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Abstract: In this study we extend the Hadamard’s type inequalities for convex functions defined on the minimum 
modulus of integral functions in complex field. Firstly, using the Principal of minimum modulus theorem we derive 
that m (r) is continuous and decreasing function in R+. Secondly, we introduce a function t (r) and derived that t (r) 
and lnt (r) are continuous and convex in R+. Finally we derive two inequalities analogous to well known 
Hadamard’s inequality by using elementary analysis. 
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INTRODUCTION 
 

Let f: I ⊆  R → R is a convex mapping defined on 
the interval I ∈ R. If a, b ∈ I and a<b, then the 
following double inequality: 
  

( ) ( )1
( ) ( )

2 1 2

b

a

f a f ba b
f f x dx

b

++
≤ ≤

− ∫
              (1) 

 
holds. This is called the Hermite-Hadamard inequality. 
Since its innovation in 1893, Hadamard’s inequality 
(Hadamard, 1893) has been proved to be one of the 
most practical inequalities in mathematical analysis. A 
number of papers have been written on this inequality 
as long as innovative proofs, significant extensions, 
simplification and plentiful applications (Hadamard, 
1893; Heing and Maligranda, 1991/92; Pachpatte, 2003; 
Mitrinovic, 1970; Tunc, 2012; Dragomir, 1990a, b) and 
reference cited therein. Hadamard’s inequalities deal 
with a convex function f (x) on [a, b] ∈ R is between 
the values of f at the midpoint x = (a+b)/2 and the 
average of the values of f at the endpoints a and b 
(Chen, 2012). Fractional integral inequalities have 
proved to be one of the most powerful and far-reaching 
tools for the development of many branches of pure and 
applied mathematics. In the last few decades, much 
significant development in the classical and new 
inequalities, particularly in analysis, has been 
witnessed. These inequalities have many applications in 
numerical quadrature, transform theory, probability and 
in statistical problems. The main principle of this study 
is to establish some integral inequality involving the 
modulus of complex integral functions. Mainly I 
derived two integral inequalities for two convex 

functions both of them defined on minimum modulus 
for non-zero integral function in Complex field. 
Throughout this note, we write C, R, R+ for set of 
complex numbers, set of real numbers and set of non-
negative real numbers, respectively. Beneath we 
provide some necessary definitions, lemmas and 
theorem which are closely related to our main result.  
 
Definition 1: If the derivative  f' (z) exists at all points z 
of a region ℜ , then f (z) is said to be analytic in ℜ and 
referred to as an analytic function in ℜ or a function 
analytic in ℜ . The terms regular and holomorphic are 
sometimes used as synonyms for analytic. 
 

Definition 2: If AB and BC are two rectifiable arc of 
lengths l and l', respectively, which have only the point 
B in common, the arc AC is evidently also rectifiable, 
its length being l + l'. From this it follows that a Jordan 
arc which consists of a finite number of regular arcs is 
rectifiable, its length being the sum of the lengths of the 
regular arcs forming it. Such an arc we call a contour. 
Also a closed contour means a simple closed Jordan 
curve which consists of a finite number of regular arcs. 
Obviously a closed contour is rectifiable. 
 
Definition 3: The maximum and minimum modulus of 
an integral function usually denoted by M (r) and m (r) 
respectively and defined by: 
 

( ) max ( )
z D

M r f z
∈

=
 
and ( ) min ( )

z D
m r f z

∈
=  

 
where, D is a region bounded by a closed contour C. 
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Definition 4: An integral function is a function which 
is analytic for all finite values of z. For example ez, cos 
z, sin z and all polynomials are integral functions. 
 
Definition 5: A function f (x) is said to be convex on 
the closed interval I ⊂ R if and only if f (λx+ (1-λ) y) 
≤λ f (x) + (1-λ) f (y), for all x, y ∈ I and 0≤λ≤1 (Copson, 
1935). 
 
Lemma 1: If f and g are convex functions and g is non-
decreasing then h (x) = g (f (x)) is convex. As an 
example, if f (x) is convex, then so is ef (x) because ex

 is 
convex and monotonically increasing (Copson, 1935; 
Titchmarsh, 1939). 
 
Theorem 1: (The Principal of Maximum Modulus 
Theorem) Let f (z) is analytic function, regular in a 
region D  and on its boundary C, where C is a simple 
closed contour. Then |f (z)| is continuous in D, since: 
 

( ) ( ) ( ) ( )f z h f z f z h f z+ − ≤ + −
 

 
and |f (z+h) - f (z)|→0 as h→0. Hence |f (z)| has a 
maximum value, which is obtained at one or more 
points. In fact |f (z)| reaches its maximum on the 
boundary C and not at any interior point of D. We may 
claim that if |f (z)| ≤M on C, then the same inequality 
holds at all points of D. 
A more precise form of the theorem is as follows.  

“If |f (z)| be an analytic function, regular within and 
on the closed contour C. Let M be the upper bound of |f 
(z)| on C. Then the inequality |f (z)| ≤M holds 
everywhere within C. Moreover, |f (z)| = M at a point 
within C if and only if |f (z)|

 
is constant”. 

 
Lemma 2: If f (z) is an integral function and M (r) 
denotes the maximum value of |f (z)|, on the region D: 
|z| ≤R, then M (r) is a steadily increasing continuous 
function of r (Islam and Rezaul, 2013). 
 

Lemma 3: If f (z) is an integral function and M (r) 
denotes the maximum modulus of |f (z)|, on the region 
D: |z| ≤r, then M (r) is a convex function for any non-
negative real values of r (Islam and Rezaul, 2013). 
 

Lemma 4: If f (z) is a non-constant integral function, |f 
(0)| ≠ 0, defined on any finite region of the z-plane  and 
M (r) denotes the maximum modulus of |f (z)| on the 
region D: |z| ≤r. Then lnM (r) is a convex function of 
ln r for any positive real values of r (Islam and Rezaul, 
2013). 
 
Theorem 2: If f (z) and g (z) are continuous at z = z0, so 
also are the functions f (z) + g (z), f (z) -g (z), f (z) g (z) 
and f (z) /g (z),  the last only if g (z0) ≠ 0. Similar results 
hold for continuity in a region (Copson, 1935; 
Titchmarsh, 1939). 

MATERIALS AND METHODS 
 
Theorem 3: The most general integral function with no 
zero is of the form e

g (z), where g (z) is an integral 
function. 
 
Proof: First we assume that f (z) is an integral function 
and for any values of z, f (z) ≠ 0. Suppose that F (z) is 
an integral function and defined by: 
 

' ( )
( )

( )

f z
F z

f z
=                                                          (2) 

 
We may choose z0 (≠ 0) and suppose that α = arg {f 
(z0)}, µ = ln|f (z0)|+iα. 
Therefore: 
 

0 0ln ( ) arg{f(z )}
0 0( ) ( )f z i i

e e f z e f z
αµ += = =

 
 
Now we consider the integral g (z) and defined by: 
 

0

' ( )
( )

( )

z

z

f w
g z dw

f w
µ= + ∫                                      (3) 

 
Then g (z) is analytic and we obtain that g' (z) = f' 

(z) / f (z) and g (z0) = µ. 
Let us consider: 
 

( )

( )
( )

g ze
h z

f z
=                                                             (4) 

 
The function is h (z) is analytic because f (z), g (z) 

are analytic. 
We obtain: 
 

' ( ) ' ( )
'

2

( ) ( )
( )

( ) { ( )}

g z g zg z e f z e
h z

f z f z
= −  

' ( ) ' ( )

2 2

( ) ( )
0

{ ( )} { ( )}

g z g zf z e f z e

f z f z
= − =

 
 
Therefore we state that h (z) is a constant function.

 Let us consider: 
 

( )h z M=  
( )

( )

g ze
M

f z
⇒ =

                                                       
(5) 

 
In (5) we may substitute a particular value for z, 

say z = z0. We obtain: 
 

0( )

0

1
( )

g z
e e

M
f z e

µ

µ= = =  

 
From (5), we get: 
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( )( ) g zf z e=  

 
This completes the proof. 
 
Theorem 4: (The Principal of Minimum Modulus 
Theorem) If f (z) is a non-constant integral function 
without zeros within the region bounded by a closed 
contour C, then |f (z)|

 
obtained its minimum value at a 

point on the boundary of C, i.e., if m is the minimum 
value of |f (z)|

 
on C, then the inequality |f (z)|

 
≥m

 
holds 

for any z lies inside C. 
 
Proof: First we assume that f (z) is a non-constant 
integral function without zeros within the region 
bounded by a closed contour C, i.e., f (z) ≠ 0. 
Consequently we show that 1/f (z) represent a non-
constant analytic function within the region bounded by 
a closed contour C. By the principal of maximum 
modulus theorem we say that the maximum value of 1/ 
|f (z)| must attain on the boundary of C. Hence the 
minimum value of |f (z)|

 
also attain on the boundary of 

C. Otherwise which contradict the principal of 
maximum modulus theorem, since 1/f (z) is a non-
constant analytic function. So we can say that, if m 
refer the minimum value of |f (z)|, the inequality holds |f 
(z)|

 
≥m, for any z lies inside C. 

This completes the proof. 
 

Lemma 5: If f (z) is a non-constant integral function, 
without zeros, defined on any finite region of the z-
plane and m (r) denotes the minimum value of |f (z)|, on 
the region D: |z| ≤r, then m (r) is decreasing and 
continuous function in R+. 
 
Proof: First we choose r1 and r2 such that 0≤r1<r2≤R. 
Let m (r1) and m (r2) denote the minimum modulus of |f 
(z)|

 
on the regions D: |z|≤r1 

and D: |z| ≤r2 
respectively. 

It is clear that D1 ⊂ D2. By the principal of minimum 
modulus theorem we say that m (r1) and m (r2) obtained 
on the boundary of D1 and D2. Suppose that m (r1) 
attained at z1 and m (r2) attained at z2. Now z1 lies on 
the boundary of D1, hence it is an interior point of 
region D2. Using the principal of minimum modulus 
theorem, we get: 
 

1 1 2( ) ( ) ( )m r f z m r= >
                                          

(6) 

 
Therefore, m (r) is a decreasing function of r, since 

r1 and r2 are arbitrary. 
To complete the proof we need to show that m (r) 

is a continuous function of r, i.e., we need show that for 
any δ (>0) there exits ∈>0 such that |m (r1) – m (r2)| <∈, 
whenever |r1 - r2| <δ. Given that f (z) is analytic hence 
for any z, satisfying the inequality |z - z0| <δ, we get: 
 

0 0( ) ( ) ( ) ( )f z f z f z f z− ≤ − <∈
                  

(7)  

This implies f (z) is continuous in R+. Hence the 
modulus of integral functions always continuous in R+. 

Let us consider m (r1) and m (r1) attained at z1 and 
z2 respectively, then we get |z1| = r1 

and |z2| = r2. By (7), 
for |r1 - r2| = ||z1|-|z2|| ≤ |z1-z2| <δ, we obtain: 

 

( ) ( )1 2 1 2( ) ( )m r m r f z f z− = −  

1 2( ) ( )f z f z≤ − <∈  

 
Hence m (r) is continuous function.  

Therefore m (r) is decreasing and continuous 
function of r, r ∈ R+. 
This completes the proof. 
 
Lemma 6: Let f (z) is a non-constant integral function, 
without zeros, defined on any finite region of the z-
plane and m (r) denotes the minimum value of |f (z)|, on 
the region D: |z| ≤r. Let t: R+ → R  and  defined  by  t 
(r) = 1/m (r), then t (r) is increasing and continuous 
function in R+. 
 
Proof: First we choose r1 and r2 such that 0≤r1<r2≤R. 
Let m (r1) and m (r1) denote the minimum modulus of |f 
(z)|

 
on the regions D: |z| ≤r1 and D: |z| ≤r2, 

respectively. 
By (6), we get: 
 

m (r1) >m (r2)  
i.e., 1 21 ( ) 1 ( )m r m r<  

Therefore 1 2( ) ( )t r t r<  
 
Hence t (r) is increasing function. Also we state 

that t (r) is continuous function of r. Therefore t (r) is 
increasing and continuous function in R+. 
This completes the proof. 
 
Theorem 5: Let f (z) is a non-constant integral 
function, without zeros, defined on any finite region of 
the z-plane and m (r) denotes the minimum value of |f 
(z)|

 
on the region D: |z| ≤r. If r1<r2<r3, then we show 

that ti = t (ri) = 1/m (ri), for i = 1, 2, 3, satisfy the 
inequality: 
 

3 3 2

1 2 1

ln ln ln

2 1 3

r r r

r r r
t t t

     
          
     ≤  

 
Proof: First we assume that F (z) = zα f (z) and α is a 
real constant to be fixed later. The function F (z) is not, 
in general, single-valued. Then F (z) is regular in the 
ring-shaped region between |z| = r1 and |z| = r3 and |F 
(z)|

 
is single-valued. 
Consider the region G: r1≤ |z| ≤r3. Now we can 

reduce the doubly connected region in a simple 
connected region by introducing a cut AB along the 
negative part of the real axis. In the simply connected 
region G bounded by the curve AGFBCDBA, F (z) is 
regular. Hence by the principal of minimum modulus 
theorem we state that t (r) attain on the boundary of G, 
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because the minimum value of |F (z)| never attain at any 
point on the cut AB excepting A and B, Otherwise, if we 
change the cut then the minimum value of |F (z)| attain 
at an interior point, which contradict the principal 
minimum modulus theorem. Thus we conclude that the 
minimum value of  |F (z)| attain at one or more points 
on |z| = r1 or |z| = r3. 

Therefore t (r) attain on the boundary of G and it is 
equal to { }1 1 3 3max ,r t r tα α . So for any z = re

iθ ∈ G, we get: 

 

{ }1 1 3 3t(r) max ,r t r tα α≤                                            (8) 

 
Let r1<r2<r3. Then the value of t (r2) on the circle 

|z| = r2  is 2 2r tα . Hence by (8), we get: 

 

{ }2 2 2 1 1 3 3t(r ) max ,r t r t r tα α α= ≤                                 (9) 

 
We fixed the value of α such that: 
 

1 1 3 3r t r tα α=  

 
Implies:  
 

3

1

1

3

ln

ln

t

t

t

t

α

 
 
 = −
 
 
 

 

 
Therefore, we can write: 
  

2 2 1 1r t r tα α≤  

3
3 3

1
1 1

ln
ln ln

2
2 1

1

t
r r

t
r r r

t t
r

 
              
   

 
⇒ ≤  

 
, 

2
3 3

1
1 1

ln
ln ln

3
2 1

1

r
r r

r
r r t

t t
t

 
              
   

 
⇒ ≤  

 
 

3 3 2

1 2 1

ln ln ln

2 1 3

r r r

r r r
t t t

     
          
     ⇒ ≤                                     (10) 

 
This completes the proof. 
 
Lemma 7: If f (z) is a non-constant integral function, 
without zeros, defined on any finite region of the z-
plane and m (r) denotes the minimum value of |f (z)|, on 
the region G: |z| ≤r, then t (r) = 1/m (r) and lnt (r) are 
convex functions of r and lnr respectably. 
 
Proof: Let r1<r2, r3≤R and m (ri) be the minimum 
modulus of |f (z)|

 
on the region bounded by the circles 

|z| = r, for i = 1, 2, 3. Let ti = t (ri) = 1/m (ri), by (10) we 
get: 

 

3 3 2

1 2 1

ln ln ln

2 1 3

r r r

r r r
t t t

     
          
     ≤

 

The sign of equality will occur only if the function 
f (z)  is constant multiple of a power of �. Excluding 
this case, we get: 

 
3 3 2

1 2 1

ln ln ln

2 1 3

r r r

r r r
t t t

     
          
     <  

 
Taking logarithm on both sides, we obtain: 
 

3 3 2
2 1 3

1 2 1

ln ln ln ln ln ln
r r r

t t t
r r r

     
< +     

     

3 2 2 1
2 1 3

3 1 3 1

ln ln ln ln
ln ln ln

ln ln ln ln

r r r r
t t t

r r r r

− −
⇒ < +

− −              
(11) 

 
Since lnt (r) is a continuous function of lnr and so 

if we put x = lnr, then we get lnt (r) = φ (lnr) = φ (x). 
Also consider xi = lnri, for i = 1, 2, 3, then: 
 

ln ln ( ) (ln ) ( )
i i i i i

t t r r xϕ ϕ= = =  
 

So we obtain the following inequality from (11): 
 

3 2 2 1
2 1 3

3 1 3 1

( ) ( ) ( )
x x x x

x x x
x x x x

ϕ ϕ ϕ
− −

< +
− −

 

1 3(x ) (1 ) ( ).xλϕ λ ϕ= + −
 

 
where λ = (x3 - x2) / (x3 - x1) <1, since x3<x2<x1. 

Hence φ (x) is a convex function of x  i.e., lnt (r) is 
a convex function of lnr. 

To complete the proof need to show that t (r) is a 
convex function of r. By lemma 1 we can say t (r) is 
convex, since lnt (r) is increasing and convex function 
and elnt(r) = t (r). This completes the proof. 
 

RESULTS AND DISCUSSION 
 
Theorem 6: If f (z) is a non-constant integral function, 
without zeros, defined on any finite region of the z-
plane and m (r) denotes the minimum value of |f (z)|,

 
on 

the region D: |z| ≤r. Then for a, b ∈ I ⊂ [0, ∞), with 
a<b, we derive the following inequality: 
 

( ) ( )1
( ) ( )

2 1 2

b

a

t a t ba b
t t x dx

b

++
≤ ≤

− ∫  

 
where t (r) = 1/m (r). 
 

Proof: Let T: I ⊂ [0, ∞) → R is a mapping on the 
interval I of real numbers, defined by t (r) = 1/m (r). In 
lemma 7 we proved that t (r) is a convex function in R+. 
Now for any a, b ∈ I ⊂ [0, ∞), with a<b, we get t (r) is 
a convex function on the interval I. Hence by the 
Hermite-Hadamard inequality on convex function, we 
derive the following double inequality: 
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( ) ( )1
( ) ( )

2 1 2

b

a

t a t ba b
t t x dx

b

++
≤ ≤

− ∫
            (12) 

 
The proof of this theorem is completed. 
Theorem 7: If f (z) is a non-constant integral function, 
without zeros, defined on any finite region of the z-
plane and m (r)

 
denotes the minimum value of |f (z)|,

 
on 

the region D: |z| ≤r, then for a, b ∈ I ⊂ [0, ∞), with a<b, 
we derive the following inequality: 
 

( ) ( )ln ln1
ln ( ) ln ( )

2 1 2

b

a

t a t ba b
t t x dx

b

++
≤ ≤

− ∫
 

 
where t (r) = 1/m (r).  
 
Proof: Let T: I ⊂ [0, ∞) → R is a mapping on the 
interval  I  of  real  numbers,  defined  by  T (r)  =  lnt 

(r) = 1/lnm (r). In lemma 7 we proved that lnt (r) is a 
convex function in R+. Now for any a, b ∈ I ⊂ [0, ∞) 
with a<b, we get lnt (r) is a convex function on the 
interval I. Hence by the Hermite-Hadamard inequality 
on convex function, we derive the following double 
inequality: 
 

1
ln ( ) ln ( )

2 1

b

a

a b
t t x dx

b

+
≤

− ∫
( ) ( )ln ln

2

t a t b+
≤    (13)  

  
The proof of this theorem is completed. 
 

CONCLUSION 

 

Inequalities (12) and (13) indicated our final 
results. These are the extension of the Hadamard’s type 
inequalities (1) for the function t (r) and lnt (r). In the 
next study we will give the applications on these results 

by obtaining some Hadamard’s-type inequality for 
Meromorphic functions in complex field. 
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