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Packet Scheduling in High-speed Networks Using Improved Weighted Round Robin 
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Xiangtan, 411201, China 
 

Abstract: A variety of applications with different QoS requirements are supported simultaneously in the high-speed 
packet-switched networks, packet scheduling algorithms play a critical role in guaranteeing the performance of 
routing and switching devices. This study presents a simple, fair, efficient and easily implementary scheduling 
algorithm, called Successive Minimal-weight Round Robin (SMRR). In each round, SMRR provides the same 
service opportunity, which is equivalent to the minimal weight of the current round, for all active data flows. On the 
basis of the concept of Latency-Rate (LR) servers, we obtain the upper bound on the latency of SMRR and WRR 
(Weighted Round Robin) respectively and the results indicate that SMRR makes a significant improvement on the 
latency bound in comparison to WRR. We also discuss the fairness and implementation complexity of SMRR and 
the theoretical analysis shows that SMRR preserves the good implementation complexity of O (1) with respect to the 
number of flows and has better fairness than WRR. 
 
Keywords: Complexity, high-speed networks, latency bound, minimal weight, packet scheduling, relative fairness, 

Weighted Round Robin (WRR) 

 
INTRODUCTION 

 
There are many kinds of services with different 

QoS requirements in Internet. Packets belonging to 
different traffic flows often share links in their 
respective paths towards their destinations. Switches 
and routers want to schedule these traffics for 
supporting different service levels; therefore, the 
performances of routing-switching devices are tightly 
interrelated to the used packet scheduling algorithms. 
Packet scheduling algorithms can be broadly classified 
into two categories: time-stamp based scheduling and 
round-robin based scheduling. Time-stamp based 
scheduling algorithms such as WFQ (Weighted Fair 
Queuing) (Demers et al., 1998), WF

2
Q (Worst-case 

Fair Weighted Fair Queuing) (Bennett and Zhang, 
1996), VC (Virtual Clock) (Zhang, 1990), SCFQ (Self-
Clocked Fair Queuing) (Golestani, 1994) and SFQ 
(Start-time Fair Queuing) (Goyal et al., 1997) maintain 
two time-stamps for each packet to indicate its start-
serving time and end-serving time respectively, then 
sort these time and send out the packet with the least 
end-serving time. They achieve good fairness and low 
latency. However, they are not very efficient due to the 
complexity involved in computing and sorting each 
packet’s time. On the other hand, in round-robin based 
scheduling algorithms such as WRR (Weighted Round-
Robin) (Hemant and Madhow, 2003), DRR (Deficit 
Round-Robin) (Shreedhar and Varghese, 1996) and 

SRR (Smoothed Round Robin) (Guo, 2001), the 
scheduler simply serves all non-empty queues in a 
round-robin manner. These algorithms neither maintain 
a time-stamp for every service flow, nor perform 
sorting among the packets. Most of them have O (1) 
complexity with respect to the number of flows. As a 
matter of fact, round-robin is used in many other fields 
besides packet scheduling due to its simple, applied and 
good efficiency. Research and application aiming at 
round-robin algorithm are very broad (Hu et al., 2008; 
Lin et al., 2011; He et al., 2012). 

Time-stamp based packet scheduling algorithms 
are to approximately emulate the most ideal packet 
scheduling algorithm-GPS (Generalized Processor 
Sharing) (Parekh and Gallager, 1992). However, their 
design complexities are increased in order to get perfect 
latency characteristics. So round-robin based packet 
scheduling algorithms are more attractive for 
implementation in high-speed packet networks. In this 
study, we present a new packet scheduling algorithm, 
termed Successive Minimal-weight Round Robin 
(SMRR), with better fairness and latency characteristic 
compared to Weighted Round Robin (WRR). In each 
round, every flow always gains the equivalent service 
opportunities to the least weight of the current round. It 
efficiently avoids the situation that some flows cannot 
gain service probably for a long time. Generally the 
opportunity of a flow, namely the number of packets 
which are sent to the output link with permission in a 
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Fig. 1: Pseudo-code for SMRR scheduling packets                   

 
round, is proportional to its weight. WRR sends out all 

the packets whose number is equivalent with a flow’s 

weight at a time and a flow with large weight may let 

other flows be waiting for a long time. In contrast, 

SMRR sends a flow’s packets whose number is 

equivalent with its weight through many times; only 

when a flow’s weight is the least, it can send out all of 

its packets at a time. So SMRR can assure the service 

opportunity of every flow and balance their waiting 

latency. WRR is an earlier scheduling algorithm and 

applied long before. In recent years, many literatures 

put forward many queue scheduling algorithms based 
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on WRR. For example, according to the current queue 

length, Pan and Zhang (2012) dynamically set the 

maximum byte number that can be sent during a service 

time in order to guarantee latency characteristics and 

relative fairness of low-weighted services. BSTLRR 

(Xiong and Zhang, 2012) schedules those data flows 

firstly, which have higher real-time requirement. 

TIIWRR (Zhang et al., 2011) ameliorates UIWRR, also 

called WRR2 in (Hemant and Madhow, 2003), to solve 

the collision problem when UIWRR computes packet 

sending sequence. Based on the very limited buffering 

capability  of  optical  packet  switching network, Cao 

et al. (2010) introduce an algorithm called United 

Weight Round Robin (UWRR) for scheduling multi-

services in the network. As far as a scheduling 

algorithm is concerned, there are three very important 

attributes, namely latency, fairness and complexity. 

These three attributes have an effect on the practical 

application of a scheduling algorithm. Therefore, this 

study will lay special stress on analyzing these three 

attributes of SMRR and compare them with WRR. 

 

SUCCESSIVE MINIMAL-WEIGHT  

ROUND ROBIN 

 

A pseudo-code implementation of the SMRR 

scheduling algorithm is shown in Fig. 1, including 

Initialize Module, Enqueue Module and Dequeue 

Module. The Initialize Module is to initialize the 

SMRR packet scheduler when network node has 

demand on scheduling packets. Enqueue Module is 

called whenever a new packet arrives at a flow. The 

packet will enter into the correlative queue and wait for 

being sent. Dequeue Module schedules packets from 

the queues corresponding to different flows. 

Therefore, we can define the scheduling framework 

of SMRR as: suppose there are n (n is a natural number 

and n>0) data flows sharing one output link; packets of 

each flow enter into correlative queue before being sent 

to the output link; packet scheduling module uses 

SMRR algorithm to scheduling each packet so that the 

bandwidth resource of the output link is allocated fairly. 

A data flow is defined as active if its queue is not 

empty or its packets are being scheduling. All the active 

flows are put into a list and this list is called “Active 

Flow List”. When a flow changes from active to 

inactive, it will be removed from Active Flow List. 

When a flow changes from inactive to active, it will be 

appended at the end of Active Flow List. 

Every data flow is designated a “weight” through 

which indicates its priority, QoS requirements and so 

on. When a flow’s weight (namely its service 

opportunity) is not used up, we say that its “Surplus 

Weight” is more than zero. All the flows which have 

positive Surplus Weight are put into a list which is 

called “Surplus Flow List”. When a flow’s weight is 

used up, namely its weight already equals 0; this flow 

will be removed from Surplus Flow List. If a data flow 

belongs to Surplus Flow List, it belongs to Active Flow 

List definitely, but not vice versa. 

There are two types of rounds in SMRR-primary 

round and secondary round. A primary round is defined 

as the process during which the data flows, included in 

Active Flow List at a time instant T1 (T1>0), are 

accessed by packet scheduling module. The newcome 

flows or those become active once again can be 

appended at the end of Active Flow List, but they will 

be accessed in the next round. The definition of 

secondary round, similar with primary round, is the 

process during which the data flows included in Surplus 

Flow List are accessed by packet scheduling module. A 

primary round may involve one or more secondary 

rounds. 

In order to express the number of data flows 

wanted to be accessed in a round, SMRR introduces a 

counter, which is called “Visit Flow Count”, to record 

the number of data flows. At the beginning of a round, 

Visit Flow Count equals the number of data flows in 

Surplus Flow List. When packet scheduling module 

finishes accessing a data flow, the value of Visit Flow 

Count will be minus 1. At last, when Visit Flow Count 

equals 0, it means that the current round is over. 

Another counter, called “Packet Number Count”, is 

used to record the number of packets that a data flow 

has sent out totally in a round and every data flow has a 

Packet Number Count. The initial value of Packet 

Number Count is 0 before a round begins and then 

Packet Number Count will be increased by 1 after the 

corresponding flow sends out one packet. 

 

SMRR LATENCY ANALYSIS 

 

Stiliadis and Verma (1998) defined a general class 

of schedulers, called Latency-Rate (LR) Servers. Here 

schedulers are those servers or devices which run 

specific scheduling algorithm. The authors also 

developed and defined a notion of latency and 

determined an upper bound on the latency for a number 

of schedulers that belong to the class of LR servers. 

There into the notion of latency is based on the length 

of time it takes a new flow to begin receiving service at 

its guaranteed rate and pointed out latency is directly 

relevant to the size of the playback buffers required in 

real-time streaming applications. In this study, SMRR’s 

latency characteristic will be analyzed by using the 

concept of Latency-Rate Servers. 

Consider an output link of transmission rate r, 

access to which in controlled by the SMRR scheduler. 

Let n be the total number of flows and let ρi be the 

scheduling rate for flow i. Let ρmin be the lowest of these 

scheduling rates. Since all the flows share the same 

output link, the sum of the scheduling rates is no more 

than the transmission rate of the output link, namely 

� �� ≤ ��
��� . In order that each flow receives service 
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proportional to its guaranteed service rate, the SMRR 

scheduler assigns a weight to each flow. The weight 

assigned to flow i, wi is given by: 

 

minρ

ρ i

iw =                                (1) 

 

Apparently, for 1≤i≤n, wi ≥1.  

Let Фi represent the amount of data that flow i is 

permitted to send during each round robin service 

opportunity and let Φmin be the amount of data 

permitted to the flow with the lowest scheduling rate. 

The  amount  of  data  permitted  to flow i is given by 

Фi = wiΦmin. Thus, the amounts of data permitted to the 

flows are in proportion of their scheduling rates. In 

addition, let Ai (τ, t) represent the number of arrived 

packets in flow i during the time interval (τ, t).  

 

Definition 1: Define W as the sum of the weights of all 

active flows that are being served by the SMRR 

scheduler. 

 

Definition 2: An active period of a flow is defined as 

the maximal interval of time during which it has at least 

one packet awaiting service or in service. A flow 

remains continuously active during its active period. 

 

Definition 3: A busy period of flow i is defined as the 

maximal interval of time (τ1, τ2) such that at any time t∈ 

(τ1, τ2) the accumulated arrivals of flow i since the 

beginning of the interval do not fall below the total 

service received during the interval at a rate of exactly 

ρi. That is: 

 

Ai (τ1, t) ≥ρi (t - τ1)                 (2) 

 

A flow is active during its busy period, but the 

active period is different from the busy period of a 

flow, in the sense that it reflects the actual behavior of 

the scheduler because the instantaneous service offered 

to the flow varies according to the number of active 

flows. Suppose Senti (t1, t2) represent the amount of 

service received by flow i during the time interval (t1, 

t2). Let the time instant αi be the start of a busy period 

for flow i. Suppose t>αi and flow i is continuously busy 

during the time interval (αi, t). Define Si (αi, t) as the 

number of packets in flow i that arrive after time αi and 

are scheduled during the interval of time (αi, t). 

Obviously, the busy period of a flow must be its active 

period, but the active period is not always its busy 

period and thus Si (αi, t) is not necessarily the same as 

Senti (αi, t). 

 

Definition 4: The latency of flow i is defined as the 

minimum non-negative constant Өi that satisfies the 

following for all possible busy period of the flow: 

Si (αi, t) ≥max {0, ρi (t - αi - Өi)}               (3) 

 

As defined in Stiliadis and Verma (1998), a 

scheduler which satisfies Eq. (3) for some non-negative 

constant value of Өi is said to belong to the class of 

Latency Rate (LR) servers. 

Note that even if the definition of the latency is 

based on flow busy periods, actually it is easier to 

analyze scheduling algorithms based on the active 

period of a flow.  

 
Lemma 1: Suppose there is a scheduling server S and 
flow i becomes active at the instant of time τi. Let t>τi 
be some instant of time such that the flow is 
continuously active during the time interval (τi, t). Let 
Өi΄ be the smallest non-negative number such that the 
following is satisfied for all t: 

 

Senti (τi, t) ≥max {0, ρi (t - τi - Өi΄)}               (4) 

 

Even though (τi, t) may not be a continuously busy 

period for flow i, the latency as defined by Eq. (3) is 

bounded by Өi΄. 

 

Proof: Since a busy period must be an active period, it 

will be proven so long as any one busy period (αk, βk) 

during active periods satisfies Eq. (3): 

 

If αk = τi, t ∈ (αk, βk), then Si (αk, t) = Senti (αk, t) ≥max 

{0, ρi (t - αk - Өi΄)} 

If αk>τi, t ∈ (αk, βk), then Si (αk, t) = Senti (τi, t) - Senti 

(τi, αk) 

 

Since (τi, αk) is not the busy period of flow i, 

therefore, Senti (τi, αk) ≤Ai (τi, αk) <ρi (αk - τi) and then Si 

(αk, t) = Senti (τi, t) - Senti (τi, αk) >max {0, ρi (t - τi - 

Өi΄)} - ρi (αk - τi) = max {0, ρi (t - αk - Өi΄)}. 

Synthetically, Si (αk, t) ≥max {0, ρi (t - αk - Өi΄)}. 

Hence S is Latency-Rate server and the latency is less 

than or equals Өi΄. 

Lemma 1 allows us to determine the latency bound 

of a scheduler by considering only those periods during 

which a flow is continuously active. 

 

Lemma 2: The latency experienced by flow i during 

the active period (τi, t) will reach its upper bound, Өi΄, 

only if the time instant, τi, at which flow i becomes 

active, is the start time of serving another flow. 

 

Proof: Assume that flow j (j ≠ i) receives its service 

opportunity during the time interval (t1, t2), t1≤τi<t2. If τi 

is not the start time that j receives service opportunity, 

then τi>t1. That is, the time interval (t1, τi) is a part of 

the service opportunity of flow j, but it is not included 

in the latency experienced by flow i. On the other hand, 

when τi = t1, τi is the start of the service opportunity of 

flow j. So, the time for which flow i has  
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Fig. 2: SMRR time interval under consideration 

 

to wait before receiving any service will involve the 

time interval (t1, t2). Obviously, when τi is the start time 

of the service opportunity of another flow, the latency 

experienced by flow i is always greater. 

 

Lemma 3: The latency experienced by flow i during 

the active period (τi, t) will reach its upper bound, Өi΄. t 

belongs to such a time set Ti and Ti is the set of all time 

instants at which the scheduler begins serving flow i. 

 
Proof: Assume that t1 and t2 are any two consecutive 
time instants belong to Ti. Consider an instant of time t, 
t1<t<t2. When flow i is receiving service at time instant 
t, the amount of service received by flow i is r (t - t1) 
during the time interval (t1, t), where r is the link rate. 
Clearly, flow i is receiving service at the rate ρi or 
higher. Thus, the worst-case latency of flow i is no 
worse than that until time t1. On the other hand, when 
some other flow is receiving service at time instant t, 
flow i does not receive any service during the time 
interval (t, t2). So the latency experienced by flow i 
includes the time interval (t, t2). In this case, the worst-
cast latency of flow i is no worse than that until time t2. 
The above two cases show that the worst-case latency 
of a flow during (t1, t2) is equal to the latency until 
either t1 or t2. The lemma is proved. 

Just as mentioned in above section, when flow i 

receives service from SMRR scheduler, rounds can be 

primary and secondary and a primary round may 

involve one or more secondary rounds. The primary 

round measures the amount of data Фi, which is 

permitted by flow i during a primary round. Service in a 

secondary round equals the lowest amount of data 

among all flows in every secondary round, namely Wmin 

in SMRR algorithm description. Service in a primary 

round equals the sum of service of all nested secondary 

rounds. If let k be the primary round and let v be the 

secondary round, then (k, v) expresses that a flow 

receives the v-th service in the k-th primary round and 

let τi
(k, v)

 be the time instant at which flow i begins to 

receive the (k, v)-th service. Assume that flow i 

becomes active at time instant τi, therefore, in order to 

determine the latency bound of SMRR, according to 

Lemma 3, we need to only consider time interval (τi, 

τi
(k, v)

) for all (k, v) in which flow i receives service.  

For analyzing the latency bound, we need to select 

a suitable time interval (τi, τi
(k, v)

) such that the size of 

this time interval is the maximum possible. The start 

time instant τi may or may not coincide with the start of 

a new primary round. Assume that the k0-th primary 

round is in progress or which starts exactly at time 

instant τi and let the time instant th represent the start 

time of the (k0 + h)-th primary round. Consider the case 

when τi does not coincide with the time instant t0, the 

start of primary round k0, i.e., τi>t0. In this case, the 

time interval (t0, τi) will be excluded from the time 

interval under consideration. On the other hand, when τi 

coincides with t0, the size of the time interval (τi, τi
(k, v)

) 

is maximal. According to Lemma 2, we assume that the 

τi coincides with the start of the k0-th primary round. 

Figure 2 illustrates the time interval under consideration 

supposing that (k, v) is equal to (k0 + s, v). Note that in 

Fig. 2, PR (a) represents the a-th primary round and SR 

(a, b) denotes the secondary round (a, b) in the 

execution of SMRR scheduler. In addition, the set GFIN 

includes those flows that have completed receiving 

their allocated service in the duration of the (k0 + s)-th 

primary round at the time instant τi
(k

0
+s, v)

.  

 

Theorem 1: The SMRR scheduler belongs to the class 

of LR servers, with an upper bound on the latency Өi 

for flow i given by: 

 

min

)(

minmin )
11

(
11

Φ−Ψ−Φ+Φ≤ ∑∑
≠

−∈∈ r
w

r
w

r i
ij

Gnj

i

Gj

ji

FINFIN
ρ

θ     (5) 

 

Hereinto, the value of the parameter Ψ as follows: 

Ψ = 0, when wi is the smallest among n weights 

Ψ = 1, other cases 

 

Proof: According to Lemma 1, the latency of an LR 

server can be estimated based on its behavior in the 

flow active periods, so we will prove the theorem by 

showing that: 

  

min

)(

minmin

'
)

11
(

11
Φ−Ψ−Φ+Φ≤ ∑∑

≠
−∈∈ r

w
r

w
r i

ij
Gnj

i

Gj

ji

FINFIN
ρ

θ  
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On the basis of the discussion above, the time 

interval (τi, τi
(k

0
+s, v)

) can be split into two sub-intervals: 

 

• (τi, ts): This sub-interval includes s primary rounds 

of execution of SMRR scheduler starting at 

primary round k0. Now assume that primary round 

(k0 + h) is in progress during the time interval (th, 

th+1). For all n flows: 

  

min1 Φ=−+
r

W
tt hh

                              (6) 

 

Summing the above over s rounds beginning with 

primary round k0: 

 

)( minΦ=− s
r

W
t is τ                              (7) 

 

• (ts, τi
(k

0
+s, v)

): This sub-interval includes the part of 

the (k0 + s)-th primary round prior to the start of the 

service of flow i during the v-th secondary round. 

In the worst-case, flow i will be the last flow to 

receive service among all the flows. In this case, 

during the sub-interval (ts, τi
(k

0
+s, v)

), the service 

received by flow i comes from the former v-1 

secondary rounds, whereas the other n-1 flows 

have completed the service of v secondary rounds. 

If v = 1, then flow i does not receive service in this 

sub-interval. 

 

Let Senti (k, v) represent the total service received 

by flow i since the start of the k-th primary round until 

the time instant when SMRR scheduler finishes the 

service of the v-th secondary round, then: 

 

∑
≠
=

+
++−+=−

n

ij
j

jis vskSentvskSent
r

t
1

00

 v)s,(k

i )],()1,([
1

0τ    (8) 

 

Sorting all the n weights in ascending order and let 

wv-1 and wv represent the (v-1)-th and the v-th weight 

respectively, we have: 

 

][
1

min1

)(

minmin

 v)s,(k

i
0 Φ+Φ+Φ=− −

≠
−∈∈

+

∑∑ v

ij
Gnj

v

Gj

js www
r

t
FINFIN

τ    (9) 

 

Since wv≤wi, therefore: 

 

][
1

min1

)(

minmin

 v)s,(k

i
0 Φ+Φ+Φ≤− −

≠
−∈∈

+

∑∑ v

ij
Gnj

i

Gj

js www
r

t
FINFIN

τ    

                                                                                   (10) 

Combining Eq. (7) and (10), we have: 

]

[
1

)(

min1

)(

min

minmin

 v)s,(k

i
0

Φ+Φ
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−

≠
−∈

∈

+

∑

∑

v

ij
Gnj

i
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w
r

s
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W

FIN
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ττ
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Solving for s: 
 

][
1

)( 1

)(min

 v)s,(k

i
0

−

≠
−∈∈

+

∑∑ ++−
Φ

−≥ v

ij
Gnj

i

Gj

ji www
WW

r
s

FINFIN

ττ
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Note that the total data transmitted by flow i during 

the time interval under consideration can be expressed 

as the following summation: 

 
Senti (τi, τi

(s, v)
) = Senti (τi, ts) + Senti (ts, τi

(s, v)
)   (13) 

 

As explained earlier, Senti (ts, τi
(s, v)

) is the same as 

Senti (s, v-1). Senti (τi, ts) can be obtained by summing 

the amount of data of flow i over s primary rounds 
starting at primary round k0. We get: 

 

Senti (τi, τi
(k

0
+s, v)

) = wi (sΦmin) + wv-1Φmin    (14) 

 

Using (12) to substitute for s in (14), we have: 
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In (15), if v = 1 then wi is the least among all 

weights and. wv-1 = 0; if v>1 then wv-1≥1. Thereupon, 

introducing  a  parameter  Ψ and its values as follows: 

Ψ = 0 when wi is the least among n weights; Ψ = 1 in 

other cases. So: 
 

W

wW
ww

W

w

W

rw
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i
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Gnj
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i

ivsk

ii
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 (16) 

 

Now, since the sum of the scheduling rates is no 

more than the link rate r and combing (1), we have: 
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W

rwi
i ≤ρ                                           (17) 

 
Using Eq. (17) in (16), we get: 
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The statement of the theorem is proved. 

Now, analyzing the latency of SMRR under two 
boundary conditions: 
 
Case I: for ∀j, 1≤j≤n, j ≠ i, ρi<<ρj 

In this case, wi = 1 and wi<<wj. Also W>>wi, the set 
GFIN is empty and Ψ = 0. Hence: 
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Case II: for ∀j, 1≤j≤n, j ≠ I, ρi>>ρj 

In this case, wi>>wj. Ψ = 1 and the set GFIN 

includes all (n-1) flows except flow i. Hence: 
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Since ρi<r, therefore: 

 

min)(
1

Φ−< ii wW
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ϑ                             (20) 

 

THE LATENCY BOUND OF WRR 

 

Theorem 2: The WRR scheduler belongs to the class 

of LR servers, with an upper bound on the latency Өi 

for flow i given by: 

 

min)(
1

Φ−≤ ii wW
r

θ                             (21) 

 

Proof: According to Lemma 1, the latency of an LR 

server can be estimated based on its behavior in the 

flow active periods, so we will prove the theorem by 

showing that: 
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'
)(

1
Φ−≤ ii wW
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Assume that flow i becomes active at time instant 

τi and let τi
s
 be the start time of the s-th service 

opportunity of flow i. According to Lemma 3, in order 

to determine upper bound on the latency of WRR, we 

need to only consider time interval (τi, τi
s
) for all s. 

Figure 3 illustrates the time interval under consideration 

for a given s. Note that the time instant τi may or may 

not coincide with the end of a round and the start of the 

subsequent round. Let k0 be the round which is in 

progress at time instant τi or which ends exactly at time 

instant τi. Let the time instant th mark the end of round 

(k0 + h - 1) and the start of the subsequent round. 

 
 
Fig. 3: WRR time interval under consideration 
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As shown in Fig. 3, assume that the time instant 

when flow i becomes active coincides with the time 

instant when some flow g is about to start its service 

opportunity during the k0-th round. Let Gi+ denote the 

set of flows which receive service after flow i becomes 
active, i.e., during the time interval (τi, t1). Similarly, let 

Gi- denote the set of flows which are served by the 

WRR scheduler before flow i becomes active, i.e., 

during the time interval (t0, τi). Note that flow i is not 

included in either of these two sets since flow i will 

receive its first service opportunity only in the (k0 + 1)-
th round. If the time instant τi coincides with the time 

instant t1, which marks the end of the k0-th round and 

the start of the (k0 + 1)-th round, then the set Gi+ will be 

empty and all the n-1 flows will be included in the set 

Gi-. In this case, flow i will be the last to receive service 

in the (k0 + 1)-th round and all subsequent rounds 
during the time interval under consideration. 

The time interval (τi, τi
s
) can be split into the 

following three sub-intervals: 

 

• (τi, t1): This sub-interval includes the part of the k0-

th round during which all the flows belonging to 

the set Gi+ will be served by the WRR scheduler 

and then: 

 

∑
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• (t1, ts): This sub-interval includes s-1 rounds of the 

WRR scheduler starting from round (k0 + 1). 

Assume that round (k0 + h) is in progress during the 

time interval (th, th+1), we get: 

 

min1 Φ=−+
r

W
tt hh

                            (23) 

 

Summing Eq. (23) over s-1 rounds beginning with 

round k0+1: 
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r

W
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              (24) 

 

• (ts, τi
s
): This sub-interval includes the part of the 

(k0 + s)-th round during which all the flows 

belonging to the set Gi- will be served by the WRR 

scheduler and then: 
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Combining Eq. (22), (24) and (25), we have: 
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Solving for s-1: 
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Note that during the time interval under 

consideration, (τi, τi
s
), flow i receives service in s-1 

rounds starting at round (k0 + 1). We get: 
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Using (27) to substitute for (s-1) in (28), we have: 
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Since �� ≤
��

�
, hence:  
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We get: 
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And then: 
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The theorem is proved. 

 

COMPARATIVE ANALYSIS OF  

LATENCY UPPER BOUND 

 

At first, we present a comparison of the latency 

upper bound of WRR derived in Theorem 2 with the 

latency bound derived in (Stiliadis and Verma, 1998). 

Let Өi
new

 represent the latency bound derived in 

Theorem 2. Thus: 

 

min)(
1

Φ−= i

new

i wW
r

θ                            (32) 

 

Let Өi
old

 represent the latency bound of WRR as 

derived in (Stiliadis and Verma, 1998), namely: 
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Table 1: Comparison of latency bounds 

Scheduler Latency bound 
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r

LF ciold

i

+Φ−
=θ                             (33) 

 

In Eq. (33), F denotes the size of a WRR frame 

which is equal to WΦmin, the summation of the data 

permitted to be sent by all the active flows. Lc is the 

size of an ATM cell. Substituting for F in Eq. (33) we 

get: 

 

r

L
wW

rr

LW c
i

ciold

i +Φ−=
+Φ−Φ

= min
min )(

1
θ     (34) 

 
Comparing Eq. (32) and (34), we have θi

new
<θi

old
. It 

illuminates that the upper bound on the latency of WRR 

derived in Theorem 2 is lower. 

Next, we compare the latency bound of SMRR 

analyzed earlier with the latency bound of WRR. The 

latency of SMRR, under two boundary conditions, are 

shown in Eq. (19) and (20). Both of them are less than 
�


 (� −  ��)Φ !" obviously, so the latency 

characteristic of SMRR is better than that of WRR. 

Note that there is a special case: SMRR and WRR have 

the same latency upper bound when all the n flows have 

the same weight. Table 1 summarizes each latency 

upper bound and also making a comparison to these 

latency bounds through Table 1. Hereinto, θi
smrr

 

represents the latency upper bound of SMRR; θi
smrr-low

 
 

and θi
smrr-high

 
represent the latency upper bounds of 

SMRR under boundary conditions I and II respectively.  

 

FAIRNESS 

 

For fairness analysis, the fairness metric proposed 

in Golestani (1994) is more commonly employed. This 

metric, known as the Relative Fairness Bound (RFB), is 

defined as the maximum difference in the service 

received by any two flows over all possible intervals of 

time.  

 

Definition 5: For any two flows i and j of all the flows 

which have continuous packets queuing during the time 

interval (t1, t2), let FM (t1, t2) represent the maximum 

value of the following formula (35). FM is defined as 

the maximum value of FM (t1, t2) over all possible time 

intervals (t1, t2): 
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If a scheduling algorithm has FM = 0, it is obvious 

that this algorithm has good relative fairness. For 

example, GPS (Generalized Processor Sharing) (Parekh 

and Gallager, 1992) is proven to possess this property. 

However, this condition cannot be met by any packet-

by-packet algorithm since packet must be served 

exclusively. In such algorithms, we can only require 

that their FMs are bounded by a constant. Therefore, for 

a scheduling algorithm running on server S, it is 

considered close to fair if its FM is a constant. In 

particular, FM (t1, t2) should not depend on the size of 

the time interval. This constant is called F
S
 in (Stiliadis 

and Verma, 1998) and F
S
 is called the fairness of server 

S. Apparently, FM≤F
S
. 

 

Theorem 3: The SMRR schedulers have FM≤
#$�%

&$�%
. 

 

Proof: Consider any two flows i and j that are 

continuously backlogged in a time interval (t1, t2). Since 

the maximal difference of the service opportunity 

between i and j is one secondary round, without loss of 

generality, assume that two flows have passed through 

k primary rounds. In addition, flows i and j have passed 

through v-1 and v secondary rounds respectively. We 

have: 
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According to (1), we have 
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The following case discussion: 

 

When v = 1: 
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When v>1, if: 
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If: 
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Combining (37), (38) and (39), we get FM≤
#$�%

&$�%
.  

The theorem is proved. Next, analyzing the fairness 

of WRR: 

 

Theorem 4: The WRR schedulers have FM≤
#$�%

&$�%
. 

 

Proof: Consider any two flows i and j that are 

continuously backlogged in a time interval (t1, t2). Let k 

be the number of service opportunities given to flow i 

in interval (t1, t2) and let k΄ be the number of service 

opportunities given to flow j in the same interval, then 

|k- k΄|≤1, namely k΄≥k-1 and k≥k΄-1. Thus, 
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When, 
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Combining (40) and (41), we get FM≤
#$�%

&$�%
. The 

theorem is proved. 

From Theorem 3 and 4, we can see that both 

SMRR and WRR schedulers have FM≤
#$�%

&$�%
. The 

reason is that there is a special case mentioned above, 

namely all the n flows have the same weights, at which 

both SMRR and WRR schedulers have the same FM. 

Nevertheless, when flows have different weights, 

SMRR scheduler has better fairness than WRR, which 

can be derived by comparing (37)-(39) with (40)-(41). 

For example, in (38), we have: 
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The result of (42) is less than 
#$�%

&$�%

 

absolutely. 

 

IMPLEMENTATION COMPLEXITY 

 

Implementation complexity is also an important 

index to evaluate a scheduling algorithm besides 

latency and fairness. Since a scheduling algorithm is 

wanted to be implemented in high-speed networks 

generally, implementation complexity of a scheduling 

algorithm will affect its practical application. In 

addition, it is better that the implementation complexity 

does not depend on the number of the active flows. 

When a SMRR scheduler serves n flows, its 

implementation complexity is defined as the order of 

the time complexity, with respect to n, of enqueuing 

and then dequeuing a packet for transmission. 
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Theorem 5: The implementation complexity of a 

SMRR scheduler is O (1). 

 

Proof: The theorem will be proved if we can prove that 

enqueuing and dequeuing a packet are each of time 

complexity O (1). 

When a new packet arrives, enqueuing process of 

SMRR is executed. The operations include: 

determining the queue at which the new packet arrives 

and it is an O (1) operation. If the flow to which the 

new packet belongs is not already in the Active Flow 

List, it will be added to the end of the list. This addition 

is also an O (1) operation. 

Now analyzing the time complexity of dequeuing a 

packet. Since SMRR scheduler transmits at least one 

packet during each service opportunity given to a flow, 

the time complexity of dequeuing a packet is equal to or 

less than the time complexity of all the operations 

performed in euqueuing process of SMRR during each 

service opportunity. These operations involve: 

determining the next flow to be served; removing a 

flow from the head of the Surplus Flow List and 

possibly adding a flow back at the tail. All of these 

operations on a list can be finished in O (1) time. In 

addition, each service opportunity involves updating the 

values of Visit Flow Count, Packet Number Count and 

Surplus Weight. All of these operations can be executed 

in constant time, therefore the time complexity of 

dequeuing a packet is O (1). The theorem is proved. 

 

CONCLUSION 

 

In this study, we have presented an improved 

version of weighted round-robin called Successive 

Minimal-weight Round Robin (SMRR). A primary 

round consists of one or more secondary rounds and in 

every round each flow always gains the equivalent 

service opportunities to the least weight of the current 

round. Firstly, we prove the relevant theorems to 

determine the upper bound on latency of SMRR and 

WRR; hereinto the latency upper bound of WRR is 

smaller than that derived in other literature. Then, we 

discuss the fairness of SMRR and WRR. As a result of 

comparative analysis, it shows that SMRR almost 

always has better latency property and fairness than 

WRR. We also prove that the implementation 

complexity of SMRR is O (1). Therefore, it can be 

easily implemented in high-speed networks with large 

number of flows and carry out fair and efficient packet 

scheduling. 
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