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Abstract: Reduction of hydrocarbon reserves and optimum production is one of major concerns about future of 
petroleum industry. In the recent years, several enhanced oil recovery methods have been introduced, tested and 
modified. With increasing methods of improving oil recovery and production techniques, it will be necessary to 
perform further studies and research to check their feasibility and displacement efficiency. The aim of this research 
is to study the effect of slug size variation of injection on the displacement efficiency in different scenarios of water 
alternating CO2 injection method in a hypothetical reservoir by performing numerical simulations. The results 
indicate that varying slug size method can yield better performance than fixed water alternating gas ratio, both in 
terms of recovery factor as well as CO2 storage. This can open a new look for calculating optimum water alternating 
gas ratios. 
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INTRODUCTION 

 
By increasing oil consumption and depletion of 

conventional oil reservoirs around the world Enhanced 
Oil Recovery (EOR) techniques have been developed 
vastly. The major EOR techniques are thermal flooding, 
chemical flooding and gas flooding. Thermal flooding, 
such as steam flooding and cyclic steam stimulation are 
effective for heavy oil displacement since viscosity of 
the oil is sensitive to the temperature. Chemical 
techniques on the other hand, are considered one of the 
most  effective  flooding   technique   in  EOR (Thomas 
et al., 2001). But due to their high consumption of 
chemical reactants and also safe transportation to the 
injection well, their usage will be limited (Flaaten et al., 
2009; Stoll et al., 2010). Among gas flooding 
techniques, the most general gas flooding technique is 
CO2 flooding. Comparing with air and natural gas, CO2 
has higher solubility in various crudes that makes it 
more favorable technique. Different mechanisms are 
associated in CO2 flooding including viscosity 
reduction, oil swelling, extraction, gas solution drive 
and interfacial tension reduction (Beecher and 
Parkhurst,  1926;  Holm  and  Josendal,  1974;  Simon 
et al., 1978; Miller and Jones, 1981; Mungan, 1981; 
Klins, 1984; Jha, 1986; Rojas and Farouq Ali, 1988). 

The Water Alternating Gas (WAG) process is 
consisting of injection of gas and water slugs in cyclic 
form. The main aim of WAG is to improve sweeping 
efficiency in water flooding as well as gas flooding 

while decreasing gas overriding and viscous fingering. 
Recent studies have shown that WAG technique can be 
used in secondary and tertiary flooding of reservoirs. 
Recently, WAG is found to be more effective than gas 
flooding or water flooding alone. The WAG process 
increases microscopic displacement by gas flooding and 
macroscopic sweeping efficiency by water flooding 
(Christensen et al., 2001). 

Factors controlling the efficiency of WAG project 

include reservoir rock properties, their wettability and 

heterogeneity. Also, fluids inside the reservoir and 

injection fluids have great impact on displacement 

efficiency of the project. The WAG ratio, slug size and 

injection techniques have to be considered too 

(Sanchez, 1999). 

There are numerous miscible and immiscible WAG 

processes have been described in different reservoirs 

(Asghari  et  al.,  2007;  Righi  and  Pascual, 2007; Shi 

et al., 2008; Chen et al., 2010), yet few attempts have 

been made to study WAG process under varying slug 

size condition i.e., different injection duration of CO2 

and water during a project. 

In this study we attempt to run high recovery 

oriented WAG simulations using CO2 as the gas and 

see the effect of injection duration on displacement 

efficiency, leading to prove that the best recovery factor 

can be made when duration of fluid injection is 

dependent on real-time CO2 and water production rates 

as well as minimum amount of oil production. 
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Fig. 1: Reservoir shape and position of the Injection (IN) and Production (P) wells 

 
Table 1: Reservoir data by layers 

Layer 

Horizontal 
permeability 
(mD) 

Vertical 
permeability 
(mD) 

Porosity 
(%) 

Thickness 
(ft) 

1 500 50 30 20 
2 50 50 30 30 
3 200 25 30 50 

 
Table 2: Reservoir well properties 

Name of the well 
IN 
(injection) 

P 
(production)

Location (x, y, z) 25, 1, 1 25, 50, 1 
Reference depth (ft) 8400 8400 
Wellbore diameter (ft) 0.5 0.5 
Minimum bottomhole pressure (psi) - 1000 
Maximum oil/water rate (bbl/d) 12000 12000 
Maximum gas rate (MMSCF) 12000 12000 

 
Table 3: Oil sample properties 

 
Component 
name 

Mole  
fraction (%) 

1 C1 36.47 
2 C2 9.67 
3 C3 6.95 
4 iC4 1.44 
5 nC4 3.93 
6 iC5 1.44 
7 nC5 1.41 
8 C6 4.33 
9 C7+ 34.36 
C7+ molecular weight: 218   

 
RESERVOIR SIMULATION MODEL 

 

The reservoir model used in this study is a in a form of 

a box, which has heterogeneous geology and the crude 

oil lies at the depth of 8325 ft. It contains non-uniform 

geological characteristics (different permeabilities) in 

form of 3 layers with different permeabilities in x, y 

and z axis as shown in Table 1. 
Reservoir dimensions are 3500×3500×100 ft. The 

vertical wells drilled in this model are one injection 
well and one production well, each located on one end 
of the x axis and middle of y axis of the model as 
shown in Fig. 1. The perforations are similar since we 
don’t want to allow for gravity effect from injection of 
CO2 (in that case production well would be shallower). 
The properties of the wells are shown in Table 2.  

 
 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Relative permeability curves of water and gas based 

on their saturation 

 
The Gas/Oil Contact (GOC) and Water/Oil Contact 

(WOC) are situated at depth of 4000 and 9000 ft, 
respectively. The wells are completed between GOC 
and WOC. 

The initial pressure of the reservoir is 5900 psia 

and temperature of 160°F. Since it is an isothermal 

simulation, so CO2 is above supercritical condition. 

Also it is assumed that based on the initial data, the 

flooding is in miscible condition. A live oil sample is 

generated by PVTi and its mole fraction and component 

properties are shown in Table 3. PVTi generates all 

needed PVT data for this simulation. Also, the 

permeability curves of water and gas are considered as 

Fig. 2. Figure 3 shows the corresponding oil relative 

permeability for two regions. First is where only oil and 

water are present (Krow) and second is where only oil, 

gas and connate water are present (Krog). 
To determine the optimum number of grids used in 

this study, a base case is considered. The grids are taken 
in form of 7×7×3 and a parameter such as recovery is 
calculated. Then by increasing the number of grids 
(while decreasing each grid size) the before mentioned 
parameter is calculated until after a specific grid set, no 
major change is detected. In this case of study, the 
optimum value of the grids is obtained as 50×50×3. The 
size of each grid is 70 ft in length, 70 ft in width and for  
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Table 4: Varying slug size scenario 

Step No. Injection status 

Duration with significant 

production (days from start) 

Recovery of the 

injection section 

Total recovery on 

stoppage point 

Total recovery 

after 15000 days 

1 Natural depletion 2410 23.72 23.72 26.30 

2 Water#0 (secondary) 5760 35.75 59.47 59.95 

3 CO2 #1 8545 5.77 65.24 70.22 

4 Water #1 10190 6.54 71.78 72.61 

5 CO2 #2 10890 0.52 72.30 74.02 

6 Water #2 11640 1.55 73.85 74.73 

7 CO2/water 100/100 from 11640 until the end   77.60 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Oil relative permeability curves versus oil saturation 

 
depth is 20, 30 and 50 ft, respectively from top to 
bottom. 

Different scenarios have been put into 

consideration for this study subject that as shown in 

Table 4 and 5. The maximum duration of production is 

15000 days. The first scenario is a natural depletion of 

the reservoir until no significant oil production is 

detected. Then several scenarios of water injection are 

considered as secondary recovery, each one with a 

specific duration of injection. 

 

SIMULATION RESULTS AND DISCUSSION 

 

The main goal of this simulation is to study the 

effect of slug size of injection on the displacement 

efficiency in different scenarios. 

In WAG scenarios, it is common that they take a 

constant ratio of water/gas injection. But in this study, 

we also check every slug size based of recovery of each 

step. 

The first step is to run the simulator for obtaining 

primary recovery. After the recovery is almost stopped, 

then the secondary recovery is simulated using water. 

After reaching a point where no major production is 

detected, the tertiary recovery begins with the other 

phase that is CO2. 
Different scenarios are used either fixed or varying 

duration of water and CO2 injection. In varying slug 
injection, we use next phase injections start point as the 
points where recovery by previous phase is not 
economical. These stoppage points happen when oil 
production falls below 500 bbl/day or production 
exceeds 11000 bbl/day or mole percentage of CO2 in 
production well  exceeds  90%.   Then   the   results  are  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Recovery factor during variable slug size injection 

 

determined based on duration and amount of injection 

and different scenarios are compared. 

 

Results and discussion: The simulation is started with 

primary recovery. For this matter we leave the injection 

well in shut mode in order to let the pressure of 

reservoir be the only agent forcing the crudes to be 

produced. After 2410 days of production the recovery 

factor is almost became steady on 23.72%. 

Then, simulation continues for secondary recovery. 

Water injection is used as secondary recovery agent 

worldwide. In this scenario we start by water flooding 

after primary recovery of 2410 days. After 5760 days 

since the start of production, the production rate 

dropped rapidly and the water cut increased 

exponentially. In this point the recovery is recorded 

59.47%. 

In this step, varying scenario is examined. The CO2 

injection and water injection are performed using 

before mentioned stoppage conditions. The simulation 

results are summarized in Table 4. 

As shown, after 6 steps, no major recovery is 

detected and since the stoppage points are determined 

manually, it is better to switch to a fixed slug size. 

Therefore, a 7
th
 step is considered that is a fixed 

duration injection of 100 days in each phase after 11640 

days from start. An overall recovery trend can be 

observed as Fig. 4. 

Then the results have to be compared with fixed 

slug size injection. Different injection ratio of 50/100, 

100/100, 150/100, 200/100, 100/50 and 100/150 for 

CO2/water    injection    days    are    examined  after the 
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Table 5: Fixed slug size scenarios 

Scenario No. 

Slug size ratios   

(CO2/water injection days) 

Total 

recovery (%) 

1 50/100 74.12 

2 100/100 77.17 

3 150/100 77.38 

4 200/100 76.35 

5 100/50 76.54 

6 100/150 75.10 

 
Table 6: Comparing different factors between varying method and 

fixed method 

Parameter 

Varying 

method Fixed method 

Total water injection (STB) 88,900,000 95,400,000 

Total water production (STB) 55,600,000 61,700,000 

Total water in place (STB) 46,500,000 47,000,000 

Total CO2 injection (MSCF) 62,200,000 55,700,000 

Total CO2 production (LB-M) 103,000,000 99,200,000 

Total CO2 stored (LB-M) 60,600,000 47,500,000 

 

secondary recovery at 5760 days, respectively. The 

recovery factors are recorded as Table 5. 

Comparing the results from different scenarios 

show that varying slug size injection based on 

economic factors can increase the recovery factor 

slightly. Also, other factors can be compared between 

the varying slug size method and best fixed method 

(scenario 3) as shown in Table 6. 

The values in Table 6 show that in fixed method, 

the injection, production and also storage of water is 

more than varying method. This can be put in an 

advantage of using variable method. On the other hand, 

CO2 injection in variable method is higher and the 

production is a little higher than of fixed method. But 

the remaining CO2 is stored inside the reservoir. 

Therefore again, the variable method has an advantage 

in CO2 consumption too. One more reason to use 

varying method is the much less need to change the 

injection modes from one phase to another. 

 

CONCLUSION 

 

Several simulations are done in a hypothetical 

reservoir and crude oil sample in order to study the 

effect of slug size on the recovery factor. 

Using varying slug size based on oil production 

and maximum water/CO2 production rate, will increase 

the recovery factor slightly in compare with a fixed 

WAG ratio. 

Although CO2 consumption was higher in varying 

method, more CO2 remained in the reservoir that 

suggest higher possibility of CO2 storage when using 

varying method which usually has a longer injection 

period for each phase. Also, by using varying method, 

less amount of water is needed for injection and also 

less water production is expected while lower water 

will remain in the reservoir. 
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