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Abstract: In this study, a new technique in source separation using Two-Dimensional Nonnegative Matrix 
Factorization (NMF2D) with the Beta-divergence is proposed. The Time-Frequency (TF) profile of each source is 
modeled as two-dimensional convolution of the temporal code and the spectral basis. In addition, adaptive sparsity 
constraint was imposed to reduce the ambiguity and provide uniqueness to the solution. The proposed model used 
Beta-divergence as a cost function and updated by maximizing the joint probability of the mixing spectral basis and 
temporal codes using the multiplicative update rules. Experimental tests have been conducted in audio application to 
blindly separate the source in musical mixture. Results have shown the effectiveness of the algorithm in separating 
the audio sources from single channel mixture. 
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INTRODUCTION 
 

Nonnegative Matrix Factorization (NMF) (Lee and 
Seung, 1999) has become one of the promising and 
exciting techniques in signal processing. NMF has been 
successfully applied in various applications such as in 
automatic music transcription (FitzGerald, 2004) 
cryptography (Xie et al., 2008), pattern recognition 
(Biciu et al., 2007) and etc. One of the most useful 
property of NMF is that the nonnegative constraint by 
itself enforcing the sparse representation of the data. 
This representation makes the encoded data easy to be 
estimated because data was encoded by using only a 
few active components. In NMF, given the matrix, Y of 
a dimension of F x N with nonnegative elements, 
Nonnegative Matrix Factorization (NMF) is the 
problem of approximate the factorization: 
 

≈Y WH                                (1) 
 

where, F C×∈ℜW  and C N×∈ℜH  are a non-negative 

matrices. F represents the frequency bins while N 
represents the time slot in the TF domain. W contains 
the spectral basis vectors while H represents the 
amplitude of each basis vector at each time point. C is 
the numbers of component from data sources being 
used and it is determine such that FC+CN<<FN so that 
the data can be compressed to its integral component. 
This problem can be formulated as the minimization of 
an objective function: 
 

( ) , , ,

,

f n f c c n

f n c

D d Y W H
 

=  
 

∑ ∑Y WH

               (2) 

 
where, d is a scalar divergence. common way to 
measure how close Y and WH are to use a so-called 
Beta-divergence (Kompass, 2005; Fevotte et al., 2009), 
defined by: 
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The limiting cases β = 0, 1 and 2 correspond to the 
Itakura-Saito (IS) divergence, the Kullback-Leibler 
(KL) divergence and Least Square (LS) distance, 
respectively. Particularly it underlies the multiplicative 
Gamma observation noise, Poisson noise and Gaussian 
additive observation noise, respectively.  

The recent developed Two Dimensional NMF 
(NMF2D) model (Morup and Schmidt, 2006) extends 
the NMF model in order to provide decomposition that 
can capture the temporal dependency of the frequency 
patterns within the source efficiently. In NMF2D, the 
Time-Frequency (TF) profile of each source is modeled 
as two-dimensional convolution of the temporal code 
and the spectral basis. This significantly reduces the 
number of components per source needed in the 
decomposition. So far, for NMF2D, there is no research 
work has been done to apply the general framework of 
Beta-divergence. This study carried out to 
accommodate the Beta-divergence cost function in 
NMF2D model and investigate the effect of β in the 
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performance of the algorithm. To further improve the 
algorithm, this study proposed a sparseness constraint 
to be imposed in the cost function to reduce the 
ambiguity the ambiguity associated with the estimation 
of the spectral basis and temporal codes. 

 

METHODOLOGY 

 

Two-dimensional nonnegative matrix factorization: 

In derivation of nonnegative matrix factorization 

framework, firstly, we considered a source model of Y 

which is defined as a follows: 
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where, J is the number of sources. The matrix τ
W  

represents the thτ  slice spectral basis and H
ϕ
 represents 

the ϕ
th

 slice of temporal code for each spectral basis 

element. The vertical arrow in 
φ
τ

↓

W denotes downward 

shift operator which moves each element in the matrix 

by ϕ row down. By the same token, the horizontal 

arrow in 
τ
φ

→

H  denotes the right shift operator which 

moves each element in the matrix by τ  column to the 

right.  

The factorization for NMF2D source model in (4) 

is based on a model that represents temporal structure 

and pitch change. In audio processing, the model 

represents each instrument by a single time-frequency 

profile convolved in both time and frequency by a time-

pitch weight matrix. This model thoroughly decreases 

the number components need to model various 

instruments and efficiently solves the monaural source 

separation problem. In the following, novel algorithm 

of sparse NMF2D with Beta-divergence is proposed to 

estimate the parameter of 
j

φ
τ

↓

W
 
and 

j

τ
φ

→

H from the mixture. 

 

Proposed separation method: In this section, a new 

algorithm of two-dimensional sparse nonnegative 

matrix factorization using the sparse Beta-divergence 

NMF2D will be developed. The algorithm optimizes 

the parameters of the signal model based on the 

multiplicative update rule using gradient descent.  

Sparse representation is a representation of data 

where most coefficients are zero. It is proving to be a 

particularly interesting and powerful tool especially for 

analysis and processing of audio signals. If each signal 

to be separated has a sparse representation, then there is 

a good chance that there will be little overlap between 

the small sets of coefficients used to represent the 

different source signals. Therefore by selecting the 

coefficients used by each source signal, we can restore 

each of the original signals with most of the interference 

from the unwanted signals removed.  

Now, we incorporated the Beta-divergence as 

defined in (3) with the sparsity constrained such that it 

will minimize the cost function as follow: 
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∑H H H . This will resolve the 

ambiguity between the factors by imposing sparseness 

on H
ϕ
 and forcing the structure onto τW . 

In this study, we employed the multiplicative 

gradient descent approach which consists in updating 

each parameter by multiplying its value at the previous 

iteration by a certain coefficient. The derivatives of (5) 

corresponding to τW
 
and H

ϕ

 
are given by: 
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Thus, by applying the standard gradient descent 

approach: 
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Table 1: Algorithm of beta-divergence sparse NMF2D 

1. Initialize τW  and Hϕ with nonnegative random values 

2. Normalize ( )2
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Repeat from steps 2 to 6 until convergence 

 

where, 
Wη  and 

Hη  are positive learning rates which can 

be obtained by following (Lee and Seung, 1999), 

namely: 
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Thus, the multiplicative learning rules become: 

 

( )

( 2 )T

( 1)T

ˆ

ˆ f

βτφ τ
τ

τ

φ φ
βτφ

τ
φτ

λ

−←↓ ←

−←↓

  
     ←

  ∂
+  ∂ 

∑

∑

W Y . Y

H H .
H

W Y
H

%

%

     (10) 

 
( 2) T

( 1) T

ˆ

ˆ

β τφ φ
φ

φ

τ τ
β τφ

φ

φ

−
→↑ ↑

−
→↑

  
      ←
 
  
 

∑

∑

Y .Y H

W W .

Y H

%

             (11) 

 

For (10) and (11), A.B denotes element wise 

multiplication and 
�

�
 denotes the element wise division. 

Table 1 presents the main steps of the proposed 

algorithm for blind separation using sparse NMF2D 

with Beta-divergence. 

 

Reconstruction of the separated sources: From 

mixture Y, we seek the two estimated sources which are: 
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Then, by using binary masking technique (Wang, 2005) 

we obtained mask, Mj
 
as follows: 
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Then, the time domain estimated signal ��� is 

obtained by resynthesizing Mj
 
with the mixture Y i.e., 

( )ˆ resynthesizej j=x M .Y . Here, ‘resynthesize’ signifies 

the inverse mapping of log-frequency axis to the original 

frequency axis and then followed by inverse Short-Time 

Fourier Transform (STFT) back to the time domain.  

 

RESULTS AND DISCUSSION 

 

The proposed algorithm is tested on audio signals 

containing synthetic piano sound and trumpet sound. 

The mixture is approximately 5 sec long and sampled at 

16 kHz. In this experiment, STFT using 2048-point 

Hamming window with 50% overlap was used and this 

gives 175 frequency bins in the log-frequency 

spectrogram within the range of 50 Hz to 8 kHz with 24 

bins/octave. This corresponds to twice the resolution of 

the equal source signal scale. Figure 1 shows the 

original TF domains of the source of piano and trumpet 

as well as its mixture. For audio separation, after 

conducting the Monte-Carlo experiments over 50 

independent realizations of the mixture, the parameters 

of the convolutive factors of  τ and �
 
shifts are set to be 

τmax = 8 and ���	 = 32. This is the best attainable 

parameter setting to represent the temporal code and 

spectral basis in the factorization for most of music 

signals. To evaluate the proposed algorithm, the 

performance will be measured using the Signal-to-

Distortion Ratio (SDR), Source-to-Artifacts Ratio 

(SAR) and Source-to-Interference Ratio (SIR) which 

measures an overall sound quality of the source 

separation. The MATLAB implementation of these 

measures can be found in Fevotte et al. (2005). 

 

Beta performance analysis: Now, we investigate the 

effect of β in terms of performance of the proposed 

algorithm. Figure 2 shows the average SDR values 

obtained from various values of β using multiplicative 

update NMF2D algorithm. The value of β tested was 
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                                                          (A)                                                                            

Fig. 1: Log-frequency spectrogram of (A) trumpet, (B) piano

 

 

Fig. 2: Separation results for various values of 

divergence NMF2D 

 

varied from 0 to 2 in steps of 0.1. It ought to cover 

Square (LS) distant, the Kullback

divergence and the Itakura-Saito (IS) divergence 

NMF2D. The average separation performance was

obtained from the estimated SDR value for each source 

in a trumpet-piano mixture, thereby providing a measure 

of overall separation for each signal. From Fig. 2, as we 

increase the value of β, the performance also increase 

and it reach its peak value when β = 0.9 with average 
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                                                                                         (B)  

 

 
 

       (C) 

 

frequency spectrogram of (A) trumpet, (B) piano, (C) convolutive mixed signal 

 

Separation results for various values of β using beta-

varied from 0 to 2 in steps of 0.1. It ought to cover Least 

Kullback-Leibler (KL) 

Saito (IS) divergence of 

tion performance was 

obtained from the estimated SDR value for each source 

piano mixture, thereby providing a measure 

of overall separation for each signal. From Fig. 2, as we 

, the performance also increase 

= 0.9 with average 

SDR value of 13.5 dB is obtained for each source. A 

tail-off in performance occurs as the value of 

from 0.9 goes up to 2. From this experiment, it suggests 

that β around 0.9 is an optimal value for audio 

separation which will be used in our experiment in the 

next sub-section. 

 
Blind audio source separation results

compare the performance of audio source separation of 

proposed algorithms of Beta-divergence sparse NMF2D 

with  the  one  without  the  sparsity

β = 0.9 for both algorithm. The best value of sparsity 

parameter λ was identified as 0.5 after conducting the 

Monte-Carlo experiments over 50 independent 

realizations. L1-norm regularization is used to resolve 

the ambiguity by forcing all structure in H onto W

Figure 3 shows the separation result in log

spectrogram for both algorithms. Compared with 

original sources in Fig. 1, it is visually clear that 

separation of Beta-divergence NMF2D without the 

sparseness in Fig. 3A and B led to poor result since the 

factorization still contains the mixed signal (indicated by 

the box marked area). This is because without the

sparsity constraint, it leads to component ambiguity, i.e., 

 

dB is obtained for each source. A 

off in performance occurs as the value of β increases 

from 0.9 goes up to 2. From this experiment, it suggests 

around 0.9 is an optimal value for audio 

separation which will be used in our experiment in the 

Blind audio source separation results: Here, we 

compare the performance of audio source separation of 

divergence sparse NMF2D 

sparsity  constraint.  We set 

= 0.9 for both algorithm. The best value of sparsity 

after conducting the 

Carlo experiments over 50 independent 

norm regularization is used to resolve 

all structure in H onto W. 

Figure 3 shows the separation result in log-frequency 

algorithms. Compared with 

original sources in Fig. 1, it is visually clear that 

divergence NMF2D without the 

sparseness in Fig. 3A and B led to poor result since the 

factorization still contains the mixed signal (indicated by 

ked area). This is because without the 

sparsity constraint, it leads to component ambiguity, i.e.,  



 

 

Res. J. Appl. Sci. Eng. Technol., 7(23): 5015-5020, 2014 

 

5019 

  
 

(A)                                                                                    (B) 

 

  
 

 (C)                                                                                  (D) 

 

Fig. 3: Separated sound in log-frequency spectrogram for beta-divergence NMF2D (A)-(B) trumpet and piano sound without 

sparsity (C)-(D) trumpet and piano sound with sparsity 

 
Table 2: Separation results for NMF2D with beta-divergence 

Algorithms 

Separated trumpet 

--------------------------------------------------------------------- 

Separated piano 

-------------------------------------------------------- 

SDR SIR SAR SDR SIR SAR 

Beta-divergence NMF2D 12.7 16.2 13.2 14.2 21.2 14.7 

Sparse beta-divergence NMF2D  15.5 23.1 16.6 16.8 23.1 17.9 

 

lack of uniqueness in decomposition. In contrary, by 

employing the sparseness, it has yielded the better 

performance when the decomposition of spectral bases 

and temporal codes is performed with the sparsity 

constraint. 

From Table 2, in general both algorithms of Beta-

divergence NMF2D provide decent results with the 

performance of SDR, SIR and SAR that can be 

considered good. Over 10 dB of SDR measurement have 

been recorded for both methods. However, performance 

of Beta-divergence NMF2D with sparsity constraint is 

superior with the average SDR improvement of 2.7 dB 

per source compare with the one without imposing the 

sparseness. In percentage, this translates to an average 

improvement of 20%. From this result, it can be inferred 

that the sparsity constraint have significant effects on the 

separation performance. 

 

CONCLUSION 

 

The use of the Beta-divergence for audio source 

separation using NMF2D model has been investigated. 

The value of Beta-divergence with β = 0.5 was found to 

produce an optimal result. Furthermore, the proposed 

sparse Beta-divergence NMF2D is developed under the 

probabilistic framework which enables sparseness to be 

incorporated in the solution. This will significantly 

resolve the ambiguities problem in the factorization. We 

confirmed through an experiment that the proposed 

algorithm performs exceptionally well in  separation  of 
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an audio mixture with the high value of SDR has been 

achieved. 
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