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Abstract: In a recent study, Chiu et al. (2014) employed a mathematical modeling and conventional optimization 
technique to determine the optimal production-shipment policy for a single-producer multi-retailer integrated 
inventory system with scrap and an improved product distribution policy. This study replaces their optimization 
process of using differential calculus with an algebraic derivation. Such a simplified approach enables practitioners, 
who may have insufficient knowledge of calculus, to manage with ease the real world supply-chain systems. 
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INTRODUCTION 

 
The most common method for solving the optimal 

replenishment lot-size problem is the mathematical 
modeling approach along with differential calculus as 
an optimization procedure (Tersine, 1994; Hillier and 
Lieberman, 2001; Nahmias, 2009). Recently, 
Grubbström and Erdem (1999) introduced an algebraic 
derivation rather than calculus to determine the 
Economic Order Quantity (EOQ) model with 
backlogging over a decade ago. Their algebraic 
approach successfully found the optimal order quantity 
for the EOQ model without reference to the first-or 
second-order derivatives. 

Similar methodologies have since been adopted to 
resolve different aspects of Economic Production 
Quantity (EPQ) models and various kinds of supply 
chain systems (Wu and Ouyang, 2003; Wee and Chung, 
2006;  Francis  Leung,  2008;  Lin  et  al., 2008; Chen 
et al., 2012). This study extends such an algebraic 
approach to a specific intra-supply chain system studied 
by Chiu et al. (2014) and demonstrates that the optimal 
replenishment lot-size and shipment policy along with a 
simplified formula for the total system cost can be 
derived without derivatives. 
 
Problem description and formulation: Reconsider the 
production-shipment problem for a single-producer 
multi-retailer integrated inventory system with scrap 
and an improved product distribution policy as studied 
by Chiu et al. (2014). In their production-shipment 
model, annual production rate for a product 
manufactured by a single production unit is P and 
manufacturing cost is C per item. An x portion of scrap 

items may be randomly produced at a rate d during the 
production process through a 100% quality screening. 
By not allowing shortages, it is assumed (P - d - λ) >0, 
where λ is the sum of the demands of all m retailers 
(i.e., the sum of λi where i = 1, 2, …, m) and d can be 
expressed as d = Px. Cost related parameters used in the 
cost analysis include the following: unit disposal cost 
CS; set-up cost per production cycle K; fixed delivery 
cost K1i per shipment delivered to retailer location i; 
unit holding cost h for item retained by the production 
unit; unit holding cost h2i for items retained by retailer 
i; and unit shipping cost CTi for items shipped to retailer 
location i. To ease the readability, the following same 
notations are also adopted: 
 
Q = Production lot size per cycle-decision variable 
n  = Number of fixed quantity installments of the 

remaining lot to be delivered to retailers-the other 
decision variable 

H1 = Level of on-hand inventory in units for satisfying 
product demands during production unit’s 
production uptime t1 

H = Maximum level of on-hand inventory in units 
when regular production process ends 

t1 = The production uptime 
t2 = Time required for delivering all remaining 

finished items in a lot to retailers 

Di = Number of fixed quantity finished items 

distributed to retailer i per delivery 
Ii = Number of left over items per delivery after the 

depletion during tni for retailer i 

T = Production cycle length  

tn = A fixed interval of time between each installment 
of finished products delivered during t2 



 

 

Res. J. Appl. Sci. Eng. Technol., 8(6): 767-771, 2014 

 

768 

 
 
Fig. 1: Expected reduction in the production unit’s holding costs (in green shaded area) of the proposed model (in blue) in 

comparison with that of Chiu et al. (2013) model (in black) (Chiu et al., 2014) 
 

 
 

Fig. 2: Expected reduction in retailers’ inventory holding costs (in green shaded area) of the proposed model (in blue) in 

comparison with that of Chiu et al. (2013) model (in black) (Chiu et al., 2014) 
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m  = Number of retailers 

I (t) = The level of on-hand inventory of 
perfect quality items at time t 

Ic (t) = The level of retailers’ on-hand 
inventory at time t 

TC (Q, n+1)  = Total production-inventory-delivery 
costs per cycle for the proposed n+1 
delivery model 

E [TCU (Q, n+1)] = The expected total production-
inventory-delivery costs per unit 
time for the proposed n+1 delivery 
model 

 
Under an improved n+1 product distribution 

policy, one initial delivery of finished products is 
distributed multiple retailers to meet demand during the 
production unit’s uptime (Fig. 1). Upon the remaining 
production lot is produced and screened, n fixed 
quantity installments of the finished products are 
distributed retailers, at a fixed time interval. Figure 1 
illustrates the expected reduction in the production 
unit’s holding costs (in green shaded area) of the 
proposed model (in blue) in comparison with that of 
Chiu et al. (2013) model (in black). 

Figure 2 depicts the expected reduction in retailers’ 
inventory holding costs (in green shaded area) of the 
proposed model (in blue) in comparison with that of 
Chiu et al. (2013) model (in black). 

Total production-inventory-delivery costs per 

replenishment cycle for the proposed model, TC (Q, 

n+1) consists of the setup cost, variable manufacturing 

cost, disposal cost, the fixed and variable shipping 

costs, inventory holding cost incurred in the production 

unit and stock holding cost incurred in the retailers’ 

locations as follows (Chiu et al., 2014): 
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Taking randomness of scrap rate into account by 
applying the expected values of x and with further 
derivations, E [TCU (Q, n+1)] becomes (Chiu et al., 
2014): 
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where Ei denotes the following: 
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Unlike conventional solution procedure which uses 
the differential calculus on the cost function E [TCU 

(Q, n+1)] to derive the optimal production-shipment 
operating policy (Chiu et al., 2014), this study proposes 
an alternative two-phase algebraic approach as follows. 
 

METHODOLOGY 

 
Two-phase algebraic approach: In the phase 1, we 
first derive the optimal number of distribution. It can be 
seen that Eq. (2) has two decision variables, namely Q 
and n. In Eq. (2) there are different forms of decision 
variables in its Right-Hand Side (RHS), namely Q, Q-1, 
Qn

-1 and nQ
-1. We first let ν0, ν1, ν2, ν3 and ν4 denote the 

following: 
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Then, Eq. (2) can be rearranged as: 
 

( ) ( ) ( )1 1 1
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Further rearrange Eq. (9) as: 
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or, 
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One notes that if the second and fourth terms in 

RHS of Eq. (11) equal zero, then E [TCU (Q, n+1)] can 
be minimized. That is: 
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or, 
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By substituting Eq. (5) to (8) in Eq. (13), one has 

the optimal number of distribution as: 
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It is noted that Eq. (14) is identical to that obtained 

in Chiu et al. (2014). 

In real-life production-shipment applications, the 

number of deliveries n can only be an integer. Let n+ 

represent the smallest integer greater than or equal to n 

(i.e., the computational result of Eq. (15)) and n- be the 

largest integer less than or equal to n. Then, it is 

obviously that the optimal n* is either n+ or n-. 

In the phase 2, we then derive the optimal 
replenishment lot-size Q*. By rearranging Eq. (2) as a 
single variable Q cost function as follows: 
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Equation (16) can be rearranged as: 
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It can be seen that if the second term in RHS of  
Eq. (18) equals zero, then E [TCU (Q, n+1)] can be 
minimized. That is: 
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Substituting Eq. (5) to (8) in Eq. (15) and then in 

Eq. (17), one obtains optimal replenishment lot-size Q* 
as: 
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It is noted that both Eq. (14) and (20) are identical 
to that obtained in Chiu et al. (2014) where the 
conventional differential calculus was used. Moreover, 
from Eq. (18) one obtains a simplified form for the 
optimal long-run average cost function E [TCU (Q*, 
n*+1)] as: 

 

( ) 0 1 2,  1 2E TCU Q n ν ω ω+ = +                (21) 

 

NUMERICAL EXAMPLE 

 
To demonstrate applicability of our research results 

and to ease readers’ comparison efforts, we adopt the 
same numerical example as in Chiu et al. (2014). The 
variables are given as follows:  
 

P = 60,000 units per year 

λi = 400, 500, 600, 700 and 800 units, respectively 

(i.e., total λ = 3000 units per year) 

x = Random defective rate that follows a uniform 

distribution over the interval (0, 0.3) 

C = $100 per item 
CS = $20, disposal cost per scrap item 

K = $35,000 per production run 

h = $25 per item per year at the producer side 

K1i = $100, $200, $300, $400 and $500 per shipment 

for retailer i, respectively 

h2i = $75, $70, $65, $60 and $55, per item retained by 

retailer i, respectively 

CTi = $0.5, $0.4, $0.3, $0.2 and $0.1 per unit shipped 

to retailer i, respectively 

 

Applying Eq. (14), we have n = 5.83. Because n can 
only be an integer, by examining two adjacent integers 
to n and plugging them in Eq. (20), respectively, we 
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have (Q, n- + 1) = (3426, 6) and (Q, n+ + 1) = (3548, 7). 
Applying these policies in Eq. (2), respectively and 
select the one that gives minimum system cost, we 
derive the optimal production-shipment policy as (Q*, 
n* + 1) = (3548, 7).  

Finally, applying Eq. (21) the long-run average cost 

for the system is obtained as $454,840. These results are 

identical to that obtained in Chiu et al. (2014). 

 

CONCLUSION 

 

This study presents an algebraic derivation to 

replace (Chiu et al., 2014) differential calculus method 

in their optimization procedure for solving a 

production-shipment problem for a single-producer 

multi-retailer integrated system with scrap and an 

improved product distribution policy. Such a 

straightforward simplified algebraic approach can help 

practitioners, who may have insufficient knowledge of 

calculus, to manage with ease the real world supply-

chain systems. 
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