitually wore flat-heeled shoes and possess treadmill jogging experience.

Three shoes (Fig. 1) were used in the study. One was a common sneaker weighing 358 g with whole outsole height 1.2 cm (flat heels). One was a stiletto-heeled shoe weighing 366 g with heel height 4.5 cm (low heels). And the other one was a stiletto-heeled shoe weighing 368 g with heel height 7 cm (high heels).

Firstly, subjects were informed whole experiment process. Before the test, subjects were given 10 minutes warm up stage, putting on the K4b2 portable gas analysis system, to adapt the feeling with the face mask. The treadmill speed was gradually increased to 6.5 km/h; five min in each of the test shoes jogging.
at 6.5 km/h were collected. The analysis software of K4b² portable gas analysis system could record many indexes of cardio-pulmonary function and energy cost of each breathing. Minute Ventilation (VE), relative Oxygen consumption (VO₂) and Energy Expenditure (EE) in 10 sec’ steady state were chosen in this study.

Statistical analyses were carried out using SPSS19.0 statistical analysis software and data were presented as means and SD. Analysis of variance (ANOVA) was employed to study the effects of heel height and Turkey test was used for post hoc comparison with the level of statistical significance was set at the 5% level.

RESULTS AND DISCUSSION

Table 1 showed the value of VE, VO₂ and EE with each testing shoes during treadmill jogging. It clearly described that these indexes were highly elevated when the heel height increased. Compared with each other, there was a significant difference between flat heels and high heels (p<0.05). In contrast with flat heels condition, all indexes in treadmill jogging with low heels increased around 25%. While the raising percentage of VE, VO₂ and EE between high heels and low heels was not so obvious, just 12.98, 8.79 and 10.12%, respectively.

The main finding of the present study was that relative oxygen consumption and energy expenditure increased with the increase of heel height, particularly in 7 cm high-heeled shoes which shown a significant difference compared to flat heel. This increased energy cost of jogging may result from the biomechanical changes imposed by the heel height. When jogging in the most comfortable situation, human body’s physical function was present the most economy state. But high-heeled shoes had restricted knee and ankle range of motion, increasing knee flexion (Anna et al., 2012). Furthermore, the foot wearing high-heeled shoes would naturally place in plantar-flexed position, which could lead to stride length shorten (Wu and Li, 2003). In order to maintain the fast speed and specific posture, the stride frequency must increase during jogging, which would increase the energy cost in turn.

Wang et al. (2008) found that the footwear’s weight was highly related to the energy cost. The weight of experimental shoes in this study was controlled at the same level to focus on the heel height effect only. While increased impulse in the forefoot with high-heeled shoes may contribute to elevate energy cost (Eisengardt et al., 1996). In this case, muscular functional activities of lower extremity weakened (Wu and Li, 2003) and muscular endurance reduced (Gu et al., 2010a). During high-heeled locomotion, which more likely caused fatigue. There was another interesting result was that the increasing percentage of all indexes between flat heel and low heel was higher than this value between low heel and high heel. While low heel’ height was 3 cm higher than flat heel, high heel’ height was just 2.5 cm higher than low heel. This means the important index to energy cost was the foot posture changing from normal to plantar-flexed. After the plantar-flexed degree increase, the energy cost variety not as notable as former condition. Although energy cost during jogging with high-heeled shoes is higher than the flat heel condition, it doesn’t encourage female to do exercises with high-heeled shoes for losing weight effectively. Because the foot stability would be impaired (Gu et al., 2010a) attributing to get injuries such as ankle sprain (Hsue and Su, 2009) easier during high-heeled locomotion.

REFERENCES


