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Abstract: Modeling of synchronous motor plays a dominant role in designing complicated drive system for 
different applications, especially large blower fans etc., for steel industries. As synchronous motor has no inherent 
starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into 
synchronism under certain conditions. The present study exactly concentrates on this particular zone of transition 
from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. 
Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, 
direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That 
is why firstly the modeling is presented in complex frequency domain and then the time domain modeling is 
obtained by applying inverse Laplace transform technique. Apparently it seems to be a straight forward 
mathematical treatment but involvement of Convolution Integral for converting the formulation from s-domain to 
time domain becomes a matter of interest and it may draw the attention of various researchers working in this area. 
Furthermore the time domain response of the disturbance function may help a designer to fix up the time instant 
when the pull in phenomenon will be imposed by throwing the field winding to a DC supply. 
 
Keywords: Computer simulation, current source inverter, induction motor, small perturbation model, starting 

transients, synchronous machine 
 

INTRODUCTION 
 

Many constant speed applications such as fans, fuel 
pump and compressors comprising a considerable 
amount of total electrical appliances (Isfahani and 
Vaez-Zadeh, 2011) basically need a 3 phase 
synchronous motor. Even though permanent magnet 
synchronous motors are widely used in such 
applications, current source inverter fed normal 
synchronous motors can also be applied in many 
constant speed applications (Knight and McClay, 2000; 
Weifu et al., 2012). The steady state stability study of a 
current source inverter fed synchronous motor was 
basically initiated in 1974 (Gordon et al., 1974) and 
after this as an extension, Chattopadhyay et al. (2011) 
presented a detailed analysis of a current source inverter 
fed synchronous motor drive system taking damper 
windings into account in 2011. So far the research 
accuracy of the paper by Chattopadhyay et al. (2011) is 
covered; it is not clear that exactly what is happening in 
the transition zone when the machine is jumping from 
induction motor action to synchronous motor action. 
Again the concentration on such detailed aspect is a 
matter  of  long  discussion  and  in  this  context  many  

researchers have tried to put sufficient light on the 
matter. The research paper (Ma et al., 2006) explains 
the analysis of magnetic fields and temperature fields 
for a salient pole synchronous motor in the process of 
steady state. They have used the d-q model of the 
synchronous motor but the role of field winding in 
transition from induction motor to synchronous motor 
is not reflected in the mathematical model.  

A similar observation is valid on the other work 
(Wang and Ren, 2003) and it represents a good state 
variable model and its mathematic simulations in time 
domain. The research paper (Sergelen, 2007; Najafi and 
Kar, 2007) carries important works on the mathematical 
modeling of a salient pole synchronous motor supplied 
by a frequency converter and also the effect of short 
circuit voltage profile on the transient performance of 
permanent magnet synchronous motors. An important 
work on non-linear control of an inverter motor drive 
system with input filter (Marx et al., 2008) draws 
attention. In this study the author has given a detailed 
signal analysis of the DC-link voltage stability.  

Another interesting paper by Das and Casey (1999) 
and Al-Ohaly et al. (1997) clearly portrays the critical 
aspects of starting a large synchronous motor. Even 
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though this particular study does not involve much 
mathematical analysis but the range of the slip 
presented in this study with reference to pull in torque 
of a synchronous motor really may help a designer to 
select a particular synchronous motor for any specific 
application. 

Based on the above said literature review, to the 
best of the authors understanding it reveals that 
researchers have not put sufficient light on the fact that 
exactly what happens to the mathematical model of a 
synchronous motor in time domain or complex 
frequency domain during the period when field winding 
is disconnected from the external resistance (generally 
6-7 times of main field winding resistance to avoid 
effects due to George’s phenomenon) and immediately 
thrown to the DC source. Basically the formulation will 
be done in complex frequency domain involving two 
transformed quantities: 

 
• Small perturbation in load torque  
• Small perturbation in field angle 
 
This is a traditional technique of formulation to put 
some light on the overall modeling of synchronous 
motor and also on the steady state aspects in general 
and transient state analysis in particular. But in the 

present problem as the machine’s transition from 
induction motor mode to synchronous motor mode is of 
prior importance. A disturbance function in complex 
frequency domain is expected to appear in the resultant 
formulation and it is expected to disturb the linkup 
between the above said two transformed quantities 
(field angle and load torque). It is quite natural that the 
modeling of the disturbance function in complex 
frequency domain will give a lot of information to the 
design of a synchronous motor applied to various drive 
system, but still the necessity of getting the time 
domain response of that disturbance function remain 
within the scope of the research. Hence to get the time 
domain behavior of that disturbance function becomes 
the main objective of the authors of the present paper; 
because it will give more detailed information 
regarding the convergence and divergence nature of the 
disturbing function such that a designer can pre assume 
what should be the time zone for synchronizing the 
motor into pull-in phenomenon. 
  

MATERIALS AND METHODS 

 
The basic block diagram of the proposed scheme is 

shown in Fig. 1. 
 

 
 
Fig. 1: Drive configuration for open-loop current-fed synchronous motor control 
 

 
 
Fig. 2: Primitive machine model of a synchronous motor 
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To have a better feeling of the method of analysis, the primitive machine model of the synchronous motor is 
drawn and it is shown in Fig. 2. 

In the following analysis, saturation is ignored but provision is made for inclusion of saliency and one number 
of damper winding on each axis. Following Park’s transform, a constant stator current of value is at a field angle ‘β’ 
can be represented by direct and quadrature axis currents as: 
 

d si i cos   β=                                                                                                                                (1) 

 

q si i sin       β=                                                                                                                   (2) 

 
Designating steady state value by the subscript ‘0’ and small perturbation by ∆, the perturbation equations of the 

machines are: 
 

d s 0i i sinβ β∆ = − ∆                                                                                                                                              (3)  

 

q s 0i i cosβ β∆ = ∆                                                                                                                                                    (4) 

 
The transformed version of Eq. (3) and (4) are: 

 
( ) ( )d s 0I s  i sin s        β β∆ = − ∆                                                                                                                               (5) 

 
( ) ( )q s 0I s  i cos s          β β∆ = ∆                                                                                                                               (6) 

 
The generalized expression for electromagnetic torque of a primitive machine model is an established one and it 

is expressed as: 
 

e d q d qT i i   = Ψ − Ψ                              

( ) ( )d d md f md kd q q q mq kq dL i L i L i  i  L i  L i  i    = + + − +  

( )d q d q md q f md kd q mq kq dL L  i i  L i i   L i i  L i i         = − + + −                                                                                          (7)  

 
Small signal version of torque equation in time domain is expressed as: 
 

( ) ( )e d q d q0 d q q d0 md q f 0 md f q0T   L L i i L L i i  L i i  L i i         ∆ = − ∆ + − ∆ + ∆ + ∆   

md kd q0 md kd0 q mq kq d0 mq kq0 d      L i i  L i i L i i  L i i+ ∆ + ∆ − ∆ − ∆                                                                                      (8) 

 
Equation (8) after being transformed takes the shape as given by: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )e d q q0 d d q d0 q md f 0 q md q0 fT s  L L  i I s   L L i I s   L i I s  L i I s       ∆ = − ∆ + − ∆ + ∆ + ∆                                      

( ) ( ) ( ) ( )md q0 kd md kd0 q mq d0 kq mq kq0 dL i I s   L i I s L i I s  L i I s       + ∆ + ∆ − ∆ − ∆  

( ) ( ) ( ) ( )d q q0 mq kq0 d d q d0 md kd0 md f 0 q   [ L L i L i ] I s   L L i L i  L i I s             = − − ∆ + − + + ∆ 
     

( ) ( ) ( )md q0 f md q0 kd mq d0 kq   L i I s  L i I s   L i I s+ ∆ + ∆ − ∆                                                                                                    (9)  

 
To tackle Eq. (9) in an easier form, it is expressed as: 
 

( ) ( ) ( ) ( ) ( ) ( )e 1 d 2 q 3 f 4 kd 5 kqT s c I s c I s c I s c I s c I s         ∆ = ∆ + ∆ + ∆ + ∆ + ∆                                                      (10) 

 
where,  
 

( )1 d q q0 mq kq0c L L i L i           = − − 
                                                                                                              (11) 
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( )2 d q d0 md kd0 md f 0c L L i L i  L i = − + + 
                                                                                                             (12) 

 

3 md q0 c  L i=                                                                                                                                                          (13) 

 

4 md q0 c  L i=                                                                                                                                                           (14) 

  

5 mq d0c  L i           = −                                                                                                                                           (15) 

 
The small perturbation model of the transformed voltage balance equations of F-coil, KD-coil and KQ are 

expressed as: 
 

( ) ( ) ( ) ( ) ( )1 f f f ff f md d md kdU s  R I s  sL I s  sL I s  sL I s
c k

s
s s
+ = ∆ = ∆ + ∆ + ∆ + ∆                                                (16) 

 
where, c = 220 Volts, S1 = slip and k = (Nf/Na)*(415/√3) 
Nf  = Number of turns in field winding 
Na  = Number of turns in armature winding: 
 

( ) ( ) ( ) ( ) ( )kd kd kd kkd kd md d md f0 U s R I s  sL I s  sL I s  sL I s= ∆ = ∆ + ∆ + ∆ + ∆                                        (17) 

 

( ) ( ) ( ) ( )kq kq kq kkq kq mq qU s R I s sL I s  sL I s∆ = ∆ + ∆ + ∆                                                                                  (18) 

 
where,  c = 220 Volts, S1 = slip and k = (Nf/Na)*(415/√3) 
Nf = Number of turns in field winding  
Na = Number of turns in armature winding 
 

As the damper winding on d-axis and q-axis are short-circuited within themselves, ∆Ukd = 0 and ∆Ukq = 0. So in 
transformed version ∆Ukd (s) = 0 and ∆Ukq (s) = 0 as shown in Eq. (17) and (18). Furthermore in general, the voltage 
fed to the field winding is fixed. It is a well known fact that a synchronous motor cannot start for itself and the 
easiest way to start a synchronous motor is to start it as an induction machine with the help of damper windings. But 
the problem is that we have to investigate what will be status of field winding of the synchronous motor when the 
damper winding is in action. As already the winding was physically embedded (existing) and during the running of 
the machine one cannot take it out. In other words when damper winding is in action field winding effect has to be 
inactivated. Such inactivation may be done by the following methods: 

 
•  Field winding completely Open Circuit 
•  Field Winding Short Circuit in itself 

 
The status of field winding in (a) can be looked upon as a transformer whose primary winding constitutes of 3 

phase armature winding supplied from 415V (L-L) ac and whose secondary winding is the field winding being open 
circuited. As generally in a normal synchronous machine of normal design Nf/Na>>1, where Nf is number of field 
windings and Na is number of armature windings. The induced voltage in the open field terminal will be large and it 
may lead to hazardous conduction so far as operator safety is concerned. Hence this case is rejected. 

Status of the field winding in (b): The induced emf in field winding due to transformer action will produce a 
single phase alternating current and in turn will produce a pulsating field in field winding. It is well known that a 
pulsating field m.m.f can be resolved as a combination of forward rotating and backward rotating m.m.f magnetic 
fields (strengths of each resolved component is half of the original pulsating m.m.f). The effect of backward rotating 
magnetic field will produce a torque opposite to the (asynchronous/induction) motor torque and it will dominate at 
some value of slip. Hence a situation may arise and motor may stall due to the negative effect of backward 
component. This phenomenon is known as George’s phenomenon.  

Hence such case cannot be completely accepted. However there is some remedial method. The field winding 
may be closed through an external resistance which is about 6-7 times of original field resistance; such that the 
magnitude of short circuit current diminishes and as a result effect of resolved backward component will be less or 
reduced. 
What happens to change on field voltage (∆Uf). 
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In the current research problem ∆Uf cannot be equal to zero because originally it was an induction motor with 
the field winding short circuited in it or closed through an external resistance of large value and at a later stage it 
was pulled into synchronism when dc supply is fed to the winding.  

Quantitatively, ∆Uf should depend on a particular property of induction motor and that property must be ‘SLIP’. 
Here the technique of mathematical modeling appears as a novel approach and this approach forms the foundation of 
the proposed analysis. The proposed modeling considers that field winding is closed within itself. In other words the 
presence of external large resistance has not been considered in modeling to make the mathematical treatment 
comparatively easy. However it does not affect the accuracy of the system as the external resistance can be lumped 
or clubbed with the field winding. 
From Eq. (16) and (17) it yields: 
 

2 2

32
2 2

( )
    ( ) ( ) F (s) 

( ) ( )
md md kkd md kd

f d

kkd ff md kkd f kd ff kd f

s L L L sL R
I s I s

s L L L s L R R L R R−

 − −
∆ = ∆ −  + + + 

                                                 (19) 

 
where,  
 

1
32

2
F (s) ( )[ ]  kd kkd

md

c s k
R sL

s L

+
= +                                                                                                               (20) 

 
Similarly Eq. (16) and (17) yields: 
 

2 2

31
2 2

( )
( ) ( ) ( )

( ) ( )
md md ff md f

kd d

kkd ff md kkd f kd ff kd f

s L L L sL R
I s F s I s

s L L L s L R R L R R−

 − −
∆ = − ∆  + + + 

 =
2

1 2
31( ) ( )

( ) d

d s d s
F s I s

D s

 +
− ∆ 
 

              (21) 

 
where, 
 

( )1
31

2

c s k
( ) 1 f ff

kd kkd

md md

R L
F s R sL

s SL L

   +  
= − + +   

     

             (22) 

  

( )2
1 md md ffd  L L L= −                   (23) 

 

2 md fd L R  = −                                                                                       (24) 

 
From Eq. (18) it is obtained: 
 

( ) ( )mq

kq q

kq kkq

sL
I s I s

R sL

 −
∆ = ∆  + 

                                                                                  (25) 

 

1 ( )
( ) q

e s
I s

Q s

 
= ∆ 
 

                                                                       (26) 

 
where, 

1 mqe L= −                      (27) 

 
( ) 1 2Q s f s f= +                                                                                                   (28) 

 

1 kkqf L=                                                                                                                                                         (29) 

 

2 kqf R=                                                                                                                              (30) 

Substituting Eq. (19), (21) and (25) in (10), it yields: 
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2 2
1 2 1 2 1

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )e d q d d q

a s a s d s d s e s
T s c I s c I s c I s c I s c I s

D s D s Q s

     + +
∆ = ∆ + ∆ + ∆ + ∆ + ∆     

      
 

2 2
3 1 3 2 4 1 4 2 5 1

1 2( ) ( )
( ) ( )d q

c a s c a s c d s c d s c e s
c I s c I s

D s Q s

   + + +
= + ∆ + + ∆   

  
+F3 (s)                           (31) 

 
where, 
 

F3 (s) = F31 (s) - F32 (s)                                                                                                                                          (32) 
 
Equation (31) can be re expressed as: 
 

3 2 3 2
1 2 3 4 1 2 3 4

3 2
1 2 3 4

( ) ( ) ( ) ( )
( ) d q

e

m s m s m s m I s n s n s n s n I s
T s

l s l s l s l

 + + + ∆ + + + + ∆
∆ =  

+ + +  

+F3 (s)                         (33) 

 
where, 

 

1 1 1 1 3 1 1 4 1 1m f c b c a f c d f  = + +                   (34) 

 

2 1 1 2 3 2 1 4 2 1 1 1 2 3 1 2 4 1 2m c f b c a f c d f c b f c a f c d f         = + + + + +                             (35) 

 

3 1 2 2 3 2 2 4 2 2 1 3 1m c b f c a f c d f c b f= + + +                                                        (36) 

 

4 1 3 2m c b f    =                                                                                                                                            (37)  

 

1 1 2 1 5 1 1n f c b c e b= +                                              (38) 

 

2 2 2 1 2 1 2 5 1 2n c f b c f b  c e b= + +                                                                        (39) 

 

3 2 2 2 3 2 1 3 5 1n c f b b c f b c e= + +                  (40) 

 

4 2 2 3n c f b=                                  (41) 

 

1 1 1l b f=                                  (42) 

 

2 2 1 1 2l b f b f= +                                              (43) 

 

3 3 1 2 2l b f b f= +                                                                                      (44) 

 

4 3 2l b f  =                                               (45) 

 
Substituting the expressions for ∆Id (s) and ∆Iq (s) from Eq. (3) and (4) in (33), we have: 
 

3 2 3 2
1 2 3 4 0 1 2 3 4 0

3 2
1 2 3 4

( )( sin ( )) ( )( cos ( ))
( ) ( )s s

e

m s m s m s m i s n s n s n s n i s
T s s

l s l s l s l

β β
β

 + + + − + + + +
∆ = ∆ + + + 

+F3 (s)      (46) 

 
Equation (46) can be re-expressed as: 
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3 2
1 2 3 4

3 2
1 2 3 4

( ) ( )e

x s x s x s x
T s s

l s l s l s l
β

 + + +
∆ = ∆ + + + 

+F3 (s)                                                                                                     (47) 

 

1( ) ( ) ( )eT s T s sβ∆ = ∆ + F3(s)                                                                                   (48) 

 
where, 
 

T1 (s) = 
3 2

1 2 3 4
3 2

1 2 3 4

x s x s x s x

l s l s l s l

 + + +
 + + + 

                                                                                  (49) 

 

1 1 s 0 1 s 0x n i cos m i sinβ β= −                   (50) 

 

2 2 s 0 2 s 0x n i cos m i sinβ β= −                              (51) 

 

3 3 s 0 3 s 0x n i cos m i sinβ β= −                                                                                    (52) 

 

4 4 s 0 4 s 0x  n i cos m i sinβ β= −                                             (53) 

 
The torque dynamic equation of a synchronous motor can be written as: 
 

e L

d
T T J

dt

ω
− =                                                                        (54) 

 
where, 
ω = Motor speed in mechanical rad./sec 
J  = Polar moment of inertia of motor and load (combined) 
 
The small change in speed ‘ω’ equal to ∆ω can be related to small change in field angle, ∆β as given by: 
 

( )d

dt

β
ω

∆
∆ = −                                                                                                                 (55) 

 
The negative sign in equation physically indicates a drop in speed (ω) due to increase in field angle (β). 

Based on Eq. (55), the following expression can be written: 
 

2

2

( )
( ) ( )

d d d d
J J J

dt dt dt dt

ω
β β

∆  = − ∆ = − ∆  
                                          (56) 

 
The small-perturbation model of Eq. (54) can be written as: 
 

e LT T∆ −∆ = ( )d
J

dt

ω∆                                              (57) 

 
Combining Eq. (56) and (57), it yields: 
 

e LT T∆ −∆ =
2

2 ( )
d

J
dt

β− ∆                                (58) 

 
The transformed version of Eq. (58), with initial condition relaxed, comes out to be: 
 

( ) ( ) ( )2
e LT s T s Js s                       β− = − ∆                             (59) 

 
Substituting the expression for ∆Te (s) from Eq. (47) in (59), we have: 
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2
1 3( ) ( ) ( ) F (s) ( )LT s s Js s T sβ β∆ + ∆ + = ∆                                                                                    (60) 

  

32 2
1 1

1 1
( ) F (s) ( )

( ) ( )
LT s s

T s Js T s Js
β∆ − = ∆

   + +   

              (61) 

 
The block diagram representation of the system obtained from the above equation is shown in Fig. 3. 
The disturbance function can be taken separately and a detailed analysis in time domain is carried out as follows: 

 

3

2

1

(s)
(s)

( )

F
D

T s Js
=

+                                                                                                    (62) 
 

3 51 2 4

3 2 3 2

1 5 32 4

2 3

( )

( ) ( )

c cc c c
F s

s s s s s

c c cc c

s s s

−
= + − − −

− + −
= + −

                                                        (63) 

23

3 1 5 2 4

3 2

c
(t) ( ) (t) (c c ) t

2

1.4588 *10 543.0379 0.0127

F c c u t

t t

= − + + − −

= − + −                               (64) 
 

( )Denominator Q s=

3 2

1 2 3 4

2

1

1

(s) Js (s j 0.3899)(s j 0.3899)(s 0.1018)(s 0.0538)(s 0.0011)

l s l s l s l

T

+ + +
=

+ − + + + +
                       (65) 

 

1 2 3 4 5

A B C D E

s s s s s s s s s s
= + + + +

− − − − −                                                                                    (66) 
 

16

17

18

0.3666

0.3666

2.9253*10

6.754 *10

7.8382 *10

A j

B j

C

D

E

−

−

−

= −

=

= −

=

= −                                  (67) 

     
0.3899 0.3899

2

1

16 0.1018 17 0.0538

18 0.011

1
0.3666 0.3666

(s) Js

(2.9253 *10 ) e (6.754 *10 ) e

( 1.8382 *10 ) e

j t j

t t

t

j e j e
T

−

− − − −

− −

= − +
+

+ +

+ −                                                                                   (68) 
 

1

3 2

1

1
(t) F ( ) * ( )

( )
D t L

T s Js

−=
+  

3 2 0.3899(t ) 0.3899( )( 1.45*10 543 0.0127 )(j0.3666(e e )) dj j tτ ττ τ τ− − −= − + − −∫                         (69) 
 

3

1 0

3 3

sin(0.3899(t )) * ( 1.45*10 )

1.45*10 1.45*10
cos( )

0.3899 0.3899

t

I d

t

τ τ= − −

= −

∫

                (70) 
 

2 0
sin(0.3899(t ))543 d

t

I τ τ τ= −∫                                (71) 
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Fig. 3: Block diagram representation of the system with 

disturbance function D (s) 
 

2

t sin(0.3899 )
543( )

0.3899 0.3899

t
= −

 
 

2

3 0
sin(0.3899(t ))( 0.0127 ) d

t

I τ τ τ= − −∫  
2

3 3 2
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RESULTS AND DISCUSSION 

 
The expression for D (t) in Eq. (73), demands some 

numerical calculations such that the different aspects of  

D (t) contributing to overall action of synchronous 
motor cane be realized. This particular philosophy 
forces the authors to present the results in graphical 
forms in Fig. 4 to 6. Furthermore the philosophy of 
calculation and extended results lead to the presentation 
in Fig. 7 and Table 1. 

Figure 4 explains the variation of magnitude of the 
disturbance function D (t) against time at a particular 
value of slip of 0.15. From the nature of the problem 
formulation it is already well known that the 
asynchronous behavior of the synchronous machine in 
motor mode basically can be looked upon as a 
disturbance phenomenon; even though this should not 
be treated as a negative one because it indicates 
basically the starting method of synchronous motor. 
However qualitative treatment always does not 
guarantee the quality of a research work. As a 
supporting point to this statement the variation of D (t) 
is plotted against time in Fig. 4. From this it is very 
clear that ,out of all the terms, the coefficient associated 
with the term ’t2’ is dominant. That is why the plot in 
Fig. 4, is observed as an increasing function. 
Furthermore the oscillations superimposed on the 
straight line (strictly speaking it is a parabola) in Fig. 4 
basically indicates the involvement of sinusoidal 
function of time in the expression for D (t) and in 
reality exactly it is happening so far as the formulation 
is concerned. Figure 5 represents a family of plots of D 
(t) against time for different values of slips. 

Figure 6 shows the variation of disturbance 
function D (t) with respect to slip at different time 
instants.  From   the   expressions  for  D  (t)  it  is  quite 

 

 
 
Fig. 4: Disturbance function D (t) vs. time 
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Fig. 5: D (t) vs. time for various values of slip 
 

 
 
Fig. 6: Variation of magnitude of D (t) against slip for a fixed time instant 
 
natural that oscillations will be superimposed on 
straight line nature. As seen from the expressions for 
involved co-efficients for D (t), it is clear that the term 
‘slip’ (s1) appears in the numerator of the concerned 
expressions, expressed as fractional terms. Hence the 

nature of the profile shown in Fig. 6 resembles with the 
physical fact. One interesting point is to be noted that 
the effect of oscillations superimposed on the profile of 
straight line have been observed in the Fig. 4 to 6 and 
accordingly all the physical conclusions/inferences 
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Fig. 7: Flow chart pertaining to contributions of oscillations to the responses in Fig. 4 to 6 
 
Table 1: Numerical value of ∫D (t) dt over selected time spans 

 1st cycle 1st cycle+2nd cycle  1st cycle+2nd cycle+3rd cycle 
∫D (t) dt 0.2042 0.8168 1.8377 
 
have been drawn in the above said paragraphs with 
sufficient engineering explanations. However the 
authors reveal that the mathematical nature of D (t) can 
be looked upon as a function of multivariable as ‘t’ 
(time instant) and ‘s1’ (slip). Hence strictly speaking D 
(t) can be looked upon as the function D (s1, t). Now is 
the question arises how to look the oscillations 
contributed by ‘time’ and ‘slip’ variations. This whole 
philosophical concept can be expressed in the form of a 
self explanatory flow chart given in Fig. 7. 
 
Additional interesting facts about the results: With 
reference to Fig. 3, it is clearly observed that the role of 
D (s) can be looked upon as a transformed noise or 
disturbance function. For a control model of any 
system, it is very logical to observe the integrated value 
of the noise function in time domain for the sake of 
maintaining the health of the system. Based on this 
idea, Table 1 has been developed, which shows the 
numerical value of ∫D (t) dt over selected time spans. 

The subsequent further explanations related to the 
Table 1, are as follows: It is difficult to infer about the 
nature of D (t) vs. time because the dominance of 
algebraic terms over trigonometric term are not 
observable at the first glance. Furthermore, relative 
dominance within the algebraic terms are also not 
understood from the expressions for D (t). That is why 
the integral effect of D (t) over time are calculated and 
it shows the existence of dominance of specific 

algebraic term. i.e., ’t2’. The reason behind the 
calculation of integrated values of D (t) over time (first 
cycle, first and second cycle and first, second and third 
cycles) is mainly to observe the integrated effect of 
noise during the sub transient period. Strictly speaking 
when the machine behave as an induction motor, the 
terminology, ”sub transient period”, has not much 
physical significance. But this terminology is used 
intentionally to emphasize the fact that it is not an 
isolated induction machine, rather it is a part of the full 
synchronous machine which has a damper winding 
being mainly responsible for creating sub transient 
state. 
 

CONCLUSION 
 

During the transition zone the synchronous motor 
is started as an induction motor with the help of damper 
winding. During the transition in order to avoid 
George’s phenomenon the field winding of the 
synchronous motor is closed through an external 
resistance which is about 6-7 times that of the field 
winding resistance value. During the start of the above 
said process the change in voltage across the field 
winding is given by 220+s1k where s1 is the slip of the 
induction motor and k is a constant. At start slip = 1, 
hence ∆Uf = 220 + s1k is maximum. As the slip 
decreases towards 0, ∆Uf decreases towards 220. When 
this happens the field flux gets weakened as the slip 
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movers from s1 = 1 to s1 = 0. This in turn decreases the 
electromagnetic torque developed in the machine for a 
fixed value of β (load angle). Hence Te-TL will also 
decrease during this process. This will reduce the rate 
of change of ω with respect to time in the motor. To 
adjust the decreased ω the β of the machine will have to 
increase accordingly to stabilize the system. Hence 
during the transition period ∆β will have to increase as 
slip goes from 1 to 0. 
 

LIST OF SYMBOLS 
 
id = Current in the D coil in p.u. 
iq = Current in the Q coil in p.u. 
if = Current in the F coil in p.u. 
ikd = Current in the d axis damper coil (KD) in p.u. 
ikq = Current in the q axis damper coil (KQ) in p.u. 
Ld = Self-inductance of D coil in p.u. 
Lq = Self-inductance of Q coil in p.u. 
Lmd = Mutual inductance along d axis in p.u. 
Lmq = Mutual inductance along q axis in p.u. 
Lff = Self-inductance of F (Field) coil in p.u 
Rf = Resistance of the F (Field) coil in p.u. 
Lkd = Self-inductance of the KD coil in p.u. 
Rkd = Resistance of the KD coil in p.u. 
Lkq = Self-inductance of the KQ coil in p.u. 
Rkq = Resistance of the KQ coil in p.u. 
β = Angle between the field (rotor) m.m.f. axis and armature 

(stator) m.m.f. axis 
 
The machine data are given as (Ma et al., 2006): 
J = 8 p.u. 
Ld = 1.17 p.u. 
Lmd = 1.03 p.u. 
Lq = 0.75 p.u. 
Lmq = 0.61 p.u. 
Lkkd = 1.122 p.u. 
Lkkq = 0.725 p.u. 
Lff = 1.297 p.u. 
Rkd = 0.03 p.u. 
Rkq = 0.039 p.u. 
Rf = 0.0015 p.u. 
 
• When machine is at load: 
is = 1 p.u. 
if0 = 0.97 p.u. 
ikd0 = 0 p.u. 
ikq0 = 0 p.u. 
β0 = 100 

 
• When machine is at no load: 
is = 0.1 p.u. 
if0 = 0.9 p.u. 
ikd0 = 0 p.u. 
ikq0 = 0 p.u. 
β0 = 00 
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