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Abstract: The aim of the study is the solution of the system of fifth order boundary value problems associated with 
obstacle, unilateral and contact problems using quartic spline. These problems arise in several branches of pure and 
applied sciences and in engineering including transportation, equilibrium, optimization, mechanics, structural 
analysis, fluid flow through porous media and image processing in the medical sciences. The results are compared 
with the exact solution. Two examples are considered for the numerical illustration of the method developed and the 
results are encouraging. 
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INTRODUCTION 

 
The contact, unilateral, obstacle and equilibrium 

problems arising in different branches of pure and 
applied sciences can be studied using the notion of 
variational inequalities. During the past few years, this 
has emerged as an interesting and important branch of 
applied mathematics. The general variational 
inequalities can be characterized by a system of 
differential equations using the penalty function 
technique, if the obstacle function is known. This 
technique was used by Lewy and Stampacchia (1969) 
to study the regularity of the solution of variational 
inequalities. The main advantage of this technique is its 
simple applicability in solving obstacle and unilateral 
problems. 

Al-Said (1996) developed the solution of system of 
second order boundary value problems using quadratic 
spline. Gao and Chi (2006) solved a system of third-
order boundary value problems associated with third-
order obstacle problems using the quartic B-splines and 
the method is claimed to be of second order. Islam et al. 
(2005) developed the solution of a system of third- 
order boundary value problems using non polynomial 
spline and the method is claimed to be of second order 
as well. 

Siddiqi and Akram (2007a to c) solved the system 
of fourth order boundary value problem using cubic 
nonpolynomial spline, cubic spline and nonpolynomial 
spline. Noor et al. (2011) solved fifth order obstacle 
problem using variation of parameters method, but the 
exact solution of the problem, given in the study is not 
correct. Hence the method developed by Noor et al. 
(2011) cannot be compared with the method developed 
in this study. 

In this study, the quartic spline function is used to 
develop a technique for the solution of the following 
system: 
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Along with the boundary conditions: 
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where r and αi, i = 0, 1, …, 5 are finite real constants 
and the functions f (x) and g (x) are continuous on [a, b] 
and [c, d], respectively. Such type of systems arises in 
connection with contact, obstacle and unilateral 
problems. 
 

QUARTIC SPLINE METHOD 
 

To develop the quartic spline approximation S to 
the problem (1), the interval [a, b] is divided into k 
equal subintervals (s.t k is divisible by 4 and k = 4n), 
using  the  grid  points  xi = a + ih;  i = 0, 1,…, k where 
h = (b-a) /k. 

Without loss of generality, the knots c and d may 
be taken as: 
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The system (1), thus, leads to the following form: 
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where, .4,...,2,1,0),(),( nixggxff iiii ===
 
The restriction Si of S to each subinterval [

1, +ii xx ], 
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And assuming y (x) to be the exact solution of the system (1) and yi be an approximation to y (xi), obtained by 

the spline S (xi). 

After, applying the first and second derivative continuities at the knots, i.e., ( ) ( ) )()(1 iiii xSxS µµ =−  
for µ = 1, 2, the 

following consistency relation is derived which is necessary to find the solution of the problem (1): 
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To make the system (6) consistent with the BVP (1), the finite difference formula of O (h

4
) is used, which leads 

to the following relation: 
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From Eq. (6) and (7), it can be written as: 
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Moreover, following Lucas (1974) for quartic spline, it can be written as: 
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Equation (8) and (9), leads the following relation: 
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Substituting ),2,...,3,2(; −= kisTi
 in Eq. (9) gives the following relation which is used for the quartic spline 

solution of the system (3): 
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The above system does not provide the complete solution of the system (1). Hence, the required equations are 

obtained as: 
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APPLICATIONS 

 

To illustrate the implementation of the method developed, the following fifth order obstacle boundary value 

problem can be considered as: 
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where, f is a given force acting on string and ψ (x) is  the elastic obstacle. The problem (16) arise in several branches 

of pure and applied sciences including transportation, equilibrium, optimization, mechanics, structural analysis, fluid 

flow through porous media and image processing in the medical sciences. Using the ideas and technique of Lewy 

and Stampacchia (1969), the obstacle problem (16) can be characterized by the following system of variational 

inequality problem: 
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where,  

ε  = A small positive constant  

ψ  = The obstacle function  

µ (t)  = The penalty function defined by:  
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Since the obstacle function ψ
 
is known, it is possible to find the exact solution of the problem in the interval 

.2/12/1 ≤≤− x  
Assuming that the obstacle function ψ

 
is defined by: 
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From Eq. (17)-(20), the following system of equations can be obtained as: 
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With the boundary conditions: 
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And the conditions of continuity for y, y

(1)
 and y

(2)
 at x = -1/2 and 1/2. 

If µ (t) and ψ (x) are taken as: 
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Then the following system of equations can be obtained as: 
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It is to be mentioned that the system of equations associated with the obstacle problem (16) is a special case of 

the system of fifth order boundary value problem (1): 
 

Numerical examples: 
Example 1: The following problem is considered, as: 
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Together with the boundary conditions at x = -1, x = 1 and the conditions of continuity for y, y

(1)
 and y

(2)
 at x = -

1/2 and x = 1/2. The analytic solution of the system (27) is: 
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where, 
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The observed maximum errors (in absolute values) are summarized in Table 1. It is confirmed from the Table 1 

that if h is reduced by factor 1/2, then ||E|| is reduced by a factor 1/4, which indicates that the present method gives 

second order results. 

 

Example 2: The following problem is considered, as: 
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Together with the boundary conditions at x = -1, x = 1 and the conditions of continuity for y, y
(1)
 and y

(2)
 at x = -

1/2 and x = 1/2. 

The analytic solution of the system (29) is: 
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Table 1: Maximum absolute errors for problem (27)  

h |y (xi) - yi| 

1/14 2.10×10-4 
1/28 2.93×10-5 
1/56 3.85×10-6 
1/112 4.93×10-7 
1/224 6.23×10-8 

 
Table 2: Maximum absolute errors for problem (29) 

h 
The method 
presented 

1/14 4.39×10-4 
1/28 6.12×10-5 
1/56 8.05×10-6 
1/112 1.03×10-6 
1/224 1.30×10-7 

 
To analyze the usefulness of the method, the results 

are summarized in Table 2 and it is evident from the 
Table 2 that ||E|| is reduced by a factor 1/4, if h is 
reduced by factor 1/2, which shows that the method is 
of second order. 

 
CONCLUSION 

 
Quartic spline method is developed for the 

approximate solutions of system of fith order BVPs. 
The obtained numerical results are compared with the 
exact solution. Noor et al. (2011) developed variation 
of parameters method for the solution of fifth order 
obstacle problem but the exact solution of the problem 
given in the study is not correct. Hence the method 
developed by Noor et al. (2011) cannot be compared 
with the quartic spline method. We showed that the 
quartic spline method is a powerful mathematical tool 
for the solution of system of fifth order BVPs. 
Numerical examples also illustrate the accuracy of the 
method. 
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