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PSS and the STATCOM Device for Damping Power System Oscillations 
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Arau, Perlis, Malaysia 
 

Abstract: The aim of this study is to present a comprehensive comparison and assessment of the damping function 

improvement for the multiple damping stabilizers using the simultaneously coordinated design based on Power 

System Stabilizer (PSS) and Static synchronous Compensator (STATCOM). In electrical power system, the 

STATCOM device is used to support bus voltage by compensating reactive power; it is also capable of enhancing 

the stability of the power system by the adding a supplementary damping stabilizer to the internal AC or DC voltage 

control channel of the STATCOM inputs to serve as a Power Oscillation Damping (POD) controller. Simultaneous 

coordination can be performed in different ways. First, the dual-coordinated design between PSS and STATCOM 

AC-POD stabilizer or DC-POD stabilizer is used. Then, coordination between the AC and DC STATCOM-based 

POD stabilizers are arranged in a single STATCOM device without PSS. Second, the coordinated design has been 

extended to triple multiple stabilizers among PSS, the AC-based POD and the DC-based POD in a Single Machine 

Infinite Bus (SMIB). The parameters of the multiple stabilizers have been tuned in the coordinated design by using a 

Chaotic Particle Swarm Optimization (CPSO) algorithm that optimized the given eigenvalue-based objective 

function. The simulation results show that the dual-coordinated design provide satisfactory damping performance 

over the individual control responses. Furthermore, the-triple coordinated design has been shown to be more 

effective in damping oscillations than the dual damping stabilizers. 
 

Keywords: Power system oscillation damping, PSS, STATCOM, triple coordinated design  

 

INTRODUCTION 

 
Modern power systems are complex and frequently 

exhibit low-frequency, electromechanical oscillations 
due to inadequate damping caused by adverse operating 
conditions. Low-Frequency Oscillations (LFO) can 
severely constrain the operation of a system and can 
decrease the security level of the power system (Abido, 
2005; Mostafa et al., 2012).  

Over the past few decades, Power System 
Stabilizers (PSSs) have been used extensively for 
damping electromechanical oscillations in power systems 
(Furini et al., 2011). The damping effect of a PSS is valid 
only for small trips around the operating point. When the 
loading conditions and system parameters change 
significantly, the synchronism of the system can be lost 
(Li et al., 2009). Therefore, the use of PSSs alone may 
not provide adequate damping for the oscillations of a 
large power system (Abdel-Magid and Abido, 2004). 

STATCOM devices are present in the power system 

to provide dynamic shunt compensation to support the 

bus voltage by injecting or absorbing reactive power; 

they also are capable of improving the stability of the 

power system (Babaei et al., 2011). The main idea of a 

functional control for damping power oscillations, 

referred to as a STATCOM supplementary Power 

Oscillation Damping controller (POD), could be 

designed to modulate the bus voltage of the STATCOM 

in order to improve the damping of system oscillations 

(Panda and Padhy, 2008). 

To improve overall system performance, the 

technique that is most often used is to arrange multiple 

damping controllers, but the interaction among them may 

cause destabilization of the damping of the system’s 

oscillations. In order to overcome the problem of 

interactions among multiple damping controllers, a 

coordinated design is required to gain the benefits of 

multiple stabilizers, thereby enhancing the stability of the 

system and to reduce any possible negative interactions 

among the different-stabilizers. One approach for 

achieving the required performance is to design the 

coordination of the controllers based on previous 

knowledge of the system’s characteristics so as to 
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provide optimal constraints on negative interactions 

(Gibbard et al., 2000; Zhang et al., 2006).  

Hence, the use of optimization techniques must be 

efficient and quick and it must ensure the security of 

dynamic system in case critical events occur.  

Many artificial intelligence techniques have been 

used to provide the desired coordinated design and 

robustness of multiple stabilizers, including the 

application of artificial neural networks (Nguyen and 

Gianto, 2008; Segal et al., 2004), genetic algorithms 

(Abdel-Magid and Abido, 2004; Rouco, 2001), fuzzy 

logic control (Kazemi and Sohrforouzani, 2006; 

Mukherjee and Ghoshal, 2007), bacterial foraging 

algorithm (Abd-Elazim and Ali, 2012) and various 

combinations of these approaches (Talaat et al., 2010; 

Mohagheghi et al., 2007). 

Recently, the Particle Swarm Optimization (PSO) 

technique has appeared as a useful tool for engineering 

global optimization to solve the coordinated design 

problem  of  multiple power system stabilizers (Mostafa 

et al., 2012; Du et al., 2010; Hemmati et al., 2011; 

Shayeghi et al., 2010). 

In this study, we present the results of our 

comprehensive comparison and assessment of the 

damping function of multiple damping stabilizers using 

different coordinated designs in order to identify the 

design that provided the most effective damping 

performance. The three alternative designs we evaluated 

are listed below: 

 

• Dual-coordinated design between PSS and 

STATCOM AC-POD or PSS and STATCOM DC-

POD 

• Dual-coordinated design between STATCOM AC-

POD and STATCOM DC-POD arranged in a single 

STATCOM device without PSS 

• Triple-coordinated design among PSS, STATCOM 

AC-POD and STATCOM DC-POD 

 

The PSO technique was used for tuning the 

parameters of the multiple damping stabilizers in the 

coordinated design based on an eigenvalue objective 

function. Simulation results for a Single Machine Infinite 

Bus (SMIB) equipped with STATCOM showed that, for 

a wide range of operating conditions, the triple-

coordinated design had better damping ability for LFO 

than the dual-coordinated design, which enhanced the 

stability of the power system significantly. 

 

OPTIMAL COORDINATED DESIGN METHODS 

FOR THE MULTIPLE DAMPING STABILIZERS 

 

Nonlinear models of the generator and excitation 

system: In this study, as shown in Fig. 1, we considered 

SMIB system equipped with a STATCOM installed at a 

point m in the transmission line. The synchronous 

generator  was  equipped  with  a  PSS  and  it  supplied  

 
 

Fig. 1: SMIB power system installer with a STATCOM 

 

power to the infinite bus through a transmission line 

and a STATCOM. 

The generator can be represented by a third-order 

model comprised of the electromechanical swing 

equation and the generator internal voltage equation 

(Yao, 1983). 

The swing equation is divided into the following 

equations: 

 
��
�� = ���� − 1
                (1) 

 
��
�� = �


 ��� − �� − ��� − 1
�               (2) 

 
����
�� = �

���′ ���� − ���                (3) 

 

where, 

��  = The synchronous speed 

� and �  = The angle and speed of the rotor 

respectively 

��and ��  =  The input mechanical and output electrical 

power of the generator, respectively 

  and �  =  The machine inertia constant and damping 

coefficient, respectively 

���  =  The generator field voltage  

!�"′   =  The open-circuit field time constant 

 

The output power of the generator can be 

expressed in terms of the d-axis and q-axis components 

of the armature current # and the terminal voltage $� as: 

 

�� = $��#� + $��#�                 (4) 

 

$� = $�� + &$��                (5) 

 

$�� = '�#� , $�� = ��′ − '(�#�               (6) 

 

�� = ��′ + #��'� − '(�
, # = #� + #�               (7) 
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Fig. 2: STACOM dynamic model of DC voltage regulator and POD stabilizer 

 

 
 

Fig. 3: STACOM dynamic model of AC voltage regulator and POD stabilizer 

 

where, 

'(�  =  The d-axis transient reactance 

'�   =  The q-axis reactance  

��′   =  The transient generator internal voltage  

 

The excitation system is represented by a first 

order model (IEEE type-ST1) (Kamwa et al., 2000): 

 
��)�

�� = �
�*

�+,-./�� − $�0 − ����                         (8) 

 

where, 

+, and !, = The gain and time constant of the 

excitation system, respectively  

./��  = The reference voltage 

 

Nonlinear dynamic model of STATCOM device: As 

shown in Fig. 1, the STATCOM was connected at the 

midpoint of the transmission line, which consists of a 

Step Down Transformer (SDT) with leakage reactance 

('12�), a three-phase Gate Turn Off (GTO) based 

Voltage Source Converter (VSC) and a DC capacitor. 

There are two basic controllers implemented in 

STATCOM, i.e., a DC voltage regulator and an AC 

voltage regulator, as shown in Fig. 2 and 3, 

respectively. The VSC generates a controllable AC 

voltage source $1�3
 = .1 sin��3 − 7
 behind the 

leakage reactance. The difference between the 

STATCOM-bus AC voltage $8�3
 and the power 

system-bus $��3
 produces the exchange of active and 

reactive power between the STATCOM and the power 

system, which can be controlled by adjusting the 

magnitude of .1 and the phase 7 (Bamasak and Abido, 

2004): 

 

$8 = 9$2:�cos 7 + & sin 7
 = 9.2:∠7              (9) 

 

9 = >?                                                        (10) 

 

where, 

> = The modulation ratio defined by Pulse Width 

Modulation (PWM) 

? =  The ratio of AC voltage to DC voltage 

depending on the structure of the converter 

$2:  =  The DC voltage 

7 =  The phase defined by PWM 

 

The dynamics of the capacitor voltage has a significant 

influence on the power system, so this must be 

consider. If the converter is assumed to be lossless, the 

active power exchanged between the converter and the 

system is equal to the active power that is exchanged 

between the capacitor and converter ��2: = �@: 
. So, 

with these assumptions, the relationship between the 
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voltage and current of the capacitor can be expressed as 

(Abido, 2005): 

 

$2:#2: = ABCD�$8#8∗
 = ABCD�9$2:�9FG 7 +
&G#H7#GI−#GJ�              (11) 

 

Solving Eq. (9) for #2:  gives: 

 

#2: = 9-#8� cos 7 + #8� sin 70.             (12) 

 

Considering Eq. (10) and the relationship between 

the voltage and current of the capacitor, we have: 

 

$K2: = L
:MN

-#8� cos 7 + #8� sin 70.            (13) 

 

Linearized equations of the modified Phillips-

Heffron model: The linearized dynamic model of the 

power system equipped with the STATCOM is 

obtained by linearizing the nonlinear Eq. (1) to (13) 

around nominal operating point. The linearized model 

of the power system as shown in Fig. 1 is given as 

follows: 

 

∆�K = ��∆�                                          (14) 

 

∆�K = �∆�� − ∆�� − �∆�
/              (15) 

 

∆�K�′ = �−∆��′ + ∆��� − �'� − '(�
∆#��/!�"′     (16) 

 

∆�K�� = -−+,∆$� − ∆���0/!,                          (17) 

 

where, 

 

∆�� = +�∆� + +Q∆��′ + +R�L∆.2: + +RS∆7 +
+RL∆T               (18) 

 

∆��′ = +U∆� + +V∆��′ + +��L∆.2: + +�S∆7 +
+�L∆T               (19) 

 

∆.� = +W∆� + +X∆��′ + +Y�L∆.2: + +YS∆7 +
+YL∆T                                                                 (20) 

                        

∆.K2: = +Z∆� + +[∆��′ + +\∆.2: + +�LS∆7 +
+�LL∆T               (21) 

 

where, the linearization constants +�-+\, +R�L, +RS, 

+RL, +��L, +�S, +�L, +Y�L , +YS, +YL, +�LS and +�LL  are 

functions of the system parameters and the initial 

operating conditions.  

Referring to Fig. 2, the STACOM dynamic model 

of DC voltage regulator is described by the following 

state equations: 

 

∆]K2: = −+^2:∆.2: + +^2:∆_S            (22) 

∆]� = −+`2:∆.2: + +`2:∆_S             (23) 

 

∆]Q = ∆]2: + ∆]�                           (24) 

 

∆7K = ab
�b

∆]Q + �
�b

∆7                           (25) 

 

Now, substituting Eq. (24) into Eq. (25) gives: 

 

∆7K = − acMNab
�b

∆.2: − �
�b

∆7 + ab
�b

∆]2: +
acMNab

�b
∆_S                                          (26) 

 

where, +`2:, +^2: and ∆_S are the proportional gain, 

integral gain and the control signal of STATCOM DC 

voltage regulator, respectively; +8 and !8 are the gain 

and time constant of the main control loop for 

STATCOM-7, respectively. 

Also, from Fig. 3 the STATCOM dynamic model 

of AC voltage regulator is described by the following 

state equations: 

 

∆]K@: = −+^@:d�∆� − +^@:dQ∆��′ − +^@:dW∆.2: −
+^@:dV∆7 − +^@:dU∆T + +^@:∆_:             (27) 

 

∆TK = − aceNaf�g
�f

∆� − aceNaf�h
�f

∆��′ +
aceNaf�i

�f
∆.2: − aceNaf�j

�f
∆7 + af

�f
∆]@: −

 l �
�f

+ aceNaf�m
�f

n ∆T + aceNaf
�f

∆_:                     (28) 

 

where,  

+o and !o  : The gain and time constant of the main 

control loop for STATCOM-C 
�d� − dW
 : The functions of the system parameters and 

the initial operating conditions 

+`@: , +^@:  and ∆_: : The proportional gain, integral 

gain and the control signal of STATCOM 

AC voltage regulator  

 

Equation (14) to (16) and (17) describe the models 

for the machine and the exciter. Eq. (21), (22), (26) to 

(28) represent the control action of the main control 

loops PI/DC and PI/AC voltage regulators of the 

STATCOM with damping controller. In state-space 

representation, these equations can be arranged in 

compact form as: 

 

∆]K = p∆] + q∆_,                            (29) 

 

where, the state vector ∆], control vector ∆_, matrix A 

and matrix B are: 

 

∆] =
�∆� ∆� ∆��′ ∆��� ∆.2: ∆]2: ∆7 ∆]@: ∆T�r,  
 ∆_ = �∆_`11 ∆_S ∆_:�r 
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q =

t
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uu
uu
v0 0 0 a*

�*
0 0 0 0 0

0 0 0 0 0 +^2:
afacMN

�f
0 0

0 0 0 0 0 0 0 +^@:
afaceN

�f �
��
��
��
�

�

  

 

System eigenvalue analysis without stabilizer: For 

nominal operating condition, the dynamic behavior of 

the system is recognized through the eigenvalues of the 

system matrix A. By solving the system characteristic 

equation ��� − p� = 0, the eigenvalues of the system 

are computed which are given below: 

 

�� = −23.973, �Q − 20.051,  �V = −14.723, �U 

= −5.358 

 

�W,X = 0.375 ± 2.282і, �Z = −20, �[,\ = 0.486 ±
0.367і   

 

It is clearly seen from eigenvalues of the matrix A 

that the system is unstable and needs a supplementary 

stabilizer for stability. 

 

Structure of PSS and STATCOM-POD controller: 

In order to overcome the LFO problem, supplemental 

control action must be applied to STATCOM device in 

form of an auxiliary damping controller, which is 

overlaid on the main control loops and which is called 

Power Oscillation Damping (POD) controller. This is 

illustrated in both Fig. 2 and 3. 

The POD controller has a structure that is similar to 

that of the PSS controller. Figure 4 shows a sample 

block diagram of a POD controller. The controller 

contains three main blocks, i.e., the gain block, the 

washout filter block and (lead-lag) phase compensators. 

The washout filter block acts as a high-pass filter to 

eliminate the DC offset of the POD output and to 

prevent steady-state changes in the terminal voltage of 

the generator.  

From this perspective, the washout time Tω should 

have a value in the range of 1 to 20 sec defined to the 

electromechanical oscillation modes and two blocks 

(lead-lag) phase compensators (Kundur, 1994). 

In this study, the time constants, Tω, T2 and T4, 

were assigned specific values of 10s, 0.1s and 0.1s, 

respectively, while the parameters of the controller, i.e., 

KN, T1 and T3 had to be determined.  
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Fig. 4: Basic structure used the POD and PSS 

 

From Fig. 4, ∆ω is the generator speed deviation 

used as an input signal to the POD and UN is the 

controllers output, which was applied to any one of two 

STATCOM main control loops in the form of a POD or 

to the excitation system in the form of a PSS. By using 

one of the dynamic damping controllers mentioned 

above, the number of matrix state variables increases 

from 9 to 12, due to the addition of the three state 

variables, ∆]K�,  ∆]K `:  and  ∆_K�, where � = ���, 7, T. 

 

Optimal design of the PSS or STATCOM-POD 

controller: The POD controller is a lead-lag type that 

can be described mathematically as: 

 

_�G
 = ��G
��G
                            (30) 

 

where,  

G (s) = The transfer function of the POD controller 

Y (s) = The measurement signal  

U (s) = The output signal from the POD controller 

 

Which will provide additional damping by moving 

closed  loop  system modes to the left line of s-plain. 

Eq. (30) can be expressed in state-space form as: 

 

∆]K: = p:∆]: + q: ∆_                            (31) 

 

where, ∆XC is the controller state vector. Equation (29) 

describes a linear model of the power system extracted 

around a certain operating point. Combining Eq. (29) 

with Eq. (31), we obtained a closed-loop system: 

 

∆]K :ℓ = pLℓ∆]:ℓ              (32) 

 

∆]:ℓ = � ∆]
∆]:

�                           (33) 

 

�� = −ABCD���
/����              (34) 

 

� = >#H���
                              (35) 

 

where, 

∆]:ℓ = The state vector of the closed loop system 

�� = The i-th eigenvalue mode of the closed loop 

matrix pLℓ 

��  = The damping coefficient of the i-th eigenvalue 

It is clear that the objective function � will identify the 

minimum value of the damping coefficient among 

modes. 

The goal of the optimization process was to 

maximize � in order to achieve appropriate damping for 

all modes, including the eigenvalue of the 

electromechanical mode, by moving the dominant poles 

to the optimal location, which enhances the system’s 

damping characteristics. 

Finally, the coordinated closed loop matrix will 

become [15×15] in the dual-coordinated design case 

and [18×18] for the triple-coordinated design. The 

eigenvalue-based objective function � is searched for in 

the typical ranges of control parameters: 

 

+���� ≤  +� ≤  +��,� 

 

!�і
��� ≤  !�і ≤  !�і

�,� 

 

where, � = ���, 7, T and і = 1, 3. 

 

Typical ranges of the optimized parameters are 

0.01-100 for +� and 0.001-1 for !�і. 

 

Optimization technique: The problem of tuning the 

parameters for individual and coordinated design for 

multiple damping controllers, which would ensure 

maximum damping performance, was solved via a PSO 

optimization procedure that appeared to be a promising 

evolutionary technique for handling optimization 

problems. PSO is a population-based, stochastic-

optimization technique that was inspired by the social 

behavior of flocks of birds and schools of fish 

(Kennedy and Eberhart, 1995).  

The advantages of PSO algorithm are that it is 

simple, easy to implement, it has a flexible and well-

balanced mechanism to enhance the local and global 

exploration capabilities. Recently, it has acquired wide 

range of applications in solving optimization design 

problems featuring non-linearity, non-differentiability 

and high-dimensionality in many area search spaces 

(Parpinelli and Lopes, 2011). 

 

Classical PSO algorithm: In the PSO, each possible 

solution is represented as a particle and each set of 

particles comprises a population. Each particle keeps its 

position  in  hyperspace,  which  is  related  to the fittest 
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Fig. 5: PSO algorithm for the tuning parameters of an 

individual and coordinated design 

 

solution it ever experiences in a special memory called 

� BG3. In addition, the position related to the best value 

obtained so far by any particle in the population is 

called ¡ BG3. For each iteration of the PSO algorithm, 

the � BG3 and ¡ BG3 values are updated and each 

particle changes its velocity toward them randomly. 

This concept can be expressed as (Babaei and 

Hosseinnezhad, 2010): 

 

$і
¢£� = ¤$і

¢ + 9�¥�-� BG3і − 'і
¢0 

+9Q¥Q-¡ BG3 − 'і
¢0                           (36) 

 

'і
¢£� = 'і

¢ + $і
¢£�, і = 1,2, … , H            (37) 

 

where, 

$  =  The particle velocity 

'  =  The particle position 

?  =  The number of iterations 

¤  =  The inertia weight factor 

9�, 9Q = The cognitive and asocial acceleration factors, 

respectively 

H  =  The number of particles 

¥� , ¥Q  =  The uniformly-distributed random numbers in 

the range of 0 to 1 

 

Figure 5 shows the flow chart of the PSO algorithm. 

Chaotic Particle Swarm Optimization (CPSO): The 
main disadvantage of the simple PSO algorithm is that 
the performance of it greatly depends on its parameters 
and it is not guaranteed to be global convergent. In 
order to improve the global searching ability and 
premature convergence to local minima, PSO and 
chaotic sequence techniques are combined to form a 
Chaotic Particle Swarm Optimization (CPSO) 
technique, which practically combines the population-
based evolutionary searching ability of PSO and chaotic 
searching behavior. The Logistic equation employed for 
constructing hybrid PSO described as (Eslami et al., 
2011): 
 

§¢£� = ¨§¢�1 − §¢
, 0 ≤ §� ≤ 1            (38) 
 
where, ¨ is the control parameter with a real value 
between 0 to 4. Although the (38) is deterministic, it 

exhibits chaotic dynamics when ¨ = 4 and §© ∉
«0, 0.25, 0.5, 0.75, 1¬. It exhibits the sensitive 
dependence on initial conditions, which is the basic 
characteristic of chaos. The inertia weighting function 
in (36) is usually evaluated utilizing the following 
equation: 
 

¤ = ¤�,� − 
��¤�,� − ¤���
�#3B¥ #3B¥�,�­ 
�                        (39) 

 
where, 
¤�,� , ¤���  = Maximum and minimum values of ¤ 

#3B¥�,�   = The maximum number of iterations  

#3B¥ = The current iteration number 
 
The new weight parameter ¤��®  is defined by 

multiplying weight parameter ¤ in (39) and logistic Eq. 
(38): 
 

¤��® = ¤ × §¢£�               (40) 
 

To improve the global searching capability of PSO, 
we have to introduce a new velocity update equation as 
follows: 

 

$і
¢£� = ¤��®$і

¢ + 9�¥�-pbestі − 'і
¢0 +

9Q¥Q-¡best − 'і
¢0                                         (41) 

 
We have observed that the proposed new weight 

decreases and oscillates simultaneously for total 
iteration, whereas the conventional weight decreases 
monotonously from ¤�,�  to ¤���. The final choice of 

a parameter was considered to be the optimal choice: H, 

#3B¥�,� , 9�, 9Q, ¤���, ¤�,� , ¨ and §© are chosen as 30, 
100, 2, 2, 0.3, 0.9, 4 and 0.3, respectively. 

 

RESULTS AND DISCUSSION 
 

In this section, the abilities of the proposed dual 

and triple coordinated designs are investigated in order 
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Table 1: Power system load conditions 

Load condition P (P. U.) Q (P. U.) 

Nominal  1 0.20 

Heavy 1.2 0.25 

 
to damp the LFO and improve the dynamic stability of 
the power system. 

To evaluate the performance of the proposed 

simultaneous coordinated designs, the responses with 

the proposed controllers were compared with the 

responses of the individual design controllers, PSS and 

STATCOM. 

To support the result of the eigenvalue analysis, the 

performances of the system with dual and triple 

coordinated controllers were tested with a 10% step 

change in the input mechanical power for two different 

loading conditions are given in Table 1. 

The resultant optimal parameters of the individual 

controllers, dual and triple coordinated designs are 

given in Table 2 to 4, respectively. 

Figure 6 to 9 show the system responses of speed 

deviation with 10% step change in mechanical input 

power where the dual-coordinated design control

 
Table 2: The optimal parameters of the individual controllers at nominal and heavy conditions 

  Optimal values 

------------------------------------------------------------------------------------------------- 

Individual controllers Type of condition K T1 (Sec) T3 (Sec) 

PSS Nominal 7.0168 0.9641 0.7223 

 Heavy 11.6804 0.6373 0.1157 

7 Nominal 60.0180 0.5971 0.3638 

 Heavy 49.7432 0.9523 0.0051 

T Nominal 0.2138 0.0637 0.3547 

 Heavy 3.0016 0.4006 0.0081 

 

Table 3: The optimal parameters of the different dual-coordinated designs at nominal and heavy conditions 

Coordinated designs Type of condition 

Optimal values 

----------------------------------------------------------------------------------------------------------------------------- 

K∗ T�∗ (Sec) TV∗ (Sec) K# T�# (Sec) TV# (Sec) 

PSS∗&7# Nominal 50.4080 0.1671 0.1589 99.8780 0.2645 0.16930 

 Heavy 52.7647 0.1553 0.1547 99.8817 0.3736 0.47840 

PSS∗&C# Nominal 14.2617 0.9931 0.8356 2.5712 0.8593 0.92540 

 Heavy 16.2846 0.7912 0.5718 3.8110 0.9759 0.75150 

7∗&C# Nominal 99.9997 0.6683 0.0681 1.4761 1 0.79540 

 Heavy 100 0.4977 0.1888 2.3317 0.9026 0.86367 

 

Table 4: The optimal parameters of the triple-coordinated design at nominal and heavy conditions 

Coordinated 
designs 

Type of 
condition 

Optimal values 

----------------------------------------------------------------------------------------------------------------------------------------------- 

K»¼¼ T�»¼¼ (Sec) TV»¼¼ (Sec) KS T�
S

 (Sec) TV
S

 (Sec) K: T�: (Sec) TV: (Sec) 

PSS &7& T Nominal 58.5828 0.1632 0.0268 79.5733 0.3311 0.0504 1.0438 0.0364 0.8879 

 Heavy 64.5110 0.0338 0.2282 65.5158 0.3748 0.6972 0.0811 0.1233 0.3170 

 

 
 

Fig. 6: Dynamic responses for ∆ω with different damping controllers (individual PSS, 7 and dual coordinated design PSS &7), 

a) nominal load, b) heavy load  
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Fig. 7: Dynamic responses for ∆ω with different damping controllers (individual PSS, C and dual coordinated design PSS & C) 

at, a) nominal load, b) heavy load 

 

 
 

Fig. 8: Dynamic responses for ∆ω with different damping controllers (individual7, C and dual coordinated design 7& C) at, a) 

nominal load, b) heavy load 

 

 
 

Fig. 9: Dynamic responses for ∆ω with different damping controllers (dual and triple coordinated design) at, a) nominal load, b) 

heavy load 
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Table 5: System eigenvalues of the individual designs at nominal and heavy conditions 

PSS 
---------------------------------------------------------- 

7 
------------------------------------------------------------ 

T 
---------------------------------------------------- 

Nominal Heavy Nominal Heavy Nominal Heavy 

−1.12 ± &4.43 −0.96 ± &4.43 −2.88 ± &6.72 −1.71 ± &4.64 −0.27 ± j4.62 −0.35 ± j7.5 
ζ�
 = 0.2451 ζ�
 = 0.2118 ζ�
 = 0.3939 ζ�
 = 0.3458 ζ�
 = 0.0583 ζ�
 = 0.0466 

−18.58 ± &4.37 −1.15 ± &4.68 −9.91 ± j7.09 −2.36±j3.71 −19.742 −14.80 
−19.61 −2.52 ± &5.20 −1.47 ± j5.11 −3.05 ± j6.69 −18.822 −0.06 ± &3.47 
−4.84 ± &7.01 −15.93 −29.31 −3.17±j1.23 −10.25 ± &5.81 −5.29 
−1.55 ± &3.85 −11.78 ± &6.37 −2.26 ± j3,36 −19.48 −0.72 ± &2.94 −0.82 
−12.46 −4.10 ± &4.88 −14.67 −15.68 ± &7.93 −10.02 −0.98 ± &4.05 
−0.25 −0.24 −1.69 −5.73 −9.11 −2.68 
−0.20  −1.35  −0.24 −0.13 
    −0.20 −0.29 
 
Table 6: System eigenvalues of the dual-coordinated designs at nominal and heavy conditions 

PSS & 7 
---------------------------------------------------------- 

PSS & T 
----------------------------------------------------------- 

7 & T 
----------------------------------------------------- 

Nominal Heavy Nominal Heavy Nominal Heavy 

−4.56 ± &7.25 −2.34 ± &4.09 −2.93 ± &5.76 −1.45 ± &3.20 −3.91 ± j6.41 −1.65 ± &3.36 
ζ�
 = 0.5324 ζ�
 = 0.4966 ζ�
 = 0.4534 ζ�
 = 0.4127 ζ�
 = 0.5207 ζ�
 = 0.4408 

−4.22 ± &8.18 −3.25 ± &3.09 −20.4 ± &1.98 −9.86 ± &5.04 −10.18 ± &7.31 −2.51 ± &4.26 
−7.63 −10.36 ± &2.69 −2.18 ± &3.63 −6.11 ± &6.89 −7.68 ± &9.80 −8.10 ± &6.13 
−4.37 ± &5.78 −8.23 −4.11 ± &6.58 −4.56 −35.14 −13.04 ± &7.58 
−6.26 ± &9.48 −0.73 −10.05 −2.35 ± &3.77 −9.23 −19.66 
−5.31 ± &5.85 −12.56 ± &5.78 −3.24 ± &4.86 −8.76 −8.55 ± j9.87 −5.91 
−1.21 −5.4 ± &6.27 −2.08 ± &3.58 −3.28 −28.75 −9.17 ± &2.62 
−27.76 −17.02 −21.6 −8.47 ± &5.90 −4.07 −2.42 ± &3.08 
−23.13 −11.93 −0.25 −13.21 −0.84 −0.27 
−0.25 −0.18  −0.20 −6.64  
    −0.20  

 
Table 7: System eigenvalues of the triple-coordinated design at 

nominal and heavy conditions 

PSS & 7 & T 
------------------------------------------------------------------------------------ 
Nominal Heavy 

−3.74 ± &4.05 −2.96 ± &3.85 

ζ�
 = 0.6784 ζ�
 = 0.6095 
−3.59 ± &3.52 −4.26 ± &4.50 

−4.09 ± &3.39 −7.27 ± &8.31 

−27.97 −11.20 
−6.53 −3.74 ± j4.65 

−13.84 ± &8.12 −17.33 ± &9.14 
−5.85 ± &1.14 −12.37 

−10 −9.83 
−15.37 −11.48 ± &7.66 

−2.69 ± j2.87 −18.90 
−1.38 −0.83 

−0.20 −0.20 

 

between (PSS & STATCOM 7-based POD, PSS & 

STATCOM C-based POD and STATCOM 7-based 

POD and STATCOM C-based POD) was compared to 

their individual stabilizers. The system eigenvalues 

with the proposed individual stabilizers and coordinated 

designs for nominal and heavy operating conditions are 

given in Table 5 and 6, respectively. The first and 

second rows represent the electromechanical mode and 

their damping ratio ζ�
 using participation factor to 

identify the eigenvalue associated with 

electromechanical mode. It is clear that the dual-

coordinated design control greatly improved the system 

damping compared with individual controllers and the 

coordinated design control solved the problem of low 

damping when only the STATCOM C-based POD was 

considered. 

Figure 9 shows the system responses of speed 

deviation with 10% step change in mechanical input 

power where the triple-coordinated design control 

among (PSS & STATCOM 7-based POD & 

STATCOM C-based POD ) was compared to different 

dual-coordinated designs, all on one figure for better 

clarification. It can be seen from the results that the 

better dynamic response was obtained by triple-

coordinated design control, which was much faster and 

had, less setting time and overshoot than the individual 

and dual-damping controllers. The eigenvalues of the 

system with the triple-coordinated design are given in 

Table 7. 

 

CONCLUSION 

 

In this study, we focused on damping of low-

frequency oscillations via PSS and STATCOM-based 

POD applied independently and also through the 

simultaneous dual-and triple-coordinated designs of the 

multiple damping controllers in a SMIB power system. 

For the proposed damping controller design problem, a 

CPSO algorithm was used as the optimization 

technique to search for the optimal damping controller 

parameters in both the individual and the coordinated 

designs. The simulation results showed the superiority 

of the dual-coordinated design over the individual 

design because it improved the system’s damping 

characteristics at different loading conditions. In 

addition, the dual-coordinated design solved the 

problem of low-effect damping when the STATCOM 
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C-based POD was applied to the system. The triple-

coordinated design provided better dynamic response 

than the individual and the dual-coordinated design 

control at nominal and heavy loading conditions. 

 
APPENDIX 

 
Power system parameters (resistance and reactance are in p.u. 

and time constants are in second): 
 

Generator:  = 6, !�"′ = 7.76 , '� = 0.55,  '� = 1,  '(� = 0.3  and  

D = 4 
 
Excitation: +, = 50, !, = 0.05 
 

Transmission line: A = 0, '� = 0.3, 'Q = 0.3 
 

STATCOM: 7" = 46.25", 9" = 0.25, T2: = 1, .2: = 1, +1 = +o =
1, !1 = !o = 0.5, '12� = 0.15  
+^2: = +^@: = 0.2, +`2: = +`@: = 0. 
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