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Abstract: Orthogonal Variable Spreading Factor (OVSF) codes would give variable data rate transmissions for 

different bandwidth supplies in Wideband CDMA (WCDMA) networks. These OVSF codes are used for the 

channelization of codes in WCDMA. In WCDMA, effective utilization of OVSF codes has become an active area of 

research as the number of codes is very limited. It is a fact that the successor and predecessor codes of OVSF cannot 

be used simultaneously when a specific code is used in OVSF as their encoded sequences become indistinguishable. 

Consequently, OVSF code tree has inadequate number of available codes. Thus, this research study uses Adaptive 

Genetic Algorithm (AGA) based approach for dynamic OVSF code assignment in WCDMA networks. Different 

from existing Conventional Code Assignment (CCA) and dynamic code assignment schemes, population is 

adaptively constructed according to existing traffic density in the OVSF code-tree. In existing technique in order 

to improve the ability of the GA, ‘‘dominance and diploidy’’ structure is employed to adapt to changing traffic 

conditions. Because in SGA algorithm cannot convergence if the new user is included into the existing OVSF 

code tree while SGA is running to find optimum OVSF code tree, SGA cannot adapt its structure to this 

unexpected variation. This problem can be overcome by the Modified Adaptive Genetic Algorithm (MAGA). 

Performance of the proposed MAGA approach is evaluated in terms of blocking probability and spectral 

efficiency and is compared with SGA, D&D GA. 
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INTRODUCTION 

 

In Code Division Multiple Access (CDMA) mobile 

cellular systems, all downlink channels transmitted from 

the same Base Station (BS) are spread by different 

orthogonal codes to maintain orthogonality 

(Razavizadeh, 2008). Since the occupied transmission 

bandwidth is held to be invariable for different data 

rates, the variations in transmission data rates are 

accomplished by applying different lengths of 

orthogonal codes, referred to as Orthogonal Variable 

Spreading Factor (OVSF) codes. The number of 

available orthogonal codes is restricted to the code 

length and thus, efficiently utilizing OVSF codes 

becomes a significant issue. The code blocking problem 

is overcome by OVSF code relocation of existing users 

performed to leave a branch with the required rate for 

the requesting user (Yuh-Ren and Li-Cheng, 2009). This 

code relocation resolve to use the limited computational 

power hence the number of code relocation have to be 

reduced. To find the optimal branch to be leaved, the 

Dynamic Code Assignment (DCA) algorithm, which 

can reduce the number of OVSF code relocations is 

explained (Huan et al., 2012). Then again, code 

assignment and reassignment approaches are there to 

secure the presence of code blocking and the resultant 

code allocation is explained in (Balyan and Saini, 2010). 

Generally, the code assignment approach is built with a 

Call Admission Control (CAC) policy to guide to a 

complete solution (Wenlong et al., 2009). It is observed 

from the literature that the application of Genetic 

Algorithm (GA) for OVSF code assignment has given 

good results with a random initial population. However, 

the main issue in GA is the readaptation of GA to new 

atmosphere after convergence of its population 

(Xiaoling et al., 2013). It becomes difficult to handle the 

new reallocation problem once the code tree structure 

gets altered. Thus, the main drawback in GA is that the 

optimum solution cannot be attained for the previous 

code tree scenario. In order to eliminate the above said 

problem, diploid individuals and a dominance relation 

has been used by Mustafa and Adnan (2009) which act 
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together to store traits that become useful when there are 

alterations in the environments (De Miguel et al., 2009). 

This research study focuses on providing significant 

results for the OVSF code assignment using a heuristic 

algorithm. Though, GA has been observed to produce 

good results however, problems of convergence and 

prematurity occurred in GA. This study presents an 

efficient GA called Modified Adaptive Genetic 

Algorithms (MAGA) algorithm for the purpose of 

OVSF code assignment, which could adjust the 

parameters adaptively based on the value of individual 

fitness and dispersion degree of population. 

 

OVSF CODE TREE 

 

Layer k has 2
k
 codes and they are consecutively 

labeled from left to right path, starting from one. The 

m
th 
code in layer k is denoted to code (k, m) In each 

layer the total capacity of all the codes is 2
k
R, it is 

irrelevant of the layer number. Also define the 

maximum spreading factor Nmax = 2
k
 as the total 

number of codes in layer K. The maximum capacity of 

the system is expressed as ccapacity = 2
k 
R where K 

denotes the highest layer of the tree and R represents 

the fundamental data rate is shown in the Fig. 1. 

After a process period, available codes will be 

spread out around the code tree. This random spread out 

of the available codes within the code tree is called 

fragmentation which in turn results in code blocking. 

This would greatly affect the performance of the 

system. 

 

Code blocking scenario: Code blocking is the major 
limitation of OVSF-CDMA system. Code blocking is 
phenomena in which a call or session is blocked even 
though the system has adequate capacity to support the 
rate necessity of the call or session. In Fig. 2, code tree 
with four layers is taken into consideration. The 
maximum capacity of the code tree is 8R in the code 
tree, two codes with SF4 (for data rate 2R) and 8 (for 
data rate R) are occupied. Hence, the capacity used for 
the OVSF code is 3R. The remaining capacity of the 
code tree is 8R-3R = 5R. If a new call with data rate 4R 
arrives, code from the third layer is needed. The code 
tree is not capable to offer code for the new call, as both 
the codes equivalent to 4R capacity is blocked. Thus, 
this is a scenario in which a new call cannot be 
supported even if the system has adequate capacity to 
deal with. This scenario called code blocking has to be 
avoided through efficient and optimized assignment and 
reassignment schemes (Davinder and Neeru, 2010). 

 

Heuristic approaches in OVSF code allocation: 

Genetic algorithm is a heuristic approach which is 

observed to provide significant results in optimization 

problems (Mehmet et al., 2012). This section discusses 

this   reallocation   process  starting  based  on  heuristic  

 
 

Fig. 1: OVSF code tree 
 

 
 
Fig. 2: Code blocking scenario 

 
algorithms to make OVSF code assignment strategy. 
Execution is not essential for resource assignment in 
idle state. Call is started with the call processor’s 
signaling to resource manager to assign resources for a 
traffic channel. Initially, availability of capacity is 
enquired in the code tree in order to make a decision 
whether to support the requested call rate in the system. 
If there is adequate capacity, then availability of 
requested rate OVSF code is checked among unused 
codes in the relevant layer, where the call can be 
supported (Karakoc and Kavak, 2009). If a call cannot 
be assigned a code due unavailability of the code with 
the requested rate (or all supported codes for this rate 
are not orthogonal to the assigned codes), GA block is 
executed. In the GA block, reassignment process of 
OVSF codes is performed. 

The attribute of the GA mostly is based on the 

selection and determination of crossover probability 

and the mutation probability (Jiang and Meng, 2012). 

The major drawbacks of GA are slow convergence, 

prematurity and moreover it lacks rank based fitness 

function which reduces complexity. Adaptive Genetic 

Algorithm (AGA) is observed to produce better results 

than GA. But, the adaptive genetic algorithm also has 

some drawbacks which would affect the performance of 

the system to a great extent. 
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PROPOSED IMPROVEMENT IN ADAPTIVE 

GENETIC ALGORITHM 

 
Improvement in the GA is presented in order to 

overcome the above said issues. 
In order to have higher convergence speed, it is 

essential to make the population relatively rapid shift to 
the optimal state. This will minimize the population 
diversity. Eliminating the early trapping of local 
optimum, determining optimal solutions rapidly in the 
same time and to avoid premature convergence of GA 
are not easy. Parameter selection in SGA and AGA 
causes in early maturity and local optimization problem 
which results in the premature loss of population 
diversity. Improvement in the AGA is presented to 
handle the above said issue. 

 
Evaluation of population diversity: Generally the size 
of population is obtained, when the diversity of 
population is greater, it will result in better generation 
(Jiang and Meng, 2012). Evaluation of population 
entropy is an indicator of population diversity. 

A set p (t) witht the generation population and N 

population size is considered. Based on various types of 

individuals into m parts, P1 (t), P2 (t), P3 (t) …. Pm (t) it 

is clear that � ����� = � ���	
�
�  for ∀i, j ∈ {1, 2,.., m} 

there are Pi (t) ∩Pj (t) = ∅. Set k1, k2….km are the size 

of P1 (t), P2 (t), P3 (t) .… Pm (t), then � 
� = �	
�
� . 

Delimit the value of population entropy of the t 

generation is � =  − � �������
	
�
�  

where pi = ki/N. 

From the formulation of entropy, when the individuals 

in  the population are different from each other, that is 

m = N,  the  value  of  entropy attains the maximum 

Emax = log N and vice versa. Entropy would be maximum 

when the different types of individual population have 

even distribution. The value of population entropy will 

alter with the change in the diversity of population. 

Comparing the value of current population entropy and 

the maximum value, the diversity of contemporary 

populations is evaluated. Set a = Et/Emax and a∈ [0, 1]. 
If the value of a is larger, then the number of 

different individuals in the current population is also 

greater or vice versa. The ability of population to search 

the better individuals would be efficient when the 

population diversity is higher. When a is smaller; the 

ability of population to search the better individuals is 

weaker. Thus, the mutation probability should be 

increased to increase population diversity and then 

phenomenon of local optimization should be avoided 

(Wang et al., 2010). 

 

Improvement of crossover and mutation 
probability: According to population entropy, the 
crossover probability and mutation probability is altered 
in the following steps. 

According to the diversity of contemporary 
populations (i.e., population entropy), probability 
ranges are determined: 

( )

( )

c2 c1

c1 c1 t

c2 c1

c2 c2 t

p p
p (t) p * a

2

p p
p (t) p * (1 a )

2

 −
 = +



−
= − −

 

 
where, pc1, pc2 represents the ranges of the initial 
crossover probability and pc2>pc1; at denotes the tth 
population diversity. pc1 (t), pc2 (t) represents the range 
of crossover probability in tth generation population. In 
the above equation, at is larger, the crossover 
probability is larger. In the contrary, it is smaller: 
 

( )

( )

m2 m1

m1 m1 t

m2 m1

m2 m2 t

p p
p (t) p * (1 a )

2

p p
p (t) p * a

2

 −
 = + −



=
= −

 

 
where, pm1, pm2 represents the range of initial mutation 
probability and pm2>pm1; a1 denotes the tth population 
diversity pm1 (t), pm2 (t), represents the range of 
mutation probability in tth generation population. With 
the above equation, at is larger, the mutation probability 
is smaller. In the contrary, it is larger. 

According to the range and the fitness value, the 
value of crossover and mutation probability is obtained: 

 

( ) ( )c1 avg c2

c

c2 c3

min

avg

avg min

avg min

avg

max avg

p (t) f f ' p (t) f ' f
f ' f

f f
p

p (t)(f f ') p (t)(f ' f )
f f

f f

 − + −
 <

−
= 

− + −
< −

 

 

( ) ( )m1 m2

m

m3

avg min

avg

avg min

m2 avg min

avg

max avg

p (t) f f ' p (t) f ' f
f f

f f
p

p (t)(f f ') p (t)(f ' f )
f f

f f

 − + −
 <

−
= 

− + −
< −

 

 
where,  

fmax : The maximum value of the population  

favg : The average value of every generation population  

fmin : The minimum value of the population  

f’ : The larger value in the two individuals to cross  

f : The fitness value of the individual to mutate  

pc1(t), pc2(t) : The upper and lower limits of the 

crossover probability after the adjusting in the 

first step  

pc3 (t) : A constant and pc3(t) <pc1 (t) <1  

pm1 (t), pm2(t) : The upper and lower limits of the 

mutation probability after the adjusting in the first 

step 

Pm3(t) : A constant and pm3 (t) <pm1 (t) <1 (Youchan and 

Feng, 2012) 
 
Proposed Modified Adaptive Genetic Algorithm ()  
initialize population; 
evaluate diversity population; 
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while convergence not achieved  
{  
scale population fitness; 
select solutions for next population; 
perform improved crossover and mutation probability;  
evaluate population; 
} 
} 
 

Thus, Modified AGA (MAGA) is presented which 
improves the AGA through the evaluation of population 
diversity. Thus, the operation probability of the genetic 
algorithm is improved. Hence, it can be better to control 
the crossover and mutation probability based on the 
current population and adapts them based on the 
changes of fitness value. 
 
Proposed dynamic OVSF code allocation using 
modified adaptive genetic algorithm: In this research 
study, in order to overcome the drawbacks of the SGA 
and AGA, MAGA is presented in this approach to have 
better code blocking probability. The flowchart of the 
proposed approach is given in Fig. 3. If a call cannot be 
allotted a code due to unavailability of the code with the 
requested rate then MAGA block is executed. In the 
MAGA block, reassignment process of OVSF codes is 

carried out. The OVSF code tree which is input to the 
MAGA block is called as initial chromosome (Chini) 
and this chromosome is denoted with the index number 
which belongs to active users in the given code tree 
(Chini = (6 9 14 16 21)). 

Here in this approach the integer value is taken 
from the index numbers 1 to SF-1, allocated from root 
code which is indicated as index 1. Then the left 
descendant code is index 2, right descendant code is 
index 3, this is nonstop up to the lowest layer-rightmost 
branch. Each active user’s index number in the initial 
chromosome is termed as a gene denoted by an integer 
number. The data bit rates of Chini in Fig. 3 are (4R 2R 
2RRR) which is equivalent to the index numbers in the 
OVSF code tree. R represents the fundamental data rate 
needed for the transmission through the lowest layer 
codes in the code tree. The data rates are doubled as 
layer is getting topper in the code tree. Hence the root 

code needs SF×R rate transmission of data. The size of 
initial population which generated from chromosomes 
is defined according to Eq. (1) and depends on the 
traffic density which is: 

 
V

i 1

n SF H(i)
−

= −∑                                            (1)

 

 
 

Fig. 3: Flowchart of OVSF code assignment system using MAGA block 
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where, 

V = Total number of active users  

H (i) = Date rate of i
th
 active user, i = 1…, V 

 
V, H and SF are 5, 10 and 16, correspondingly. As a 

result the initial population (n) of the chromosome is 
attained as 6 (16-10). Initial population chromosome 
with various code tree index numbers other than the 
number of data bit rates of each chromosome is the 
same as initial chromosome. The n chromosomes 
consist of existing coded information of OVSF tree is 
attained by means of permutation and gives an 
optimized result for a problem. 

Chini gives the first chromosome. 1st chromosome 
is obtained from the Chini. Temporary Population TP 
(1) which is obtained from Chini with random 
permutation is sequentially alloted to empty OVSF 
code tree from 1

st
 to 5

th
 gene. It is essential to take into 

consideration the orthogonality principle, while 
assigning codes in the OVSF code tree. Index numbers 
are taken to compose a new chromosome P (1). The 
process of attaining P (1) is as follows: for each gene of 
TP (1), the equivalent gene in P(1) is chosen as the 
possible leftmost OVSF code that has the same rate as 
this gene in TP (1). For example, the initial gene 
numbered by 14 in TP (1) has the rate 2R. Therefore, 
possible leftmost gene with rate 2R is the OVSF code 
numbered as 8 in P (1). P shows, several different 
possible result for a given problem. It is clear that 
iteration number of optimal solution is depends on 
population size (n), users’ data bit rates (H (i)) and their 
location in the code tree. Then, the fitness value for each 
chromosome of population is evaluated according to 
fitness function, which is defined specially for OVSF 
code assignment-reassignment problem. The fitness 
value of jth chromosome f (j) is the quantity of 
replacement of each individual in P (j) according to Chini 
defined by: 

 

V

inii 1

1
f ( j)

(Ch ( j)) P( j,i) H(i)
=

=
− ×∑

              (2) 

 

where, j is the chromosome number, j = 1, …, n. 

For, the gene numbered 21 with rate R in TP (1), we 

obtain the OVSF code numbered 18 and so on. After 

obtaining each corresponding gene for P (1), we list the 

genes in P (1) from highest rate to lowest rate. This 

process is repeated n times to fill the P.  

The population is ensured for its fitness values. If 

an OVSF code tree denoted by best chromosome, can 

allocate the requested data bit rate to appropriate user, 

then optimization criterion is confirmed and requested 

data bit rate is allocated to desired user. If not, other 

chromosomes in the population are checked. The 

stopping criterion for this process is either run-on until 

to assign the requested data bit rate to a user or until the 

end of predetermined loop counter.  

EXPERIMENTAL RESULTS  

AND EVALUATION 

 

The main focus of this research is to enhance the 

number of free codes at OVSF code tree through 

reassignment of presently allotted codes. When the 

system still has adequate capacity to offer the data bit 

rate request and requested data bit rate cannot be 

supported since all available codes for this data bit rate 

are not orthogonal to the assigned codes, reassignment 

of OVSF code tree assist in determining the appropriate 

code to the demanding user. In order to evaluate the 

performance of the proposed code assignment approach 

using Modified Adaptive GA (MAGA), it is compared 

with SGA and D&D-GA by simulations. 

 

Simulation parameters: For this simulation setup, a 

number of OVSF-concerned and GA-concerned 

parameters are used:  

 

OVSF concerned parameters  

Mean arrival rate 4 to 64 calls/unit 

Call duration 0.25 time units 

Maximum SF 256 

Possible OVSF code rates Uniform distribution 

between R and �� × � 

 

Some of calls leave the system according to 

Exponential call duration. Active (served) calls of 

OVSF codes, GA parameters, number of assigned, 

blocked and reassigned users and their data rates are 

stored while the simulation is running. Karakoc and 

Kavak (2009) For the same input parameters, the 

simulations are repeated 10 times and the results for 

these 10 simulations are averaged. Then, regarding the 

GA-concerned parameters, a chromosome is 

represented by an integer number. Population size 

depends on the traffic density, in other words number of 

user in the system and their data bit rates. Effects of 

different selection, crossover and mutation techniques 

are investigated. Crossover rate pc is varied between 

0.2 and 0.8, while mutation rate pm is varied between 

0.05 and 0.2. The number of pre-determined loop for 

stopping criterion is 10,000. 

 

Results: System performance of the algorithms are 

performed for SGA, D and D-GA and MAGA. 

 

Blocking probability: Blocking probability is the ratio 

of the number of blocked calls (NB) to total number of 

all incoming calls (NT), given by: 

 

B

T

N
Pr(blocking)

N
=  
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Fig. 4: Comparitive analysis of blocking probability 

 

 
 

Fig. 5: Comparitive analysis of throughput 

 

Figure 4 shows the results of our simulations for 

blocking probability at different traffic loads when SF 

is 256. It is seen from figure that the proposed AGA 

performs better than D and D-GA which is followed by 

SGA, DCA and then CCA. For instance, AGA serves 

more call when it is compared with D and D-GA 

algorithm when traffic load is larger than 10. At higher 

loads, proposed algorithm performance improvement is 

more significant than D and DGA. 

 

Spectral efficiency: Spectral efficiency is evaluated to 

measure the ratio of assigned data rate �R��������� over 

the total requested data rate �R �!"��#��� of all 

incoming calls, which is given b: 

 

assigned

requested

K
(%) 100

R
η = ×  

 

Code blocking probability focuses the number of 

users while spectral efficiency focuses this user’ data 

bit rates. Figure 5 shows the spectral efficiency of the 

five methods at different traffic loads. The spectral 

efficiency of the resource is inversely proportional to 



 

 

Res. J. App. Sci. Eng. Technol., 7(12): 2545-2553, 2014 

 

2551 

 
 

Fig. 6: Comparitive analysis of spetral efficiency 

 

 
 

Fig. 7: Comparitive analysis of delay 

 

the traffic load in the system. Clearly, proposed 

algorithm (AGA) provides the largest spectral 

efficiency among D&D-GA and SGA. 

Figure 6 shows the spectral efficiency of the 

proposed approach compared with the other 

approaches. 
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Fig. 8: Comparitive analysis of drop ratio 

 
Figure 7 shows the delay comparison of the 

approaches taken for consideration. It is observed from 
the graph that the proposed MAGA approach has lesser 
delay when compared with the D and D-GA and SGA 
approaches. 

Figure 8 shows the comparison of the drop ratio of 

different techniques taken for consideration. It is 

observed from the figure that the drop ratio of the 

proposed MAGA approach is lesser than the other two 

approaches such as SGA and D&D GA. 

Figure 5 shows the Through put of the proposed 

MAGA approach is very higher when compared with 

SGA and D&D GA. The graph shows that maximum 

throughput has been obtained for the proposed 

approach. It is mainly due to the improvement in 

mutation and crossover probability. 

 

CONCLUSION 

 

The orthogonality property of OVSF codes makes 

more appropriate for WCDMA. OVSF codes 

assignment have high influence on the code utilization 

and system performance. This research study utilizes an 

efficient heuristic algorithm namely Modified Adaptive 

Genetic Algorithm (MAGA) based dynamic OVSF 

code assignment for WCDMA systems in order to 

reduce the call blocking and increase the spectral 

efficiency in the system. The simulation results show 

that AGA provides the smallest blocking probability 

and largest spectral efficiency in the system when 

compared to SGA and D&D-GA. The future study of 

this approach would be to use meta heuristic 

optimization algorithm to seek better results in terms of 

call blocking and spectral efficiency. 
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