
Research Journal of Applied Sciences, Engineering and Technology 7(22): 4736-4744, 2014 
DOI:10.19026/rjaset.7.859 
ISSN: 2040-7459; e-ISSN: 2040-7467 
© 2014 Maxwell Scientific Publication Corp. 
Submitted: January 16, 2014 Accepted: February  25,  2014 Published: June 10, 2014 

 
Corresponding Author: Taufiq Rochman, Brawijaya University of Malang, Indonesia 
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 

4736 

 
Research Article 

On The Simple Derivation of Stress-strain Relationship in Composite  
Laminated Material of Plate and Shell Structures 
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Abstract: This study aimed to develop a model to accurately predict the stress-strain relationship and proposed for 
laminated composite material. Lack of accuracy of Classical Shells Theory (CST) in predicting the influence of 
transverse deformation occurs due to the line normal to the surface is assumed remain straight and normal to the 
mid-plane before and after deformation. This assumption overestimates the structures too stiff and the deflections 
too small. Anyway, for very thin structures CST still suitable for isotropic homogeneous material, but the shear 
transverse deformations were neglected, hence provide inaccurate results for thicker structures. These lacks had 
been revised by Constant Shear or First Order Shear Deformation Theory (CSDT/FOSDT), but still suffer shear 
locking phenomenon, because always have constant value in the shear term. This matter had been corrected by 
Higher Order Shear Deformation Theory (HOSDT) using refined assumption that the line normal to the surface in a 
parabolic function and not normal to the mid-plane, but normal to the surfaces so it fulfill the zero strain in the 
surfaces. The stress-strain relationship of laminated composite material is applied by using Higher Order Lamination 
Theory (HOLT) that adopted from HOSDT that was accurate for any thicknesses variation and complex material. 
 
Keywords: Higher order shear deformation, laminated composite material, plate and shell structures, simple derivation, 

stress-strain relationship 
 

INTRODUCTION 
 

In the last decade in civil engineering area has been 
born FRP as fibrous composite laminated material and 
it has been discussed by researcher such as Fremond 
and Maceri (2005), Lawrence Colin Bank (2006), 
Qasrawi (2007) and Tarek (2010). They investigate on 
the repairing or retrofitting the existing structures and 
development all-FRP material as new primary 
structures and predict the potency of FRP as the one of 
smartest civil engineering material. 

A good example of an all-FRP possibility to be 
built was Aberfeldy Footbridge (Skinner, 2009; Busel, 
2009) in Scotland that built over the River Tay in 1992 
shown in Fig. 1 and this is the world's first all-plastic 
footbridge and it had good performance after 20 years 
of life. The bridge is a 113 m total span, three-span 
configuration of 25, 63 and 25 m, respectively cable-
stayed structure, width of 2.23 m and two planes 40 
cables in two pylons of 18 m height. 

Pylons, girders, deck slab even its cables made 
from 14.5 ton composites. Girders, parapet and pylon 
made from GFRP with E-glass fiber and isophthalic 
polyester resin matrices, while cables made from 
Parafil, an aramid Kevlar fiber coated with 
polyethylene.  

This study is a part of development of a FRP girder 
and the objective of this study is to propose a 

mathematical model to accurately predict the stress-
strain relationship, that suitable for laminated 
composite plates and shells material. No numerical 
benchmarks examples are presented due to the 
complexity of the shell structures in order to keep the 
relationship remain general independent from loading, 
span and thickness.  
 

MATERIALS 
 
Composite and FRP: FRP or other laminated 
composite material made of two or more layered fine 
fiber with diameters of 5-15 µm that glued together in 
the resin material called matrix shown in Fig. 2. The 
fibrous composite can be Kevlar, Aramid, carbon or 
glass that each lamina is transversely isotropic in 
longitudinal direction as main reinforcement in 
handling the stresses due to its high-strength but 
lightweight characteristics. 

Although laminated composite material have a lot 
of advantages compared to isotropic one such as steel 
and concrete, but its application need higher order 
knowledge to know how it should be treated, analyzed 
and behaviorally modeled to reach its optimum 
performance, especially in bending-axial thin walled 
component such hollow stiffened beam, plates and 
shells structures. 
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Fig. 1: A barely footbridge: one of all-FRP structures http://compositesandarchitecture.com and http://happypontist.blogspot.com 
 

 
 

Fig. 2: Reinforcing fiber, matrix and bond interface 
(Springolo, 2005) 

 
In the world of thin and moderate thick plates and 

shells analysis, there are three major streams of theory. 
First model is the one that called Classical Shell Theory 
(CST) that was is an extension of Euler-Bernoulli beam 
theory and was developed in Love (1888) using 
assumptions proposed by Kirchhoff (1887). In fact, for 
very thin plate (h/a>>20) with the homogeneous and 
isotropic material, CST theory still sufficient, but not 
for thicker ones. This model have a serious shear 
problem for thicker plates and shells, these arise from 
its hypothesis that before and after deformation, the line 
normal to the plane is remain straight and normal to the 
mid-plane. Therefore, the transverse shear deformation 
was neglected in this model, as the consequence of 
these will affected zero shear stress and strain in xz and 
yz plane. All of these simplifications can cause the plate 
and shell stiffness too large, the deflection was too 
small and its natural frequency get higher than it should 
be. For modern composite laminated material, where 
the ratio between elastic and shear modulus (E/G) 
getting higher, the structures will be so sensitive to the 
thickness effect because effective transverse shear 
modulus significantly less than elastic longitudinal 

modulus through the fiber direction. Hence, transverse 
shear stress become predominant large and the material 
will be sensitive to these stresses. This E/G ratio that 
hence causes CLST (Classical Laminated Shell Theory) 
is not appropriate for moderate to thick composite 
laminated plates and shells analysis. 
 

SHEAR DEFORMATION THEORIES 

 
For plates and shells (Reissner and Stein, 1951; 

Mindlin, 1951) theory were very similar to the 
Timoshenko and Woinowsky-Krieger (1959) theory 
where they had improved previous lacks using constant 
shear deformation assumption Called First Order Shear 
Deformation Theory (CSDT/FOSDT). Their hypothesis 
assumed the line normal to the surface remains straight 
but after deformation it is not normal to the mid-
surface. Actually shear deformation has already 
considered in their model, but only in a constant term. 
Hence, CSDT/FOSDT need such as 5/6 shear correction 
factor to fix the corresponding strain energy terms. This 
coefficient arise another problems that cannot be 
determined easily and therefore shear locking 
phenomenon can occurs and also zero shear strain 
requirement at the surfaces cannot be fulfilled (τxz ≠ 0). 
 
Higher order shear deformation theory: Third order 
shear deformation by Levinson (1980) and then 
developed by Bert (1984), Reddy (1984, 1985), Kant 
and Mallikarjuna (1989) and Kant and Kommineni 
(1994) called Higher Order Shear Deformation Theory 
(HOSDT) was a better model by refined hypothesis that 
a parabolic function of the depth z should replaced 
instead of straight line normal to the surface and not 
normal to the mid-plane anymore, but normal to the 
surfaces hence it can meet zero strain requirement in 
the surfaces εxz|z = ±h/2 = 0. For both thin and thick plates 
and shells, HOSDT model has higher accuracy both for 
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Fig. 3: The hypothesis differences of the shell normal line among three models (Levinson, 1980) 
 

homogeneous isotropic or even layered anisotropic 
material. This last model involved higher order 
displacement field using Taylor series in the thickness 
coordinates and therefore more accurate in predicting 
global behavior and respond of plate and shell 
structures. Thus for laminated composite material 
called HOLT (Higher Order Lamination Theory), this 
model has close results to the 3D elasticity solution 
(Latheswary et al., 2004). 

Based on these matters, the strains and stresses 
relationship can be found for composite laminated 
called HOLT (Higher Order Lamination Theory) 
model. Several restrictions is made for simplification 
aims, that is the properties of lamina is homogeneous, 
elastic linear and transversely isotropic with fiber angle 
and number of lamina variation. Free vibration and 
buckling eigen and also heat transfer problems were 
neglected in this analysis. Ignorance of normal stress in 
z-direction (σzz = 0) is also set and bonding between 
two adjacent lamina surfaces are assumed has a full 
matrix interaction each other and ensure to be strong 
enough to hold the shear stress or any delamination. 
This means that the displacement and the strain through 
the thickness are assumed distributed continuously. 
 
Normal line of three hypothesis before and after 

deformation: The differences of the normal line 
hypothesis among three models for before and after 
deformed shell section given in Fig. 3. 

Unlike the previous CST a’-a’ and a”-a” model, the 
third model, HOSDT, is based on the assumption that 
the deformed normal plane is in the parabolic line to 
approach an actual deformation. This model have shear 
transverse value and always fulfill the zero shear strain 
in the surfaces because the normal line perpendicular in 
both of surfaces where the shell's depth z = ±

h
/2. 

 
METHODOLOGY 

 

Proposed modified formulation for isotropic 

material: After considering thick shell effect, now in 
order to provide geometrically nonlinear effect in the 
case of thin shell, an addition coefficient z/h is proposed. 
A ‘tricky’ easy and simple enough nonlinear effect is 

present instead of complicated incremental algorithm 
hence numerous iterations can be avoided. Therefore 
asymptotic curve of u and v displacement field through 
thickness h straightforwardly can be found. This trick 
will be useful in the finite element formulation. 

The modified HOSDT displacement field using 
corresponding tricky nonlinear term is: 
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This simple term addition will nonlinearly increase 

accuracy without total or modified Lagrangian 
formulation or any corrotational approach and also 
eliminated such Newton-Raphson like that usualy make 
computational duration costly. 

The relationship between displacement u, v and 
corresponding term 1/h shown in Fig. 4. 

At the time as the thickness increases in the case of 
thick shells, the term would be close to zero, hence the 
shear behavior will be predominant. Conversely, as the 
thickness h decreases like in the case of thin shells, 
shear behavior will be recessive, it will create the 
geometrically nonlinear effect becomes predominant as 
expected. 

Using strain-displacement relationship in the 
elasticity continuum, strain ε and shear angle γ in xz dan 
yz plane can be found as: 
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Setting the condition of transverse shear strain γxz 

and γyz in Eq. (2) on the top and bottom surface for z = 
±h/2, as zero:  
 

( ) ( ) 0zz 2
h

xz2
h

xz =±==±= εε  

 
Hence the kinematic variable φx and φy can be stated  
as: 
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Fig. 4: Asymptotic relationship between displacement field u and v to thickness h 
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After ignore the derivation to z, both of kinematic 

variables  in  the  Eq. (3)  should  be  substituted  into 
Eq. (2) and (1), the corresponding strain component {ε} 
of HOSDT model results: 
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Using isotropic material, the stress {σ} of HOSDT 

model can be establish from the strain {ε} in Eq. (5) 

that have been substituted into stress-strain elasticity 
continuum become: 
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where,  
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At last the moment, normal and shear internal 
forces of M, N and Q HOSDT model can be written 
into: 
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The values of Nx and Ny above is the 

corresponding half of shell thickness, while the 
integration through the thickness valued as zero, 
because in the mid-plane z = 0 there is no initial mid-
plane yet, likewise Ny: 
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The shear forces of HOSDT are not zero, but on 
the contrary with previous, its maximum value occurs 
in the support region of mid-plane: 
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The strain of HOSDT model can be declared as: 
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Fig. 5: Total strain of HOSDT model 
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where, εo shows mid-plane strain at z = 0 while κ is 
mid-plane curvature 1/R such shown in Fig. 5. 

In order to ease mentioned aims, the following 
notation and symbols are introduced: 
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Implementation procedure for composite laminated 
material:  
Transversely isotropic material: Transversely isotropic 
composite material consist of one-way longitudinal 
fibers material as reinforcement that sticked together in 
a resin matrix. The direction of transversely isotropic 
composites material that called lamina shown in Fig. 6. 

The following Eq. (2-55) describe the integration 
each lamina into laminated homogenization: 
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             (10) 

 
where, the components of Nx, Ny, Nxy and Mx, My, Mxy 
and  also Qx, Qy is  the  corresponding components in 
Eq. (2-52a) dan (2-52b) for composite laminated 
material. 

Consider a composite laminated element in Fig. 7, 
where n is the number of lamina and hk is the 
corresponding lamina thickness k

th and hk-1 is the 
previous lamina thickness (k-1). 

Based on the lamina stress-strain relationship, 
hence the corresponding stress tensor of HOSDT for the 
new notation in Eq. (2-56) given as:  

 

 
 
Fig. 6: Lamina scheme (Cugnoni, 2004) 
 

 

 
Fig. 7: Laminate nomenclature used in ABD matrix (Hyer, 1998) 
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Multiplying both matrices in the right term in Eq. (9), thus stress equation can be written as: 
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Substituting Eq. (2-58) into (2-56), the components of Nx, Mx dan Qx can be described as: 
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In order to simplify matrices operations, hence Aij, Bij and Dij coefficient are introduced as primary normal and 

moment components instead of Qij integration such as usual CLT tipical coefficients as ABD matrix. While Eij, Fij, 
Hij, Vij coefficients are higher order normal, moment and shear components. Therefore, Eq. (12) becomes: 
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and etc., if they are written in the matrix form gives: 
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CONCLUSION 

 
The mathematical stress-strain relationship for composite laminated material have been and derived using 

Higher Order Lamination Theory (HOLT) adopted from HOSDT. A ‘tricky’ asymptotic nonlinear effect is present 
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instead of complicated incremental algorithm. Several 
higher order internal forces components also developed. 
Hence new procedure for stress-strain relationship of 
composite laminated structures has been proposed. 
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