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Mathematical Models for in-Plane Moduli of Honeycomb Structures-A Review 
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School of Mechanical and Automation Engineering, Beihang University, 37 号 Xueyuan Rd, Haidian, 
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Abstract: Honeycomb structures are light weight cellular structures having high strength to weight ratio with 
enormous applications in aerospace industry, high speed automobiles, computers and other electronics equipment 
bodies and recently as flexible structures and mechanisms. In this paper a review of mathematical models for stress 
strain behaviour of two dimensional honeycomb structures is presented. As proposed by different authors, 
expressions for in-plane Elastic Moduli and shear Modulus are presented and compared on same scale dimensions. 
In addition to that, effects of number of unit cells on effective in plane and out of plane Moduli of the testing 
specimen for regular honeycombs and open and closed cell foams, are also reviewed. 
 
Keywords: Auxetic honeycombs, flexure model, honeycomb structures, hinging model, stretching model 

 
INTRODUCTION 

 
Honeycomb cellular materials are now widely used 

in light weight construction especially in aircrafts, 
missiles, space vehicles, compliant mechanisms and 
flexible structures and high speed automobiles. Usually 
these materials are used as sandwich panels. The typical 
structural sandwich panel or shell consists of three 
layers. Two relatively thin, high-density and high 
strength face sheets are adhesively bonded to a soft, 
light weight, and relatively thicker core as shown in 
Fig. 1. The core carries the transverse shear load and 
keeps relative distance between the face sheets, while 
face sheets carry in plane loads and bending moment. 
Honeycomb sandwich structure possesses high specific 
strength and specific rigidity and it can resist high wind 
pressure, reduce vibrations, isolate sound, maintain 
temperature, retard fire and possesses less density etc. 
In addition, there is no need of large area riveting which 
alleviates stress concentration and thus greatly enhances 
the fatigue strength. 

Tom (1997) as well as Hoffman (1958) report 
some earlier examples, the Mosquito aircraft is 
considered as the first industrial scale application. 
Initially honeycombs were used as sandwich structures 
for high out-of-plane stiffness and as low density 
impact energy absorption materials (Zhao and Grrard, 
1998; Vinson, 1999; Khan, 2006). The in-plane 
properties are two to three orders less in magnitude than 
that of highly stiff and strong out-of-plane properties. 
For this reason in-plane properties were considered to 
be limited for design applications. But in recent years 
researchers   are   motivated   to   use the lower in-plane  

 
 
Fig. 1: A typical sandwich panel with regular hexagonal 

honeycomb core 

 
stiffness for designing flexible meso-structures for 
applications that need high deformation for given loads. 
Such as morphing air-craft skins e.g. (Olympio and 
Gandhi, 2007; Bubert et al., 2008; Jaehyung et al., 
2010) proposed high shear strength and strain honey 
comb structures,  (Kwangwon Kim et al., 2012) 
proposed FEA models of modified Auxetic 
honeycombs as high strain flexures. 

The computational time for finite element 
honeycomb sandwich models increase rapidly as the 
number of cells in the core increase, that also require a 
more sophisticated computer. Therefore, to attain 
efficiency in numerical analysis, the honeycomb core is 
usually replaced with an equivalent continuum model 
and analysed in terms of their effective properties rather 
than by consideration of their real cellular structure, by  
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Fig. 2a: 2D Re-entrant honeycomb, (a) Undeformed, (b) 

Deformed (Yanping and Hong, 2010) 

 

 
 

(a)                               (b) 

 
Fig. 2b: Chiral honeycombs, (a) Formed with the same chiral 

units, (b) Formed with symetrical chiral units (Grima 

et al., 2008b) 

 

 
 

(a)            (b)                          (c) 

 

 
 

                 (d)                          (e)                            (f) 

 
Fig. 2c: Re-entrant  structures,  (a)  Double  arrowhead  

structure,  (b)  Star  honeycomb  structure,  (c)  
Structurally hexagonal  re-entrant  honeycomb,  (d)  
Structure  formed from  lozenge  grids,  (e)  Structure  
formed  from  square  grids, (f) Structure formed 
from sinusoidal ligaments (Yanping and Hong, 2010) 

 
application of an appropriate composite or sandwich 
shell theory as given by Habip (1964), Lui and Habip 
(1965) and Frostig (1998). The early analytical studies 
on effective properties have been reported in 1950’s 
such as the studies of Garrard (1949), Charles and 
Ralph (1951) and Horvay (1952) on the overall elastic 
properties of sandwich plates in the assembled situation 
as well as the studies of Akasaka and Takagishi (1959), 
Hoffman (1958) and Kelsey et al. (1958) on the 
effective transverse shear moduli and the in-plane 
Poisson’s ratio of hexagonal honeycomb cores 
appeared. All of these studies used a homogenization 
procedure, which is based on a redistribution of the 
stresses on the external surfaces of a representative 

volume element. In most cases, only the transverse 
shear properties of the core are considered while the in-
plane properties are neglected.  

Most of the early researchers focused on only 
regular hexagonal honeycombs for sandwich panels as 
a core material. But since last two decades due to the 
availability of faster and more sophisticated techniques 
new cell geometries are developed to meet the in-plane 
mechanical properties requirements. Yanping and Hong 
(2010), made a comprehensive review of Auxetic 
cellular structures, those which have negative Poisson’s 
Ratio, as show in Fig. 2a to c some proposed 
geometries such as Theocaris et  al. (1997) proposed 
star-shaped  microstructure, Chiral honeycombs by 
Grima et al. (2008b), others like Larsen et al. (1997), 
Smith et al. (2000) and Gaspar et al. (2005). Triangular 
kagome and diamond cell honeycombs cell are known 
to be extension dominated cell structures which is good 
for high modulus structural design. On the other hand 
square and hexagonal cell honeycombs are known to be 
bending dominated structures which are good for 
flexible flexure design. Kwangwon Kim et al. (2012) 
and Jaehyung et al. (2010) also proposed modified cell 
shape. But most of these proposed cell geometries have 
limitations of manufacturing and load bearing 
capacities and not as much use full practically. 

This article presents a review on mathematical 
models proposed by different authors for in-plane and 
out-of plane mechanical properties of honeycomb 
structures. Emphases are focused on in-plane Effective 
Elastic Moduli E1 and E2 and Effective shear modulus 
G12. Using cell wall bending model which is called 
Cellular Material Theory (CMT), Gibson and Michael 
(1988) determined the in plane Moduli by considering 
cell walls as flexures that is fixed at one end and guided 
at other end. Masters and Evans (1996) modified the 
model by introducing three mechanisms of flexing, 
hinging and stretching. Hohe and Becker (2002) 
presented a comprehensive review of the 
homogenization methods as well as material models but 
did not report studies of the effect of the wall curvature 
at the intersection points. Balawi and Abot (2007b) and 
Balawi and Abot (2008) proposed a refined model for 
commercial honeycombs, with double wall thickness in 
vertical direction and some curvature in the vicinity of 
the intersection points of the hexagons.  

 

GIBSON AND ASHBY’S MODEL 

 

As proposed by Abd El-Sayed et al. (1979) and 

Gibson and Michael (1988) determined the in plane 

Moduli by considering cell walls as flexures that is 

fixed at one end and guided at other end. The in plane 

Tensile and compressive deformation mechanisms for 

three different types of materials were studied by 

progressive loading and photographing the structures. 

Three types of materials, an elasto-metric honeycomb 

(rubber), elastic plastic honeycomb (a metal) and an 

elastic-brittle (ceramics) were studied. For compression  
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Fig. 3: A honeycomb with hexagonal cells. The in-plane 

properties are in  X1- X2 plane while responses to the 

loads applied in X3 direction are referred as out-of-

plane properties (Gibson and Michael, 1988) 

 

all showed linear elastic behaviour, followed by a 

plateau stress value, and finally a steep increase in 

stress.  In tension elasto-metric honeycombs don’t show 

any plateau and fail after elastic range, plastic 

honeycombs show a similar behaviour as in 

compression while brittle fails abruptly at a tension 

which is lower than the true crushing strength. 

 

In-plane moduli: If honeycombs are regular hexagon, 

having all sides equal with angles 120
0
 internal angles, 

and the cell walls are of same thickness, these are called 

regular honeycombs and their in-plane properties are 

isotropic. Such a structure requires only two 

independent elastic Moduli, a Young’s Modulus E and 

a Shear Modulus G and a Poisson’s ratio v.  But when 

the hexagon is irregular and having different wall 

thickness, then it requires four in plane Moduli, (E1, E2, 

G12, v12 where v is Poisson’s ratio). All the other 

parameters considered are shown in Fig. 3. 

The honeycombs considered for analysis have low 
density so that (t/l) is lower. The relative density is 
given by: 
 

�∗
� = �/��	
 ��


�����(	
 �����)                                           (1) 

  
The in-plane loading mechanisms for Young’s 

Moduli E1, E2 is shown in Fig. 4a and for Shear 
Modulus G12 is shown in Fig. 4b. 

The E1, E2, G12 and Poisson’s ratios v12 & v12 are 
calculated as following expressions: 
 

 
���� = ���
� ���θ�� !θ�"# ��� θ
                                          (2) 

 

 
�!�� = ���
� �"# ��� θ
���$θ

                                                 (3) 

 
 

(a) 

 

 
 

(b)                                    (c) 
 

Fig. 4a: Deformation by cell wall bending phenomenon, 
giving linear-elastic extension or compression of the 
honeycomb, (a) the un-deformed honeycomb, (b) and 
(c) the bending caused by loads in X1 and X2 
direction (Gibson and Michael, 1988) 

 

 
 
Fig. 4b: Un-deformed honeycomb,  (b) Linear elastic shear of 

honeycombs under shear stress (Gibson and Michael, 
1988) 
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 v'�  = ���!θ�"# ��� θ
 �� θ
                                               (4) 

 

(�!�� = ���
� "# ��� θ

�"# 
!�'��"# 
∗���θ

                                     (5) 

 
And  v'� = 1/v�'. Where, E�is the modulus of the 

cell wall material. Gibson and Michael (1988), in 
addition to bending proposed that there exists axial and 
shearing stresses that cause axial and shear 
deformations, but were considered as negligible for 
small values of t/l. The non-linear beam-column effect 
was also neglected calculating the elastic Moduli in 
limit of small deflection.  In case of shear the 
deformation is considered entirely due to bending of 
vertical cell walls BD and their rotation about joints B, 
no stretching of cell walls and change in relative 
distance between the joints was considered. 

Gibson and Michael (1988) also introduced the 
hexagonal core properties for double wall thickness in 
the vertical direction. As their analysis considers no 
deformation in vertical walls so there is no effect of 
double wall on in plane properties and hexagonal 
honeycombs will still be transversely isotropic. 
 

Out of plane Moduli: For out of plane loading the 

walls compress or extend, and the moduli are much 

larger than the in-plane moduli.  The Young’s Modulus 

in X3 direction is calculated as: 

 

 
�$�� = �� + �/��"# ��


����θ("# ��� θ), = ρ∗
ρ

≅ ��                             (6) 

 

The Poisson’s ratios v�'& v�� are simply equal 

solid itself v�. 

The exact value of shear moduli G'� and G�� can 

only be found by numerical solutions, because of non-

uniform deformation of each cell due to constraints 

applied by the neighbouring cells also the initially plane 

cells don’t remain plane.  However upper and lower 

bounds were found using “Theorem of minimum 

Potential Energy” and “Theorem of minimum 

complementary energy” respectively and their values 

are found to be same for upper and lower bounds:  

 (�$(� ≤ (t/l) ���θ"# ��� θ
                                                  (7) 

 

(!$(� ≤ '� (t/l) "# ���� !θ

�"# ��� θ
���θ
                                        (8) 

 

The out of plane moduli depend linearly with 

density (t/l), while in-plane moluli scale as (t/l)
3
. In 

general out of plane moduli are greater than those in-

plane by a factor of (t/l)
2
. 

Nkansah et al. (1994) also used the flexure model 

for molecular structures. In   these structures  stretching   

 
 

(a) 

 

 
 

(b) 

 
Fig. 5: The cell geometry and co-ordinate system for, (a) 

regular hexagonal honeycombs and (b) re-entrant cells 
(Masters and Evans, 1996) 

 
of  molecular  chains  tends to  increase  the  
longitudinal  deformation  at  the expense  of  
transverse  thus  reducing  the Poisons ratio, which 
indicate that flexing is dominant mechanism in these 
structures but there is also some contribution by hinging 
and stretching. 
 

I. G. MASTERS AND K. E.  EVANS 

MODEL 
 

Masters and Evans (1996) modified the model by 

introducing three mechanisms of flexing, hinging and 

stretching. The  force  constants (F  = Ki*δ) relate  the  

displacement of  the  cell  walls  of  a  honeycomb  to  

the  applied force  which  causes  it.  For all three 

mechanisms  the  force  constants were defined and 

then using these constants expressions for E1 , E2 , G12 3�' and 3'� for all mechanisms were calculated 

separately and also combined to give a general model. 

Thickness of all the cell walls was considered same, 

also no bonding was present between the cell walls. The 

direction 1 is parallel to h, and direction 2 is 

perpendicular to h. All the other parameters are shown 

in Fig. 5. 
 
Flexure model: As proposed by Gibson and Michael 
(1988) the cell walls act like flexures and modelled as 
cantilever beams fixed at one end and guided at other 
end. The moduli are dependent on the ratio of cell wall 
thickness to length (t/l)

3
 as described in equations 

below. Flexure force  constant  45: 
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(a) 

 

 
 

(b) 

 
Fig.  6: Hexagonal  cell  deforming  by  stretching  of  the  

cell walls  due  to  tensile  load  applied  in, (a) 
direction 2 and (b) direction  1. Forces acting on the 
walls length 1 are shown on the right (Masters and 
Evans, 1996) 

 Kf = ��  8�$
�$                                                             (9) 

 9'  = :;(	
 �����)< =��$ �                            (10) 

 9�  = :; >�� θ< ���! �(	
 �����)              (11) 

 

?'�  = :;(	
 �����)
<�	
 
!�'�!	
 
��� �                                     (12) 

 v�'  = ���!θ("# ��� θ)�� θ
                                            (13) 

 
And v12 = 1/v21 

where, Es is Young’s Modulus of the cell wall material, 
b is width of structure, t is thickness, and l is length of 
wall. The  Young’s  moduli  and  Poisson’s  ratio 
expressions  for  the  flexure  model  comply  with the  
reciprocal  relation  E1*3�'  = E2* 3'�. 
 
Stretching model: In this model it was assumed that 
cell walls are like shock absorbers that only stretch 
along their length and no change in angle or rotation as 
shown in Fig. 6. Stretching force constant Ks is given 
as: 
 Ks = ��  8�A                (14) 

 
The elastic constants derived are given by 

following equations: 

E�  = :�8 >�� θ("# ��� θ)                           (15) 

 v�'  = − C �� θ"# ��� θ
D                                               (16) 

 

E'  = :�("# ��� θ)
8 >�� θ(�"# ��� !θ)                                          (17) 

 

v'�  = −(�� θ("# ��� θ)
�"# ��� !θ

)                                         (18) 

 G'�  = :�8 [ ����θ(A���� θ)(� ���! θ(A�� �� θ) �� θ)!]              (19) 

 

where, E1 and E2 are the Young’s moduli in direction 1 

and 2, v'� and v�' are poisson’s ratios and G'� is shear 

modulus.  

 

Hinging model: This model considers the cells as six 

bar compliant mechanisms (the lumped compliance 

mechanisms where links are theoretically rigid along 

the lengths and rotates due to living hinge mechanism). 

Like a rotational joint, the walls are stiff both in 

transverse and axial directions and Elastic  hinges  at  

the  joints  enable  the  cell  to deform  when  a  load  is  

applied. Here no change in length or bending of whole 

cell wall, the cell deforms only due to change in angle 

between walls. The  actual  mechanism  by  which  

hinging  occurs can  be  envisaged  as  one  of  two  

processes; global  shear (which  was considered 

important only for small-celled  foams  and  molecular 

networks  but  is  unrealistic  for  the  macro-networks,  

like  honeycombs) or  local  bending,  Fig. 7a and b. 

Hinging force constant Kh is given as; 

 4G = HI  <�$
J�! K                                           (14) 

 

where, q is length of short imaginary hinge usually 

1/10th of the cell wall lengh. The other constants were 

derived as followed: 

 E�  = L	 ����< ���!�(	
 �����)                                                 (15) 

 

E'  = L	 (	
 �����)< ���$�                                                         (16) 

 

 G'�  = L	< ��� � M =�(G������)=G(G�� ��� �)��(��N=G ��� �)O            (17) 

 v�'  = ���!θ("# ��� θ)�� θ
                                                (18) 

 

 v'�  = �"# ��� θ
�� θ���!θ
                                              (19) 
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(a)                                              (b) 

 
Fig. 7a: Hexagonal cell deforming by hinging, (a) global shear, (b) local bending (Masters and Evans, 1996) 

 

 
 
Fig. 7b: Hexagonal cell deforming  by hinging due to a compressive stress applied in direction 2 also showing the forces  acting 

on a wall length 1 (Masters and Evans, 1996) 

 

General model: By summing the strains calculated by 

all three models, and dividing by total stress component 

in that direction, elastic moduli  can be calculated as: 

 E'  = '
P QRIS TURI!SVW XURI!SV	 X�!	
 XIYZS
VI [

	
 XIYZS

                        (20) 

 

 9�  = '
<�	
 �����
\ IYZ!SVWURI S� IYZ!SV	URI S�URI SVI ]                   (21) 

 

 3�'  = N����∗��� �\ �VW� �V	N �VI]
�	
 �����
\ IYZ!SVWURI S� IYZ!SV	URI S�URI SVI ]                   (22) 

 

 3'� = N�����	
 �����
\N �VWN �V	� �VI]
^URI! SVW �URI! SV	 ��!	
 XIYZS
VI _                          (23) 

The expression for shear modulus is given as: 

 

  

                                                                                   (24) 

 

In the above equation if we assume that there is no 

hinging and stretching phenomenon this equation 

reduced to that of flexure model as proposed by Gibson 

and Michael (1988). 

It is observed in these models that higher value of 

the force constant, lesser will be the contribution of that 

model in the overall cell deformation. With increase in 

thickness the force constant value increases, showing 

less deformation that validates the correlation of Gibson 

and  Michael  (1988) at  lower  (t/l). Experimental  tests  
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were performed by Masters and Evans (1993) and 

Masters and Evans (1996), and the value of Ks found to 

be higher than the KA and 45 so stretching can be 

ignored usually. The stretching force constant value is 

lower only in range (t/l) 0.01 ~0.02. In this region 45 

has the lowest value that’s why flexure model explains 

successfully. Due to local damage at hinge the value of KA is usually lower than 45 so the hinging mechanism 

dominates as in card honey combs.  

For same cell angle the modulus is higher for re-

entrant structures than corresponding honeycombs, but 

this increase is at the expense of increase in weight due 

to higher density. By using the transformation equation, 

derived for an orthotropic material, the behaviour of 

honeycomb materials for different orientations of load 

was also investigated in 1-2 plane. By polar plots of 

elastic properties it was observed that for  flexure,  

hinging  and  stretching  models,  the regular  hexagon 

honeycombs (h = l, θ = 30°)  generates  a material  

which  is  truly  isotropic  in  the  plane. 

While the re-entrant structures (h = 2l, θ = -30
0
) 

showed different behaviour. Deforming  by  flexing  

and  hinging the  honeycomb  is  clearly  square  

symmetric, not  isotropic while for  the  stretching  case  

the  honeycomb  is  clearly  not  isotropic  or  square  

symmetric. By equating the Poisson’s Ratio 3'�, 3�', E 

and G were plotted against the “load orientation angle 

ø” to investigate the possibility of finding the isotropic 

re-entrant cell. The plots showed that apparent  near  

isotropy  can  only be  achieved  in  a  re-entrant  cell if 

we consider that  deformation is by  stretching 

mechanism. The value of shear modulus G was 

maximum when E minimum at ø = 45° for hinging and 

flexure models and at ø = 45°, 90° for stretching 

models. 

Masters and Evans (1996) and Olympio and 

Gandhi (2007) considered the curvature at the 

intersection points but only for the prediction of the 

hinging shear deformation stiffness. This curvature was 

not considered to determine the bending or axial 

stiffness of the honeycomb unit cell. 

 

S. BALAWI, AND J.L. ABOT MODEL 

 

Balawi and Abot (2008) proposed a refined model 

for commercial honeycombs, with double wall 

thickness in vertical direction and some curvature in the 

vicinity of the intersection points of the hexagons 

resulted in corrugation or expansion process during 

manufacturing as  shown  in Fig. 8. All the parameters 

are shown in Fig. 9 i.e., R is radius of curvature in the 

vicinity of intersections, t is cell wall thickness, L is cell 

wall length, and θ is the angle with horizontal line. This 

model was also validated by Finite Element Analysis 

and   experimental   data   for   lower   as  well as higher  

 
 
Fig. 8: Regular hexagonal honeycomb structure, (a) 

commercial honeycomb with curved walls at the 

intersection points, (b) theoretical honeycomb with 

straight walls (Balawi and Abot, 2008) 

 

 
 
Fig. 9: Modified unit cell of a general hexagonal honeycombs 

with curved walls at the intersection points and single 

wall thickness in vertical direction (Balawi and Abot, 

2008) 

 

density commercial honeycombs. Due to double 

thickness in vertical direction the relative density of 

commercial honey combs is higher than theoretical 

ones, so it is calculated by dividing the total hexagonal 

cell area with cell wall area, and is given by where ρ� is 

density of cell walls material (Balawi and Abot, 2008): 

 
ρ

ρ� = `��√�  b − cd ��b
�
                                             (25) 

 

A unit load method (Cook and Young, 1999) was 

used to calculate the deformation due to bending, 

extension and shear deformation in both x1 and x2 

directions. For x1 direction loading it was considered 

that only curved and inclined sections experience 
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deformations, while straight walls experience only rigid body motion. For x2 direction, vertical walls experience 

only extension. By adding all three deformations, strain was calculated and effective Moduli were simply the ratio of 

applied stress to strain in the respective direction. The E1 and E2 are given by Eq. (27 and 28) while the shear 

modulus is calculated by: 

  G� = HI  ('�eI)�                                                                                                                                          (26) 

 

For validation purpose, these values were calculated for straight wall regular honeycombs R = 0 and θ = 30° and 

the result was found similar to that predicted by Masters and Evans (1996).  It was observed that effective moduli in 

both x1 and x2 directions for curved walls are very sensitive to radius of curvature R, decreasing with increase in R. 

This reduction is qualitatively similar but less in magnitude x2 direction as compared to x1. Bending was the most 

dominant mechanism for honeycombs of lower relative densities. At R = L, the bending deformation reaches values 

larger than two times in x2 and 18 times in x1 direction, than those of calculated for straight-walled  honeycombs. 

Shearing deformation increases with R in x1 direction while decreases slightly in x2 direction while the reverse effect 

is observed for extension deformation. For lower values of cell angle θ than 30
0
, the curved wall honeycombs are 

stiffer and more compliant for higher values of θ in x1 direction than those of straight regular honey combs. This 

effect increases as R increases. For direction 2 stiffness increases for large cell angles and shows no prominent effect 

of R. When θ is small inclined walls are oriented more along x1 direction, when the θ is larger than 30°, there is 

more material oriented along the x2 direction, thus causing the unit cell to deform more in the x1 direction. 

For experimental validation of this model the effective elastic moduli were calculated in both the x1 and x2 

directions for two commercial honeycombs Plascore (8.1-3/16-003) and Hexcel (12.0-1/16-0015) having relative 

densities 0.029 and 0.0318, respectively. By considering an average curvature of 0.4 the ratio between elastic moduli 

E1 and E2 was observed 0.0481 theoretically. It was quite similar to the experimental one 0.0439 that confirmed the 

validity of refined model. As Gibson and Michael (1988) predict a ratio between the effective in-plane elastic 

moduli of 1, while Masters and Evans (1996) predicted a value of 0.99. This also predicts that the effect of curvature 

generates anisotropic behaviour and can’t be neglected. By considering all three mechanisms of deformation 

predicted by Masters and Evans (1996), the experimental results of Balawi and Abot (2008) showed good 

correlation for lower values of t (lower relative density) while for higher values of t the experimental values are 

higher than that of predicted by Balawi and Abot (2008). 
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(28) 

 

where, Gs is shear Modulus and  and   are effective moduli in 1 and 2 directions, Es is modulus of cell 

wall material. 

 

EFFECT OF SPECIMEN SIZE ON 

MECHANICAL PROPERTIES 

 

An important issue in the experimental determination of mechanical properties of honeycombs is the “specimen 

size with respect to cell size”. Size effect becomes also important in design when the object dimensions are order of 

meso-scale (2-6 mm scale). Due to presence of some stress-free cut cell edges at the surface of a specimen and 
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effeE
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constraints applied by neighbouring cells or boundary, 

specimen properties can give different results than 

single or infinite size specimens. Brezny and Green 

(1990) used three point bend specimens which subject 

the more compliant top and bottom surfaces of the 

beam to the highest normal stresses, magnifying the 

size effect in smaller beams and suggested the critical 

value of ratio specimen to cell size to 15 to achieve 

same results as that of single or infinite size specimens. 

Their tests were performed on a brittle reticulated 

vitreous carbon foam which exhibits a Weibull size 

effect, confounding the specimen size/cell size effect. 

Bastawros (Mellquist and Waas, 2002) performed uni-

axial compression tests on prismatic aluminium foam 

specimens of constant length and width and varying 

depth. They found that stiffness and strength became 

essentially constant when the depth was greater than 

about 4 times the cell size. 

Onck et al. (2001a, b) analysed the effect of the 

ratio of specimen size to cell size, for the uni-axial 

compression, shear and indentation response of regular 

hexagonal honeycombs. They provided  mathematical 

models for regular hexagonal honeycombs and results 

were extended to foams and experimentally verified 

their results for open-cell aluminium (6101-T6) foam 

(trade name Duocel; ERG) and closed-cell aluminium 

foam (trade name Alporas ; Shinko Wire). The Young’s 

modulus and uni-axial strength were found to increase 

with increasing specimen size and reaches up to a 

plateau level at “specimen size/cell size = 6” for both 

foams. This effect was due to increased constraints at 

inner cell walls and less “area fraction” of stress free 

cell walls. The shear moduli and strength decrease with 

increasing specimen size and becomes independent of 

the specimen thickness at specimen size/cell size = 

2.67. Shearing phenomenon becomes easy as cell size 

increased due to “more constrained applied boundary 

conditions” on specimen boundary. The Indentation 

Peak stress was found to decrease as the indenter 

diameter increases with respect to cell size and for large 

indenter diameters approaches a value slightly higher 

than the uni-axial compressive strength of the material. 

Mellquist and Waas (2002, 2004) studied the effect 

of out of plane crushing on circular cell polycarbonate 

honeycombs and also validated experimentally and 

numerically. Experiments were  conducted  on  

hexagonal  cell honeycombs ranging in size from 1 to 

14 cells and it was observed  that number of cells does 

not have an effect on the compressive strength (per unit 

area) of  the honeycomb, but the way  that  the cells are 

arranged does have an effect on the response.  FEA 

models containing 1, 3, 4, 5, and 9 cells were created 

and analysed The FEA results were also in good  

agreement  with the experimental results. Choon et al. 

(2007) studied the effect of specimen size on in-plane 

and out of plane Moduli for of Nomex Paper made of 

aromatic polyamide fibers. Theoretically E33 is 

independent of number of cells while both experimental 

and FEM results indicated that E33 decreases as number 

of cells increases and converges at large number of 

cells. In plane Moduli also showed same contradiction 

with theoretical results. This discrepancy was due to 

anisotropic behaviour of Nomax paper as compared to 

polycarbonate honeycombs used by Mellquist and 

Waas (2004). 

 

RESULTS AND DISSCUSSION 

 

In early years two dimensional cellular structures 

had been widely as core material for light weight 

sandwich panels because of their higher strength to 

weight ratio, so main focus of research was their 

transverse normal and shear properties. Since last two 

decades in-plane properties are widely investigated due 

to higher global strain abilities useful for compliant 

mechanisms applications. More over the increasing 

computational power enabled the use of improved 

sandwich plate and shell theories, which require a 

refined knowledge of the mechanical behaviour of the 

core. The in-plane properties had been neglected 

compared to the transverse properties in the early 

sandwich plate and shell theories but advanced 

sandwich plate and shell theories in many cases 

consider the in-plane material response of the core as 

well. Many refined core cell geometries were proposed 

and investigated to meet the requirements such as 

positive Poisson’s ratio cellular structures. 

Using cell wall bending model which is called 

Cellular  Material  Theory  (CMT), Gibson and Michael 

(1988) also determined the in plane Moduli by 

considering cell walls as flexures that are fixed at one 

end and guided at other end as considered by Abd El-

Sayed et al. (1979). The effect of double wall thickness 

cells such as in commercial honeycombs was neglected 

because stretching and hinging phenomenon was 

considered negligible. Masters and Evans (1996) 

modified the model by introducing three mechanisms of 

flexing, hinging and stretching. The curvature at the 

intersection points was considered but only for the 

prediction of the hinging shear deformation stiffness. 

This curvature was not considered to determine the 

bending or axial stiffness of the honeycomb unit cell. 

But out-of plane constants were not determined also no 

double wall thickness was considered. Balawi and Abot 

(2007b) proposed a refined model for commercial 

honeycombs, with double wall thickness in vertical 

direction and some curvature in the vicinity of the 

intersection points of the hexagons. The model was 

validated experimentally and anisotropic behaviour of 

commercial honeycombs was attributed to curvature 

and double wall thickness effect. In this model FEA 

model  was  presented  for one fourth unit cell, showing  
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            Fig. 10a: Effective modulus E1 verses relative density            Fig. 10b: Effective modulus E2 verses relative density 

 

        
 
         Fig. 11a: Effective modulus E1 verses relative density             Fig. 11b: Effective modulus  E2 verses  relative  density   

                       for r = 0                                                                             for r = 0 
 

 
 
Fig. 12: Effective modulus G12 verses relative density 

 

that the vertical walls remains vertical, but that is not in 

actual case, so experimental results showed discrepancy 

from theoretical for higher density honeycombs. 

Masters and Evans (1996) calculated the off-axis 

elastic constants to determine isotropic or anisotropic as 

compared to Gibson and Michael (1988). Also Balawi 

and Abot (2007b) determined the E1 and E2 constants to 

investigate anisotropic behaviour but no off-axis 

constants were determined. For comparison purpose 

graphs are plotted for effective Moduli (E1/Es) and 

(E2/Es) against relative density (ρ/ρs  ) for three models 

on same scale of dimensions, for regular 30
0
 angle 

hexagonal honeycombs Fig. 10a and b. Cell wall length 

l = 1, h = 1 and thickness t is varied from 0 to 0.1 

because most of commercial honeycombs are available 

in this range. A radius of curvature r = 0.01 is 

considered for Balawi’s model.  

Graph for r = 0 is also in Fig. 11a and b, which 

shows same values for Gibson and Michael (1988) and 

Balawi and Abot (2008) models while a very little 

discrepancy at higher density for Masters and Evans 

(1996). The model showed by Masters and Evans 

(1996) correlates well with the experimental results of 

Balawi and Abot (2008) for lower relative density but 

unable to estimates for higher relative densities. The 

shear modulus G12 for regular hexagonal honeycombs h 

= l = 1 and 30° angle is also compared in Fig. 12 for 

Gibson and Michael (1988) and Masters and Evans 

(1996) models as described by Eq. (5) and (24), 
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respectively while Balawi and Abot (2008) don’t 

describe shear modulus values in their model although 

they used materials shear modulus Gs and shearing 

phenomenon to calculate Elastic Moduli.  

The specimen to be used for testing is also 
important when the size of object is comparable with 
cell size, due to stress free cut cell walls at the boundary 
and constraints applied by neighbouring cells. Different 
authors investigated the effect using different materials 
and general trend is decrease in elastic Moduli for 
lower number of cells and increase in shear modulus for 
lower number of cells. The specimen properties gain a 
plateau value and become independent to number of 
cells in range 4~15 for Elastic moduli and 2~3 for shear 
modulus. 

 
CONCLUSION 

 
In early years honeycomb structures were used as 

sandwich panels, using their property of “high out of 
plane strength to weight ratio” as compared to 
constitute materials. Since last two decades their high 
in-plane strain ability have presented them better 
candidates as flexible materials. As proposed by 
different authors, mathematical models for in plane 
properties are compared using same scale dimensions. 
For lower relative densities all three models show same 
results but for higher values of density, (Gibson and 
Michael, 1988) and Masters and Evans (1996) models 
shows close results (a little bit discrepancy at higher 
densities) while for Balawi and Abot (2007b). Balawi 
and Abot (2008) model the values of elastic moduli are 
lower at higher density and this decreasing effect is 
more for E1 as compared to E2. The anisotropic 
behaviour of honeycomb materials can’t be described 
without using all three mechanisms of deformation, 
flexing, hinging and stretching. The shear modulus 
values are same for lower relative densities while for 
higher relative density the shear modulus described by 
Gibson and Michael (1988) is higher than that of 
Masters and Evans (1996) because of neglecting 
stretching and hinging  mechanisms for deformation. 
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