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Research Article 

Decay of Temperature Fluctuations in Dusty Fluid Homogeneous Turbulence  
Prior to the Ultimate Period in Presence of Coriolis Force 

 

M.A.K. Azad and Mst. Mumtahinah
 

Department of Applied Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh 
 

Abstract: Using deissler’s method we have studied the decay of temperature fluctuations in dusty fluid 
homogeneous turbulence before the final period in presence of coriolis force and have considered correlations 
between fluctuating quantities at two- and three-point. The equations for two- and three-point correlation is obtained 
and the set of equations is made to determinate by neglecting the forth-order correlation in comparison to the 
second- and third-order correlations. For solving the correlation equations are converted to spectral form by taking 
their Fourier transform. Finally, integrating the energy spectrum over all wave numbers, the energy decay law of 
temperature fluctuations in homogeneous dusty fluid turbulence before the final period in presence of coriolis force 
is obtained. 
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INTRODUCTION 

 
Interest in motion of dusty viscous fluid has 

developed rapidly in recent years. Such situations occur 
in movement of dust-laden air, in problems of 
fluidization, in the use of dust in gas cooling system 
and in sedimentation problem in tidal rivers.  

In geophysical flows, the system is usually rotating 
with a constant angular velocity. Such large-scale flows 
are generally turbulent. When the motion is referred to 
axes, which rotate steadily with the bulk of the fluid, 
the coriolis and centrifugal force must be supposed to 
act on the fluid. On a rotating earth the coriolis force 
acts to change the direction of a moving body to the 
right in the Northern Hemisphere and to the left in the 
Southern Hemisphere. This force plays an important 
role in a rotating system of turbulent flow, while 
centrifugal force with the potential is incorporated in to 
the pressure.  

Taylor (1935) has been pointed out that the 
equation of motion of turbulence relates the pressure 
gradient and the acceleration of the fluid particles and 
the mean-square acceleration can be determined from 
the observation of the diffusion of marked fluid 
particles. The behavior of dust particles in a turbulent 
flow depends on the concentration of the particles and 
the size of the particles with respect to the scale of 
turbulent fluid. Saffman (1962) derived and equation 
that describe the motion of a fluid containing small dust 
particle, which is applicable to laminar flows as well as 
turbulent flow. Kishore and Sarker (1990) studied the 
rate of change of vorticity covariance in MHD turbulent  

flow of dusty incompressible fluid. Also Rahman 
(2010) studied the Rate of change of vorticity 
covariance in MHD turbulent flow of dusty fluid in a 
rotating system. Kishore and Sinha (1988) also studied 
the rate of change of vorticity covariance of dusty fluid 
turbulence. Corrsin (1951b) had made an analytical 
attack on the problem of turbulent temperature 
fluctuations using the approaches employed in the 
statistical theory of turbulence. His results pertain to the 
final period of decay and for the case of appreciable 
convective effects, to the “energy” spectral from in 
specific wave-number ranges. Deissler (1958, 1960) 
developed a theory for homogeneous turbulence, which 
was valid for times before the final period. Following 
Deissler’s theory Loeffler and Deissler (1961) studied 
the decay of temperature fluctuations in homogeneous 
turbulence before the final period. Sarker and Azad 
(2006), Azad and Sarker (2006), Azad and Sarker 
(2008), Azad et al. (2006), Azad and Sarker (2009) and 
Azad et al. (2007-2008) also studied the decay of 
temperature fluctuations in homogeneous and MHD 
dusty fluid turbulence. Azad et al. (2012) studied the 
transport equatoin for the joint distribution function of 
velocity, temperature and concentration in convective 
tubulent flow in presence of dust particles. Molla et al. 
(2012) also studied decay of temperature fluctuations in 
homogeneous turbulenc before the final period in a 
rotating system. Bkar Pk et al. (2012) studied first-order 
reactant in homogeneou dusty fluid turbulence prior to 
the ultimate phase of decay for four-point correlation in 
a rotating system.  
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They considered dust particles and Coriolis force 
on their won works. In their study, they considered two- 
and three-point correlations and neglecting fourth- and 
higher-order correlation terms compared to the  second- 
and third-order correlation terms. Sinha (1988) had 
considered the effect of dust particles on the 
acceleration of ordinary turbulence. Kishore and Singh 
(1984) had studied the statistical theory of decay 
process of homogeneous hydro-magnetic turbulence. 
Dixit and Upadhyay (1989a) also had deliberated the 
effect of coriolis force on acceleration covariance in 
MHD turbulent dusty flow with rotational symmetry. 
Kishore and Golsefied (1988) considered the effect of 
coriolis force on acceleration covariance in MHD 
turbulent flow of a dusty incompressible fluid. 
Shimomura and Yoshizawa (1986) discussed the 
statistical analysis of an isotropic turbulent viscosity in 
a rotating system. 

In the present study, by analyzing the above 
theories we have studied the decay of temperature 
fluctuations in dusty fluid homogeneous turbulence 
prior to the final period in presence of coriolis force 
considering the correlations between fluctuating 
quantities at two- and -three point and single time. In 
this study, Deissler’s method is used to solving the 
problem. Throughout the study we have obtained the 
energy decay law of temperature fluctuations in 
homogeneous dusty fluid turbulence prior to the final 
period due to corilis force. In result, it is shown that the 
energy decays more rapidly than non rotating clean 
fluid.  

 
CORRELATION AND SPECTRAL EQUATIONS 
 

For an incompressible fluid with constant 
properties and for negligible frictional heating, the 
energy equation may be written at the point P': 
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where,  

��   =  Instantaneous values of temperature 
���  =  Instantaneous velocity 
ρ  =  Fluid density 
cp  =  Heat capacity at constant pressure 
k  =  Thermal conductivity 
xi  =  Space co-ordinate 
t  =  Time 
 

Separate these instantaneous values into time 

average and fluctuating components as TTT +=
~

 and 

iii uuu +=~  Eq. (1) may be written: 
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where, 
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From the case of homogeneity it follows that 
���

�	

  = 

0 and in addition the usual assumption is made that �� is 

independent of time and that �� = 0 Thus Eq. (2) 

simplifies to: 
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where,  

� =  
�

�
, Prandtl number  

v = Kinematic Viscosity 

 

Equation (3) holds at the arbitrary point P. For the 

point P' the corresponding equation can be written: 
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Multiplying Eq. (3) by T', Eq. (4) by T and taking 

time average and adding the two equations gives: 

 

 








′∂′∂

′∂
+

∂∂

′∂
Ρ

=








′∂

′∂
′+

∂

′∂
+

∂

′∂

iiiiri

i

i

i
xx

TT

xx

TT

x

TT
u

x

TT
u

t

TT 22ν   (5) 

 

The continuity equation is: 
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Substitution of Eq. (6) into (5) yields: 
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By use of a new independent variable: 
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This equation is converted into spectral form by 

use of the following three dimensional Fourier 

transforms: 

  

( ) ( ) ( )[ ] KdrKiKrTT ˆˆ.ˆexpˆˆ ∫
∞

∞−

′=′ ττ
              

(9) 
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( ) ( ) ( )[ ] KdrKiKrTTu
ii

ˆˆ.ˆexpˆˆ ∫
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And by interchanging P and Pˈ: 
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Substitution of Eq. (9)-(13) into Eq. (8) leads to the 

spectral equation: 
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Equation (14) is analogous to the two-point 

spectral equation governing the decay of velocity 

fluctuations and therefore the quantity ( )kττ ′  may be 

interpreted as a temperature fluctuation “energy” 

contribution of thermal eddies of size 1/k. Equation 

(14) expresses the time derivative of this “energy” as a 

function of the convective transfer to other wave 

numbers and the “dissipation” due to the action of 

thermal conductivity. The second term on the left hand 

side of Eq. (14) is the so called transfer to term while 

the term on the right hand side is “dissipation” term.  

 

THREE POINTS CORRELATION AND 

SPECTRAL EQUATIONS 

 

In order to obtain single time and three-point 

correlation and spectral equation we consider three 

points P, P' and P" with position vectors �� and �� ′ are 

considered: 

 

 
 

For the two points P' and P" we can write a relation 

according to Eq. (7): 
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Equation (15) multiplied through by uj the j-th 

velocity fluctuation component at point P. Then the 

equation can  be written in a rotating system at the  

point P: 
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The momentum equation at point P in presence of 

dust particles: 
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where, 

uj : Turbulent velocity component 

vj : Dust velocity component 

� =  
��

�
 : (Dimension of frequency) 

εmij : Alternating tensor  

Ωm : Angular velocity of a uniform rotation  

N : Constant number density of dust particle 

 

Substituted Eq. (17) into (16) the result on taking 

time averages is: 
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Making use of the relations iiiiii
xxrandxxr ′−′′=′−′=  

allows Eq. (18) can be written as: 
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(19) 

Six-dimensional Fourier transforms for quantities 

this equation may be defined as: 
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Interchanging the points P' and P'' shows that: 
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Using Eq. (20)-(24) into Eq. (19) then the 

transformed equation can be written as: 
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If the derivative with respect to xj is taken of the 

momentum Eq. (18) for point P and taking time average 

the resulting equation is: 
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In terms of the displacement vectors �� and ��′ this 

becomes: 
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Taking the Fourier transform of Eq. (27) and then 

solving for θθα ′′′  we get: 
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Equation (28) can be used to eliminate θθα ′′′  from 

Eq. (25): 

 

SOLUTION FOR TIMES PRIOR TO  

THE ULTIMATE PERIOD 

 

To obtain the equation for final period of decay the 

third-order fluctuation terms are neglected compared to 

the second-order terms. Analogously, it would be 

anticipated that for times before but sufficiently near to 

the final period the fourth-order fluctuation terms 

should be negligible in comparison with the third-order 

terms. If this assumption is made then Eq. (28) shows 

that the term θθα ′′′  associated with the pressure 

fluctuations, should also be neglected. Thus Eq. (25) 

simplifies to: 
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where, ����′�′′�������� =  ���′�′′�������� and 1-R = S, R and S are 

arbitrary constant. 

Inner multiplication of Eq. (29) by kj and 

integrating between t0 and t gives: 
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Now, letting r' = 0 in Eq. (20) and comparing the 

result with the Eq. (10) shows that: 
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Substituting of Eq. (30) and (31) into Eq. (14), we 

obtain: 
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Now, ( )
321

ˆ kdkdkdKd ′′′≡′ can be expressed in 

terms of k' and ξ as: 
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Deissler (1958) 

Substituting Eq. (33) into (32) yields: 
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In order to find the solutions completely and 

following Loeffler and Deissler (1961), we assume that: 
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where, δ0 constant depending on the initial condition. 

The negative sign is placed in front of δ0 in order to 

make the transfer of energy from small to large wave 

no. for positive value of δ0. Substituting Eq. (35) into 

(34): 

 

( ) ( ) ( )

( )
( )( )

( ) kdd

fs

kk

kk
tt

kkkkKk
t

K

mmij
r

r

r

r

r

′



































































−Ω
Ρ

+

′Ρ+

′+Ρ+

Ρ
−

−×

′−′−=′⋅
Ρ

+
∂

′∂

∫

∫

−

∞

1

1

22

0

0

2442

0

2

cos

)2(

cos2

1

exp

2ˆ2
2ˆ

ξ

ε
υ

ξ
ν

δττπ
νττ

 

(36) 

 

Multiplying both sides of Eq. (36) by k
2
 and 

defining the spectral energy function: 
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Integrating Eq. (39) w.r.t. ξ, we have: 
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Again integrating Eq. (40) w.r.t. k' we have: 
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The Eq. (38) indicates that w must begin as k

4
 for 

small k. The condition of w is fulfilled by the Eq. (41). 
It can be shown, using Eq. (41) that: 
 

∫
∞
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It was to be expected physically since w is a 

measure of the transfer of “energy” and the total energy 
transferred to all wave numbers must be zero. 

The necessity for Eq. (41) to hold can be shown as 

follows if Eq. (10) is written for both ��  !" − ��  and 
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resulting equations differentiated with respect to ri and 
added, the result is, for: 
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Since according to the Eq. (36), (38) and (14): 
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for w = w (k, t) Then the Eq. (42) 

becomes: 
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The linear Eq. (38) can be solved for w as: 
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where, J (k) is an arbitrary function of k.  

For large times, Corrsin (1951b) has shown the 

correct form of the expression for E to be: 
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where, N0 is an constant which depends on the initial 

conditions. Using Eq. (45) to evaluate J (k) in Eq. (44) 

yields: 
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Now, substituting the values of w and J (k) as 

given by the Eq. (41) and (46) into Eq. (44) gives the 

equation: 
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where, 
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Putting �� = 0 in Eq. (9) and we use the definition 

of E given by the Eq. (47), the result is: 
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Substituting Eq. (47) into (50) gives: 
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R is a function of Prandtl no. 

Equation (51) is the decay law of temperature 

fluctuation in homogeneous dusty fluid turbulence prior 

to the ultimate period in presence of coriolis force. The 

first term of the right side of Eq. (51) corresponds to the 

temperature energy for two- point correlation and the 

second terms represents the energy for the three-point 

correlation. This second term becomes negligible at 

large times leaving the final period decay law 

previously found by Corrsin (1951b). �� & Is the total 

“energy” (the mean square of the temperature 

fluctuations).  

 

RESULTS AND DISCUSSION 

 

Equation (51) is the decay law of temperature 

fluctuation in homogenous dusty fluid turbulence 

before the final period in presence of coriolis force. In 

the  absence  of the dust particle and coriolis force, i.e., 

f = 0 then the Eq. (51) becomes: 
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(53) 

 

which was obtained earlier by Molla et al. (2012). In 

this study, they had studied the decay of temperature 

fluctuation in homogeneous turbulenc before the final 

period in a Rotating System. They considered two-and 

three-point correlations and neglecting fourth-and 

higher-order correlation terms compared to the second- 

and third-order correlation terms and derived the above 

equation. 

If 0=Ω
m

, then the Eq. (51) becomes: 
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which was obtained earlier by Azad and Mumtahinah 

(2013).  

In the absence of the dust particle and the coriolis 

force i.e., f = 0
 
and 0=Ω

m
, the Eq. (51) becomes: 
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which was obtained earlier by Loeffler and Deissler 

(1961). Here, 
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Due to the effect of coriolis force in homogeneous 

dusty fluid turbulence, the temperature energy 

fluctuations decays more rapidly than the energy for 

non rotating clean fluid prior to the ultimate period. For 

large times, the second term in the Eq. (51) becomes 

negligible leaving the -3/2 power decay law for the 

ultimate period.  

In their study, they considered two- and three-point 

correlations and neglecting fourth- and higher-order 

correlation terms compared to the second- and third-

order correlation terms. 

In the present study, I have studied the decay of 

temperature fluctuations in homogeneous turbulence 

prior to the final period taking dust particle and coriolis 

force considering the correlations between fluctuating 

quantities at two- and three-point and single time. In 

this study, we have used Deissler (1958) method to 

solving the problem. Through the study we have 

obtained the Eq. (51) for energy decay law of 

temperature fluctuations in homogeneous dusty fluid 

turbulence prior to the final period in a rotating system. 

In this result, it is shown that the energy decays more 

rapidly than clean fluid and non rotating system. 
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