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Abstract: Rotating discs with variable thickness and nonhomogeneous material properties are frequently used in 

industrial applications. The nonhomogenity of material properties is often caused by temperature change throughout 

the disc. The governing differential equation presenting this problem contains many variable coefficients so that no 

possible analytical closed form solution for this problem. Many numerical approaches have been proposed to obtain 

the solution. However, in this study the Finite Element Method (FEM), which presents a powerful tool for solving 

such a problem, is used. Thus, a turbine disc modeled by using ax symmetric finite elements was analyzed. But, in 

order to avoid inaccuracy of the stress calculation quite fine meshing is implemented. The analysis showed that 

maximum displacement occurs at the boundary of the disc, either at the outer or inner boundary, depending on the 

loadings. The maximum radial stress occurs at an area in the middle of the disc which has the smallest thickness. In 

this study, rotational blade load was shown to give the largest contribution to the total displacement and stress. Also, 

the radial displacement and stress in a disc with variable thickness are found to be affected by the contour of the 

thickness variation. In general, the results obtained show excellent agreement with the published works. 
 
Keywords: Finite element method, nonhomogeneous material properties, rotating disc, variable thickness 

 
INTRODUCTION 

 
Rotating discs have many practical engineering 

applications such as in steam and gas turbine discs, 
turbo generators, internal combustion engines, casting 
ship propellers, turbojet engines, reciprocating and 
centrifugal compressors just to mention a few. Brake 
disk can be an example of solid rotating disk where 
only body force is involved. 

In reality, the thickness of the disc is frequently not 
constant, such as turbine discs, due to economic 
considerations and in order to improve mechanical 
performance. Turbine discs are usually thick near their 
hub and taper down to a smaller thickness toward the 
periphery, since a constant thickness pronounces stress 
concentration near the center, even for solid disc. 
Furthermore, it has been shown that the stresses in 
variable thickness rotating annular and solid discs are 
much lower than those in constant thickness discs at the 
same angular velocity. 

In many applications, the disc is working under 
high temperature which presents thermal loading. 
Beside the fact that, the temperature throughout the disc 
is usually not constant, i.e., there is temperature 
gradient present throughout the disc. This temperature 
gradientusually resulted in changes in material 

properties throughout the disc and therotating disc 
becomes nonhomogeneous in the radial direction. 

Generally, there are two approaches for the 
solution of rotating discs, namely, theoretical and 
numerical methods. For homogeneous rotating disc 
with constant thickness, closed-form analytical solution 
is available. However, for nonhomogeneous rotating 
disc with variable thickness, analytical solution is not 
possible to obtain. Hence, many numerical attempts has 
been presented to solve such a problem. 

Timoshenko and Goodier (1970) was the first to 
obtain a closed form solution for homogeneous 
constant-thickness rotating discs without any 
temperature gradient. Stodola (1927) obtained an 
analytical solution of the problem of homogeneous 
rotating discs with hyperbolic profile thickness. Den 
Hartog (1987) reported the closed form formula for 
homogeneous rotating discs with constant and 
hyperbolic thickness under several mechanical 
loadings. Boresi and Richard (2003) included thermal 
stress in the closed form formula. Gamer (1985) 
achieved a good adaptive numerical solution for the 
constant thickness solid discs with a linear hardening 
material. Recently, Sharma et al. (2011) conducted 
analysis of stresses and strains in a rotating 
homogeneous thermoplastic circular disk using FEM.  
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Guven (1997, 1998) obtained an analytical solution 
of the problem of rotating variable thickness discs with 
rigid inclusion for the elastic-plastic (Guven, 1997) and 
fully plastic state (Guven, 1997). Leopold (1984) 
calculated  elastic  stress  distributions  in  rotating discs  
withvariable thickness by using a semi-graphical 
method. Later, semi-analytical analysis of Functionally 
Graded Materials (FGM) rotating discs with variable 
thickness was proposed by Bayat et al. (2008). Hojjati 
and Jaffari (2007) proposed Variation Iteration Method 
(VIM) to obtain the elastic analysis of non-uniform 
thickness and density rotating discs subjected to only 
centrifugal loadings. However, You et al. (2000) 
proposed numerical analysis using Runge-Kutta method 
compared to FEM for elastic-plastic rotating discs with 
arbitrary variable thickness and density. Likewise, 
Hojjati and Hassani (2008) proposed Variablematerial 
Properties (VMP) method and numerical analysis using 
Runge Kutta’s method compared to FEMfor rotating 
discs of non-uniform thickness and density. Recently, 
they also proposed semi-exact solution for thermo-
mechanical analysis of FGM elastic-strain hardening 
rotating discs (Hassani et al., 2012). Furthermore, to 
solve nonhomogeneous rotating disc with variable 
thickness, Jahed et al. (2005) proposed discretization of 
the disc into a finite number of rings, where each ring 
has constant thickness and material properties, but 
different rings may have different thickness and 
material properties. 

In this study, therefore, the problem of 
nonhomogeneous rotating disc with arbitrarily variable 
thicknessis addressed and other related issues are 
discussed and presented. It is demonstrated that the 
analytical solution for such a problem is not possible to 
be obtained. Consequently, to solve this problem the FE 
technique is used. The complete details of the FE 
formulation and analysis of the problemalong with 
numerical examples to verify the solution are presented 
in the next sections. 
 

METHODOLOGY 
 
Analytical solution for elastic nonhomogeneous disc 
with variable thickness under mechanical and 
thermal loading: The problem can be considered as 
plane stress with variable thickness. Hence, σz = 0, as 
this is a static problem, the solution has to satisfy 
equilibrium, compatibility and constituve law of the 
material properties. 

 
Equilibrium: Assuming that the weight of the disc is 
neglected, equilibrium of infinitesimal element of the 
disc, as shown in Fig. 1, in the radial direction is: 
 

�������ℎ� + 2���
� ��
� ���ℎ −  

��� + ���
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Fig. 1: Infinitesimal element of the disc 
 

 
 
Fig. 2: Displacements in infinitesimal element of the disc 
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Because the problem is axisymmetric, stress 

components in tangential direction vanish: 
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By simplification and taking sin (dθ/2) = dθ/2

 
due to 

small angle Ө, we obtained: 
 
Compatibility: Displacaments occurs in the disc is 
shown in Fig. 2. The compatibility ends up with strain-
displacement relation as follows: 
 

r
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Properties of material, which are expressed by 
constitutive law of material: Because the problem is 
elastic, Hooke’s law is used to get the stress-strain 
relation. 
Due to only mechanical loading and σz = 0: 

 

( )1
r r t

E
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( )1
t t r

E
ε σ νσ= −                 (7) 

 

Because there is also thermal loading; then, 

 

total elastic thermalε ε ε= +                             (8) 

 

and 

 

therm al Tε α=                 (9) 

 

Hence, the total strains become: 

 

( )1
r r t T

E
ε σ νσ α= − +                 (10) 

 

( )1
t t r

T
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Re-arranging Eq. (10) and (11), we get: 

 

r r tE E Tσ ε νσ α= + −               (12) 

 

and 

 

t t rE E Tσ ε νσ α= + −               (13) 

 

Subtituting Eq. (13) into (12) to get σr: 
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− −
              (14) 

 

Now subtituting Eq. (12) in to (13) to get σt: 
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Subtituting Eq. (4) and (5) into (14) we get: 
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Similarly, substituting Eq. (4) and (5) into (15) we get: 
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              (19) 

Now subtituting Eq. (29) and (31) into (2), which is 

the equilibrium equation in radial direction, we 

obtained a second order Ordinary Differential Equation 

(ODE) of the form: 
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The coefficients of the ODE contain variable 

parameters: 

 
, ( ), ( ), ( ), ( ), ( ), ( )r h h r E E r r r r T T rν ν α α γ γ= = = = = =  

 

Because the coefficients of the ODE contain many 

variable parameters, there are no exact solutions for this 

ODE. However, as stated earlier, there have been 

numerous numerical approaches to solve such a 

problem. But in this study, the FE approach is utilized. 

The details of the FE analysis and solution are 

presented below. 

 

Fem solution for elastic nonhomogeneous disc with 

variable thickness under mechanical and thermal 

loading: FEM is one of the most successful and 

dominant numerical method in the last century. It is 

extensively used in modeling and simulation of 

engineering and science due to its versatility for 

complex geometries of solids and structures and its 

flexibility for many non-linear problems. 

Most discs with variable thickness in the 

applications are ax symmetric. For such a case, ax 

symmetric element is the most economical but adequate 

to use in the finite element analysis. For any other cases 

in which the disc is not ax symmetric and therefore not 

adequate to be modeled by axisymmetric element, 

cyclic element and 3D solid element can be used. 

The axisymmetric symmetric element has 2 

translational degrees of freedom per node. Using 

cylindrical coordinate system where z is the axis, r is 

the radius and Ө is the circumference angle, the stresses 

in the axisymmetric problem is shown in Fig. 3. 

Internal and external pressure working at the inner 

and outer surface of the disc are surface forces. The 

element surface force vector is given by: 



Res. J. App

 

Fig. 3: Stresses in the axisymmetric problem

 

{ } [ ]
T

r

s s

zS

p
f N dS

p

 
=  

 
∫∫     

 
Centrifugal forces due to rotational speed of the 

disc are body forces. The element body force vector is 
given by: 
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T b

b
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R
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The element thermal forces working on the disc are 

given by: 
 

{ } 2 T

T T

A

f D rdAπ ε ε= ∫     

 
The total element forces {f} are sum of th

surface forces, the element body forces and the element 
thermal forces. The global force vectors {F} are 
obtained by assembling all the element forces.
The element stiffness matrix is given by:

 

[ ] [ ] [ ][ ]2 . .
T

A

k B D B r dr dzπ= ∫∫    

 
Assembling all of the element stiffness matrices, 

the global stiffness matrix [K] is obtained. The global 
displacement vectors are given by {F} = {K}{d}. 
The displacement function vectors are given by: 

 

{ } [ ]{ }N dψ =      

 
The global strain vectors are given by: 
 

{ } [ ]{ }B dε =      

 
Finally, the global stress vector are given by:
 

{ } [ ][ ]{ }D B dσ =      

 

Numerical example: In this example, 

gas turbine disc was analyzed. Noncommercial

Workbench   was   used  to  conduct  the
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Stresses in the axisymmetric problem 

            (21) 

Centrifugal forces due to rotational speed of the 
body forces. The element body force vector is 

            (22) 

The element thermal forces working on the disc are 

            (23) 

The total element forces {f} are sum of the element 
surface forces, the element body forces and the element 
thermal forces. The global force vectors {F} are 
obtained by assembling all the element forces. 
The element stiffness matrix is given by: 

            (24) 

Assembling all of the element stiffness matrices, 
the global stiffness matrix [K] is obtained. The global 
displacement vectors are given by {F} = {K}{d}.  
The displacement function vectors are given by:  

            (25) 

 

            (26) 

Finally, the global stress vector are given by: 

            (27) 

In this example, an axisymmetric 

Noncommercial ANSYS 

the  finite  element 

 

Fig. 4: A half cross sectional view of the disc with 

dimensions in mm 

 

analysis. The thickness of the disc varies along the 

radial direction. The temperature varies 

direction as well. Due to the temperature variation, 

Young modulus, Poisson ratio and thermal coefficient

change as function of the temperature. Because the 

temperature changes as function of radius, then Young 

modulus, Poisson ratio and the thermal coefficient

also be expressed as function of radius. Because 

analytical solutions of such a problem is not available 

as already explained, finite element analysis was carried 

out to obtain the solutions. 

 

Geometry and material properties: 

axisymmetric. The geometry of the disc

Fig. 4. For convenience, the change

Young Modulus, Poisson ratio and thermal coefficient
is assumed linear. The density of 

assumed to be constant. 

The steady state temperature at the outer boundary 

is equal to the temperature of high temperature gas. 

Based on the data given by Barack and Domas (1976), 

Liu et al. (2002), Claudio et al. (2002), Jahed 

(2005), Maruthi et al. (2012) and Elhefny and

(2012), this temperature has a range of 550

this study, a value of 800°C is used. Throughout the 

disc, the temperature gradually decreases as the radius 

gets closer to the inner boundary. The temperature 

throughout the disc never reaches 

cooling system is applied inside the disc. Based on data 

published by Barack and Domas (1976)

(2005) and recently by Maruthi 

temperature at the inner boundary has a range of 450

500°C. In this study, a value of 500

Following the aforementioned boundary temperatures 

along with assumption that t

changethroughout the disc is linear, the following 

relation is used to express the temperature change:

 

T (r) = 3 r + 324; r in mm  

 

The temperature distribution is shown in Fig. 5

Due to the temperature variation, 

poisson ratio and thermal coefficient vary throughout 

the disc as follows: 

 

A half cross sectional view of the disc with 

he thickness of the disc varies along the 

radial direction. The temperature varies along the radial 

direction as well. Due to the temperature variation, 

and thermal coefficient 

change as function of the temperature. Because the 

temperature changes as function of radius, then Young 

he thermal coefficient can 

also be expressed as function of radius. Because 

analytical solutions of such a problem is not available 

as already explained, finite element analysis was carried 

Geometry and material properties: The disc is 

geometry of the disc is shown in 

change of temperature, 

and thermal coefficient 
The density of 8220 kg/m

3 
is 

The steady state temperature at the outer boundary 

is equal to the temperature of high temperature gas. 

Based on the data given by Barack and Domas (1976), 

. (2002), Jahed et al. 

. (2012) and Elhefny and Guozhu 

(2012), this temperature has a range of 550-900°C. In 

C is used. Throughout the 

disc, the temperature gradually decreases as the radius 

gets closer to the inner boundary. The temperature 

throughout the disc never reaches the same value as a 

cooling system is applied inside the disc. Based on data 

published by Barack and Domas (1976) and Jahed et al. 

(2005) and recently by Maruthi et al. (2012), the 

temperature at the inner boundary has a range of 450-

a value of 500°C is used. 

Following the aforementioned boundary temperatures 

along with assumption that the temperature 

linear, the following 

relation is used to express the temperature change: 

             (28) 

The temperature distribution is shown in Fig. 5. 

Due to the temperature variation, Young Modulus, 

and thermal coefficient vary throughout 
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Fig. 5: Temperature distribution throughout the disc 

 

 
 

Fig. 6: Young modulus variation throughout the disc 

 

 
 

Fig. 7: Poisson’s ratio variation throughout the disc 

 

E ( T ) = - 0.05 T + 200; E in GPa                     (29) 

 

ν ( T ) = (1.3333x10
-4

) T + 0.23                         (30) 

 

α (T) = (6.6667x10
-9

) T + (10.6667x10
-6

)          (31) 

 

As the temperature is a function of radius, Eq. (29) 

to (31) can be expressed as functions of radius, such 

that E, v and α are given by: 

 
 

Fig. 8: Thermal coefficient variation throughout the disc 

 

E (r) = - 0.15 r + 188.5; r in mm, E in GPa        (32) 

 

ν (r) = (4.0816 x 10
-4

) r + 0.26245; r in mm      (33) 

 

α (r) = (2.0408 x 10
-8

) r + (12.1224 x 10
-6

);  

r in mm                                                               (34) 

 

The change of Young modulus, Poisson ratio and 

thermal coefficient is shown in Fig. 6 to 8.  

 

Element type, loads and boundary conditions: 

Axisymmetric model is used due to the axisymmetric 

geometry of the disc. Furthermore, because the model is 

symmetric in longitudinal direction, then half of the 

section area was used. 

Shrink fit with the rotor shaft causes a radial force 

in outward direction on the inner surface of the disc. 

This force results in 300 MPa compressive pressures on 

the inner surface of the disc. The rotation of the disc 

causes a centrifugal body force in outward direction. 

The rotation velocity is 15,000 rpm = 1570 rad/s. The 
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Fig. 9: FEM model with the loads and boundary conditions 

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 10: (a) Coarse and (b) refined meshings of the model 

 

blades attached on the outer surface of the rotating disc 

causes a centrifugal force in the outward direction on 

the outer surface of the disc. This centrifugal force 

results in 500 MPa tensile pressures on the outer 

surface of the disc. Furthermore, high temperature of 

the hot blades is transferred by conduction through the 

disc, causing linear temperature variation through the 

disc radius. This results in linearly variable thermal 

load. 

As boundary condition, frictionless support (i.e., 

rollers) is put on the disc side which functions as 

symmetry plane. Thus, no displacement perpendicular 

to this plane is allowed, yet displacement along the 

plane is allowed. The model is shown in Fig. 9. 

 

Meshing: Coarse and refined meshing qualities were 

applied to the model as shown in Fig. 10. For both, 

nodes are only at the element corners. 

 

RESULTS AND DISCUSSION 

 

Case 1: The disc is subjected to shrink fit load only: 

By taking only the shrink fit load into account, the 

radial displacement and stress are shown in Fig. 11. The 

displacement and stress have outward direction due to 

the shrink fit load coming from the shaft. The 

maximum displacement as well as the maximum 

absolute value of the radial stress occurs at the inner 

surface of the disc. As the radius increases, the 

displacement and stress decrease until it reaches the 

minimum value on the outer surface of the disc. An 

abrupt increase of the stress distribution occurs at the 

smallest thickness of disc as stress concentration occurs 

there. The rounded-off value of the minimum stress is 

zero, which satisfies zero pressure boundary condition 

on the outer surface of the disc. 

 

Case 2: The disc is subjected to rotational body load 

only: The centrifugal body force causes radial 

displacement and stress in outward direction, as shown 

in Fig. 12. It is shown that the displacement curve 

follows the thickness contour of the disc. Increasing 

thickness tends to result in increasing displacement. 

The maximum displacement occurs at the inner surface 

of the disc whereas the minimum occurs at the outer 

surface. The maximum radial stress occurs at the 

middle of the disc. 

 

Case 3: The disc is subjected to rotational blade load 

only: Beside the rotational body load, the rotating 

attached blades cause additional centrifugal load 

working on the outer surface of the disc. This load 

causes displacement and stress in outward direction, as 

shown in Fig. 13. The maximum displacement occurs at 

the outer surface of the disc, whereas the minimum 

occurs near the hub of the disc. Large radial stress 

occurs as the radius increases. With the given geometry 

of the disc, the maximum stress occurs at the smallest 

thickness of the disc as stress concentration occurs 

there. 

 

Case 4: The disc is subjected to thermal load only: 

The thermal load causes radial displacement and stress 

as shown in Fig. 14. The displacement has negative 

values at most of the radius values. The negative values 

represent displacement in inward direction. Near the 

outer surface, the displacement has positive values, 

which means that the displacement has outward 
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(a) 

 

 
 

 
 

(b) 

 

Fig. 11: (a) Radial displacement (mm) and (b) stress (MPa) due to shrink fit only 

 

 
 

 
 

(a) 
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(b) 

 

Fig. 12: (a) Radial displacement (mm) and (b) stress (MPa) due to rotational body load only 

 

 
 

 
 

(a) 
 

 
 

 
 

(b) 

 

Fig. 13: (a) Radial displacement (mm) and (b) stress (MPa) due to rotational body load only 
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(a) 
 

 
 

 
 

(b) 
 

Fig. 14: (a) Radial displacement (mm) and (b) stress (MPa) due to thermal load only 

 

 
 

 
 

Fig. 15: Radial displacement due to combined loads (mm) 
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(a) 

 

 
 

 
 

(b) 

 

Fig. 16: Radial stress distribution, (a) with coarse meshing, (b) with refined meshing 

 

direction. Thus, due to the thermal load, the disc 

expands to inward and outward direction. The radial 

stress has outward direction. The rounded-off stress at 

the inner and outer surface of the disc is zero. The 

maximum stress occurs at the middle of the disc. 

 

Case 5: The disc is subjected to combined loads: By 

combining all the loads, the radial displacament of the 

disc with refined meshingis shown in Fig. 15. Large 

radial displacement occurs at the inner and outer 

surface of the disc. The displacements at the inner and 

outer surface are 1.31 and 1.33 mm, respectively. The 

minimum displacement of 1.136 mm occurs at the 

middle of the disc. 

The radial stress at the inner surface is negative, 

which means that it is compressive with outward 

direction. As the radius increase, this compressive 

stress decreases until it reaches zero at some radius 

value, then it starts being positive, which means that it 

is tensile with outward direction. Near the smallest 

thickness of the disc, the maximum stress occurs. The 

stressat the inner and outer surface are 299.22 MPa 

(compressive, outward direction) and 500 MPa (tensile, 

outward direction) respectively.  
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Table 1: Maximum radial displacement and stress 

Load 

Maximum displacement 

---------------------------------------------------------- 

Maximum radial stress 

----------------------------------------------------------------------- 

Value (mm) Position Value (MPa)  Position 

Shrink fit load 0.51 Inner surface 299.80 Inner surface 

Rotational body load 0.28 Inner surface 192.02 Middle, near the smallest thickness 

Rotational blade load 0.71 Outer surface 1204.90 Middle, near the smallest thickness 
Thermal load 0.11 Middle of the disc 190.68 Middle, near the smallest thickness 

Combined loads 1.33 Outer surface 1425.90 Middle, near the smallest thickness 

 

Figure 16 shows the radial stress distribution by 

using both the coarse and refined meshing. It is shown 
that different plot got near the smallest thickness of the 

disc where stress concentration occurs. 

The maximum values of the radial displacement 

and stress due to each load as well as combined loads 

are shown in Table 1. It is shown that the rotational 

blade load contributes the most to the total 

displacement and stress. To reduce its value, reducing 

the weight of the blades and/or the rotor speed can be 

proposed. The maximum displacement occurs at the 

outer surface, yet it is only slightly larger than that at 

the inner surface. Reducing the rotational blade load 

can be proposed to reduce the displacement at the outer 

surface, as excessive displacement at that part may 

cause rubbing against the stationary parts. Assuming 

that the shrink fit is fixed, reducing the rotor speed will 

reduce the displacement at the inner surface. The rotor 

speed should not exceed a certain speed which causes 

looseness between the shaft and the disc hub. The 

maximum total stress occurs at the middle, near the 

smallest thickness of the disc. Thickening this part can 

be proposed to reduce the maximum total stress as it 

was shown that stress concentration occurs there. 

 

CONCLUSION 

 

Analytical solution of rotating disc with variable 

thickness and nonhomogeneous material properties can 

not be obtained because there are many variable 

parameters in the coefficients of its governing 
differential equation. For this reason, numerous 

numerical approaches have been proposed to obtain the 

approximate solutions. One of the approaches having 

been widely used recently is FEM. 

Most rotating discs used in applications are ax 

symmetric. Therefore, ax symmetric element is the 

most economical but adequate to use for the FE 

analysis. A turbine disc was analyzed as an example in 

this study. Several loads were applied. It was shown 

that maximum displacement occurs at the boundary of 

the disc, either at the outer boundary or the inner 

boundary, depending on the loadings. The maximum 

radial stress occurs at the area in the middle of the disc 

which has the smallest thickness. Furthermore, the 

analysis showed that each load gives different 

contribution to the total radial displacement and stress 

of the disc. The rotational blade load was shown to give 

the largest contribution. However, this does not apply to 

all turbine discs as it depends on the values of different 

loads for any specific turbine disc.  

The radial displacement and stress in a disc with 

variable thickness are affected by the contour of the 

thickness variation. The middle area of the disc is 

proposed to have smaller thickness, but should not be 

too thin as stress concentration will occur there. 

In the stress analysis, a quite fine meshing 

particularly in area with stress concentration is required 

to avoid inaccuracy of the stress calculation due to 

concentrated stress which cannot be spread well to 

surrounding area. 

 

NOMENCLATURE 

 

� :  Displacement 

�� :  Radial strain 

�� :  Tangential strain 

�� :  Radial stress 

�� :  Tangential stress 

� :  Specific weight 

� :  Gravitational acceleration 

� :  Density 

  :  Young modulus 

! :  Poisson ratio 

" :  Thermal coefficient 

ℎ :  Thickness of the disc 

� :  Radius of the disc 

�#$$%�  : Inner radius of the disc 

�&'�%�  :  Outer radius of the disc 

( :  Shape function 

)*+, :  Element surface force vector 

)*-, :  Element body force vector 

)*., :  Element thermal force vector 

/� :  Surface force vector element in radial 

direction 

/0 :  Surface force vector element in axial 

direction 

1- :  Body force vector element in radial direction 

2- :  Body force vector element in axial direction 

3 :  B matrix 

4 :  Stress-strain (constitutive) matrix 

5 :  Element stifness matrix 
)�, :  Nodal displacement vector 

)6, :  Displacement function vector 

)�, :  Strain vector 
)�, :  Stress vector 
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