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Abstract: In general, one of the main targets to achieve the optimal mix design of concrete dams is to reduce the 
amount of cement, heat of hydration, increasing the size of aggregate (coarse) and reduced the permeability. Thus, 
one of the methods which is used in construction of concrete and soil dams as a suitable replacement is construction 
of dams in roller compacted concrete method. Spending fewer budgets, using road building machinery, short time of 
construction and continuation of construction all are the specifications of this construction method, which have 
caused priority of these two methods and finally this method has been known as a suitable replacement for 
constructing dams in different parts of the world. On the other hand, expansion of the materials used in this type of 
concrete, complexity of its mix design, effect of different parameters on its mix design and also finding relations 
between different parameters of its mix design have necessitated the presentation of a model for roller compacted 
concretemix design. Artificial neural networks are one of the modeling methods which have shown very high power 
for adjustment to engineering problems. A kind of these networks, called Multi -Layer Perceptron (MLP) neural 
networks, was used as the main core of modeling in this study along with error-back propagation training algorithm, 
which is mostly applied in modeling mapping behaviors. 
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INTRODUCTION 

 
By discovering this fact that human brain performs 

calculations using a method completely different from 
common digital computers, studies have started on 
artificial neural networks which are usually called 
neural networks. Brain is in fact a very complex and 
nonlinear computer with a parallel structure. Due to its 
ability in organizing fundamental elements, i.e., 
neurons, brain is able to perform many calculations 
(such as pattern recognition, perception, etc.) with a 
speed much higher than the fastest modern digital 
computers (Demuth and Beale, 1998). Genetic 
algorithm which is based on Darwin's Evolution Theory 
was first introduced by Holland in 1975 and later 
(Goldberg, 1989) presented a complete and accurate 
introduction for this method (Yeh, 1998). 

Artificial neural networks are one of the 
applications of artificial intelligence which is widely 
used in modeling a large number of engineering and 
scientific problems. Numerous studies have been 
conducted on predicting compressive strength of 
concrete using neural networks (Sarıdemir et al., 2009). 

Roller compacted concrete is one of the relatively 
new methods for constructing dams in Iran. Prediction 
and modeling of mix design and strength of this 

concrete have the same or even more complexity than 
other types of concrete. On the other hand, inclusion of 
all kinds of pozzolans, new additives in concrete mix 
design and effect of different concrete methods on this 
concrete have doubled mix and compaction and also 
complexity of its mix design (Yeh, 1998). Modeling 
roller compacted concrete by traditional and regression 
methods is not able to make appropriate prediction 
considering the existing complexities of this issue 
because resistance behavior of concrete is affected by 
nonlinear conditions and also by the smallest 
components available in the mix and the interaction 
between these components (Sarıdemir et al., 2009). 
Characteristics of neural networks with error-back 
propagation training algorithm have made use of this 
nonlinear modeling method very attractive and suitable 
for predicting  strengths  of all kinds of concretes (Gao 
et al., 2006). Therefore, this technique was applied as 
the main basis of modeling in this research. 

 
RESEARCH METHODOLOGY 

 
Neural networks applied for modeling: Multi -Layer 
Perceptron (MLP) neural networks with error-back 
propagation algorithm are one of the most commonly 
applied tools which have shown an extraordinary 
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Fig. 1: Structure of neural networks with error-back propagation algorithm 
 

 
 
Fig. 2: (Left) neural cell and its mathematical operations, (right 1) hyperbolic tangent function (right 2) sigmoid function 
 
ability in all kinds of nonlinear and linear modeling 
(Papadakis and Tsimas, 2002). In this research, MLP 
neural networks with a hidden layer, which acted 
according to Fig. 1, were used because this structure 
was able to simulate all kinds of different functions and 
mappings with a suitable number of processor (neural 
cells) in the hidden layer (Gao et al., 2006). Figure 1 
demonstrates structure of the applied network for 
modeling, which consisted of three input, hidden and 
output layers forming xp1, xp2, …, xpN  as N element 
inputs and Whi and Wjh as adjustable weights of the 
network. 

These networks act based on processing elements 
called neural cells Fig. 1. Input layer cells of input 
vector elements transfer each one of the patterns to the 
hidden layer without any processing and cells of the 
hidden layer and output layer process information on 
their input values based on Fig. 2. Function f is 
recognized as the stimulation function in this figure and 
can be linear, hyperbolic tangent or sigmoid function 
(Sarıdemir et al., 2009). 

In these neural networks, two procedures are 
performed. Functional procedure includes application 
of patterns and input examples to the network and 
determination of cellular outputs of each layer and 
transferring the output of each layer to the next one. 
Error-back propagation procedure starts with 
comparing result of output layer with target value of 

each pattern and determining error of this comparison 
(Relation 1); then, this error is transferred from end 
layers to the previous ones based on different training 
algorithms while adjusting weights and biases such that 
error of the network reaches its lowest level (Sarıdemir 
et al., 2009). 
 

Relation (1): Error functions and network performance: 
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In Relation (1):                                           
 
t    =  Target 
O  =  Model output 
i    =  Output cell 
j    =  Pattern 
N  =  The number of cells in output 
S0   =  The number of pattern  
 
Different parameters of neural network in resistance 

modeling: BP networks with a hidden layer and linear 
stimulation function in the output layer were used as the 
basis of modeling. Hyperbolic tangent stimulation 
function (Tanh) was used in the hidden layer. In 
addition, MATLAB software was used for the 
programming required for modeling.   



 

 

Res. J. Appl. Sci. Eng. Technol., 7(9): 1872-1877, 2014 

 

1874 

Table 1: Limits of data for mix design 
0~3 (kg/m3) 0~5 (kg/m3) 5~25 (kg/m3) 25~50 (kg/m3) limits of data Cementitious materials 
444 353 806 403 Maximum 110 
608 488 902 451 Minimum 
440 335 843 399 Maximum 120 
576 483 914 468 Minimum 
432 332 830 393 Maximum 130 
567 460 907 465 Minimum 
413 327 751 392 Maximum 140 
560 480 906 486 Minimum 
496 332 728 441 Maximum 150 
573 383 907 561 Minimum 

 
Table 2: Result of W (1, 1), compressive strength for 7 days 
Compressive strength 7 days 
W (1, 1) 

25-50 
(kg/m3) 

 5-25 
 (kg/m3) 

0-5 
(kg/m3) 

 0-3 
 (kg/m3) 

Cement 
(kg/m3) 

Pozzolan 
khash 

110 857.6825 862.7650 744.7871 1018.7599 -271.3188 -30.1465 
120 -4014.6545 1575.4713 -1242.9058 -1259.5986 221.3177 24.5908 
130 687.2884 -20.6556 344.5169 354.4187 -95.5121 -10.6125 
140 61232.0142 59919.6422 63439.0382 59492.9423 -22969.2980 -3931.0348 
150 -48.2507 -48.2741 -192.0378 54.2189 15.6507 1.7390 
Compressive strength 7 days Water 

top water 
Additive Additive Additive 

conplast RP264M 

Don’t wash = 1 
Wash = 0 

 

W (1, 1) chrysoplast CER chrysotard CHR  
110 2331.8400 2586.4581 960.5746 -1312.8770 26128.3625  
120 -1994.0385 3614.0623 494.7499 -3078.1852 1315.5817  
130 701.6738 -2178.5697 -326.5085 -1446.9252 -279.3159  
140 220886.0558 238130.8079 1028.3934 -238014.0819 -38.9949  
150 -106.7477 -644.9751 -209.5466 -439.9155 -151.0030  

 
Table 3: Result of w (2, 1), b1 and b2 and maximum data for compressive strength for 7 days 
Compressive strength 7 days w (2, 1) b1 b2 Max. data 
110 67.8715 -2455.6000 68.61720 59.3 
120 0.18378 1856.3360 0.83419 64.9 
130 -0.23585 -732.4070 0.84413 75.9 
140 -0.08802 -173501 0.87284 88.4 
150 -70.8489 128.3482 71.35460 119.5 

 
Set of modeling data: The information applied in this 
modeling was collected from among laboratory mix 
designs of Zirdan Dam. The collected records included 
190 mix designs and data with remarkable error. The 
defective data in the parameters effective on mix 
designs and resistance were excluded after revision and, 
finally, 111 mix designs were applied as the main basis 
of different models. 
 
Compressive strength modeling data at 7, 28, 90, 180 

days, respectively: Considering that mix designs 
containing 70 to 190 kg/m3of cementitious materials 
were made with 10 kg stairs, compressive strength 
relations of mix design were calculated at different ages 
in order to create resistance prediction model among the 
collected information. 

 

Model input parameters: Different parameters are 
effective on resistance of roller compacted consecrate 
such as the amount and type of cement and pozzolan, 
sand and gravel, fineness of cement particles, amount of 
water, sand module, maximum dimension of aggregate, 
aggregates' granulation and amount and type of 
additive. In addition to these cases, there are combined 
parameters which have been called indices effective on 
resistance (Delatte et al., 2003). Among the 

independent parameters effective on resistance of roller 
compacted concrete, the parameters and characteristics 
which were present in the collected information were 
selected so that they can be used under different 
conditions. These parameters included: Aggregate 
25˷50, Aggregate 5˷25, Sand 0˷5, Sand 0˷3, Cement, 
Khash pozzolan, Water, additive such as Chrysoplast 
CER, Chryso Tard CHR, Conplast RP264M and 
Washing and don’t washing materials. 
 

Preparing and standardizing the data: In order to 
perform calculations, first, it is necessary to standardize 
raw data between 0 and 1 (Demuth and Beale, 1998). 
Therefore, input data were standardized considering 
rate of the maximum and minimum data. This action, 
which is called data normalization, is more applicable 
than other standardization methods. After taking the 
output from network, standardized outputs should be 
converted to real data to be compared with the observed 
values. Maximum and minimum limits of data are 
described in Table 1. 

 
RESULTS 

 
After analyzing the data with MATLAB software 

neural network, the outputs are presented as weight of 
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Table 4: Result of W (1, 1), compressive strength for 28 days  
Compressive strength 28 days 
W (1, 1) 

25-50 
(kg/m3) 

5-25 
(kg/m3) 

0-5 
(kg/m3) 

0-3 
(kg/m3) 

Cement 
(kg/m3) 

Pozzolan 
khash 

110 304.2699 271.5006 284.6204 304.3659 -87.5631 -9.7292 
120 9545.2621 -4926.4887 2384.6857 2322.3635 -292.6772 -32.5199 
130 -30.6109 33.9636 15.0429 -7.2057 -5.7240 -0.6360 
140 152788.9625 151744.3845 157656.2341 156777.2375 -59248.1740 -6270.6733 
150 -783.1546 -798.1840 -2744.5241 537.8686 309.3358 34.3390 
Compressive strength 28 days 
W (1, 1) 

Water 
top water 

Additive 
chrysoplast CER 

Additive 
chrysotard CHR 

Additive 
conplast RP264M 

Don’t wash = 1 
Wash = 0  

110 728.9701 2772.5523 -688.7660 826.0650 1948.0145  
120 3257.0184 -6904.3204 -2073.7938 12054.4859 -10468.0368  
130 1.5363 347.6326 47.9842 -186.3095 -1939.9944  
140 440296.6899 129567.3362 -181491.7105 16241.0049 36068.8599  
150 -1737.1075 -320.4495 3740.8166 -35.5678 -504.9597  
 
Table 5: Result of w (2, 1), b1 and b2 and maximum data for compressive strength for 28 days 
Compressive strength 28 days w (2, 1) b1 b2 Max. data 
110 82.25710 -802.5130 82.99000 94.30 
120 -0.12829 -2490.3700 0.87240 88.90 
130 33.42060 -21.8034 33.72570 106.60 
140 -0.09141 -423751 0.87800 123.80 
150 -0.14299 2083.6010 0.73674 165.50 
 
Table 6: Result of W (1, 1), compressive strength for 90 days 
Compressive strength 90 days 
W (1, 1) 

25-50 
(kg/m3) 

5-25 
(kg/m3) 

0-5 
(kg/m3) 

0-3 
(kg/m3) Cement (kg/m3) 

Pozzolan 
khash 

110 90.5575 84.8313 90.6119 88.9994 -29.0929 -3.2325 
120 2863.2778 -5862.5253 -1647.4708 -1422.8069 794.9786 88.3450 
130 -4148.6880 4311.5341 -191.8954 -97.4022 -348.7599 -38.6200 
140 194.7366 197.6006 191.8984 235.6504 -29.0349 -82.8525 
150 60.6244 64.6324 332.6311 -122.8437 -22.1758 -2.4661 
Compressive strength 90 days 
W (1, 1) 

Water 
top water 

Additive 
chrysoplast CER 

Additive 
chrysotard CHR 

Additive 
conplast RP264M 

Don’t wash = 1 
Wash = 0  

110 219.7201 1561.3317 1383.3550 1201.9453 -155.6943  
120 -7883.7779 -15222.0467 -12040.6101 415.2020 20662.3660  
130 5052.3912 28096.9814 22572.0953 -1522.8943 9276.0029  
140 152.4836 -4896.7036 1983.6598 873.0410 665.3672  
150 60.7262 -441.2291 -10421.1236 -631.5906 18.8333  
 
Table 7: Result of w (2, 1), b1 and b2 and maximum data for compressive strength for 90 days 
Compressive strength 90 days W (2, 1) b1 b2 Max. data 
110 16.31780 -245.634 16.60110 104.4 
120 0.12899 6719.227 0.83464 109.1 
130 -164.47400 -2719.670 -163.51700 123.6 
140 0.11192 -507.018 0.90005 141.6 
150 0.13146 -154.494 0.86241 188.3 
 
Table 8: Result of W (1, 1), compressive strength for 180 days  
Compressive strength 180 days  
W (1, 1) 

25-50 
(kg/m3) 

5-25 
(kg/m3) 

0-5 
(kg/m3) 

0-3 
(kg/m3) 

Cement Pozzolan 
khash (kg/m3) 

110  -220.5406 -212.9597 -220.6838 -222.7109 68.5733 7.6193 
120 2047.2502 -1010.1246 479.4590 548.0719 -72.9755 -8.1094 
130 -3199.9818 3743.3125 52.0612 111.5684 -365.7089 -40.6449 
140 -71943.8467 -70414.2492 -74495.9859 -69988.6009 26582.4219 843.4920 
150 295.3008 297.0688 262.3528 343.8102 -121.5758 -13.5086 
Compressive strength 180 days  
W (1, 1) 

Water 
top water 

Additive 
chrysoplast  CER 

Additive 
chryso tard CHR 

Additive 
conplast RP264M 

Don’t wash = 1 
wash = 0  

110 -535.4856 34.5650 474.1010 2996.6691 144.7062  
120 1070.6510 -63.7307 85.6210 -262.3356 5485.6287  
130 4879.5062 25025.2947 20247.5529 -1898.3390 6023.9677  
140 -257860.4159 155.6007 698.6200 -279.1942 -397.4239  
150 891.4534 1363.1841 13469.3763 2011.4399 -7224.7236  

 
each one of the data in Table 2 and 3 for                       
7-day resistance, in Table 4 and 5 for 28-day 
compressive strength, Table 6 and 7 for                       
90-day compressive strength and in Table 8 and 9 for           

180-day compressive strength, which include W (1, 1) 
weights in Table 1, w (2, 1), b1 and b2 in Table 2 and 
maximum  compressive  strength of the intended 
design.  
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Table 9: Result of w (2, 1), b1 and b2 and maximum data for compressive strength for 180 days 
Compressive strength 180 days W (2, 1) b1 b2 Max. data 
110 -25.294600 603.6801 26.10030 106.2 
120 -0.177350 -644.5090 0.82266 112.7 
130 -185.065000 -2814.3700 -184.07700 122.4 
140 0.058119 203536.5000 0.87403 151.5 
150 -0.129290 -828.7360 0.85081 211.8 
 
Table 10: Data for example 

Compressive strength 90 days 
25-50 
(kg/m3) 

5-25 
(kg/m3) 

0-5 
(kg/m3) 

0-3 
(kg/m3) 

Cement 
(kg/m3) 

Pozzolan 
khash 

120 401 846 483 482 108 12 

Compressive strength 90 days 
Water 
top water 

Additive 
chrysoplast CER 

Additive 
chryso tard CHR 

Additive 
conplast RP264M 

Don’t wash = 1 
Wash = 0 

 

 

120 120 0.6 0 0 1  

 
Table 11: W (1, 1) s with compressive strength 90 days with 120 Kg cementitious materials 
Compressive strength 90 days 
W (1, 1) 

25-50 
(kg/m3) 

5-25 
(kg/m3) 

0-5 
(kg/m3) 

0-3 
(kg/m3) 

Cement 
(kg/m3) 

Pozzolan 
khash 

120 2863.2778 -5862.5253 -1647.4708 -1422.8069 794.9786 88.345 
Compressive strength  90 days 
W (1, 1) 

Water  
top water 

Additive 
chrysoplast CER 

Additive chryso 
tard CHR 

Additive conplast 
RP264M 

Don’t wash = 1 
Wash = 0 

 

120 -7883.7779 -15222.0467 -12040.6101 415.202 20662.366  

 
The relation according to whom MATLAB 

program was performed was as Relation (2):   
 
Purlin (W2,1*Tansig (W1,1*A + b1) + b2 

 
where, W1,1, W2,1 and b1 and b2 are calculation 
coefficients by the software and A is initial values of 
the mix design.  

For example, if 90 day compressive strength of a 
design with total cementitious materials is 120 kg/m3 
and is considered with mix ratios according to Table 10, 
the following is performed:  

First, values of each one of the materials are 
multiplied by the weights related to the second row of 
Table 11 for 90 day compressive strength (Table 6), 
which are W (1,1) s; then, the product is added to value 
of b1in second row of Table 7.  

Afterwards, the answer is considered equal to x and 
placed in Relation (3): 
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Now, Z is multiplied by value of w (2, 1) in the 

second row of Table 7 and added to number b2. At the 
end, because the relations are normalized based on 
numbers, one should multiply the product by the 

maximum data, which equals 109.1 
��

���
  and the final 

answer equals: 100.3
 

��

���
. 

 
CONCLUSION 

 
Use of neural networks has changed modeling 

roller compacted resistance modeling and has included 
very suitable and accurate results. In the research which 
was conducted by Sorkon et al., very accurate results 

were presented on the prediction of compressive 
strength  of  concrete  due to neural networks (Delatte 
et al., 2003). This model was made only once, predicted 
resistance instantaneously and accurately and could 
reduce costs of sampling the roller compacted mix 
design. Compressive strength of the cement mortars 
including different types of Pozzolan based on neural 
network without need for performing any laboratory 
studies has saved costs to a great extent in projects 
(Yeh, 1998). 

By applying these models of resistance prediction 
and using minimization methods, one can achieve 
optimal mix designs from the structural and financial 
aspects considering many specifications of the mix 
design and without making laboratory samples. 
Application of these models is very useful for more 
study of parameters effective on roller compacted 
concrete. Use of more characteristics of aggregates 
(type of mineral, conditions of aggregates to prevent 
separation, etc.), type of the consumed cement and 
conditions of making samples (mixing time, mixing 
manner, time interval between completion of mix and 
concrete work, etc.) besides other input parameters 
make prediction of resistance more accurate.  
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