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Optimizing Expressibility and Performance of Kleene Operators on Binary Tree-based 

Directed Graph in Complex Event Processing 
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Faculty of Computing, Universiti Teknologi Malaysia, Malaysia 

 

Abstract: This study presents a novel method to develop kleene operators on a Binary Tree-Based Directed Graph 
(BTDG) to improve expressibility and performance of our developed complex event processing system. Complex 
Event Processing (CEP) systems are widely employed to notify opportunities and threats, which many of these 
situations are discovered through detection of multiple occurrences of the similar set of events. Many of CEP 
systems proposed kleene operators to detect these situations. The high expressibility of our implemented CEP 
system achieved by developing algorithms on kleene operator. These algorithms are designed on a BTDG as a 
unified basis to arrange input data and joining this input according to a given query. The performance is improved 
through directing events instantly to join with other events, dynamically switching to an optimal plan and late 
applying combination for kleene with specified size. The experiments shows kleene operator on BTDG brings rather 
high degree of expressiblity and performance in compare to its counterparts. 
 
Keywords: Binary tree-based directed graph, complex event processing, event matching, kleene operator 

 
INTRODUCTION 

 
In event processing systems, events are received 

from several peripherals; the events are investigated to 
discover match cases against user-defined queries and 
the results are either notification messages or automated 
actions. The user-defined queries determine the 
relationship between events with respect to logical and 
temporal constraints and the queries containing kleene 
closure, in particular, search for multiple occurrences of 
events. A large body of applications in many areas 
employs CEP systems to monitor iterative occurrences 
of events in supply chain management systems to count 
number of pallets that read by RFID antenna (Gyllstrom 
et al., 2007), in health care services to track health-care 
workers for hygiene compliance (Wang et al., 2010) 
and in stock market analysis to monitor multiple 
changes  in  stock  price (Mei and Madden, 2009; Peer 
et al., 2013). 

Several CEP systems developed in academia and 
enterprise used either finite state machine or tree 
structure as a foundation to perform event matching. In 
FSM (Wu et al., 2006; Agrawal et al., 2008; Cugola 
and Margara, 2012) and Tree-based (Mei and Madden, 
2009) systems event processing systems kleene is 
defined for three possible cases; kleene *, denotes that 
the event can have no occurrence or can occur more 
than 0. kleene +, implies event can occur once or more 
times; kleene num, detects situations that event occurs 
in a specified times. In FSM systems a great deal of 
discussions dedicated to kleene operator and ignoring 

some events to cover this operator (Agrawal et al., 
2008; Muthusamy et al., 2010; Demers et al., 2007). 
These systems use Non-deterministic Finite Automaton 
(NFA) as a basis to distinguish the relevant from 
irrelevant events with respect to the query. They added 
an option in their query definition that determines the 
level of relaxation for event selection (Agrawal et al., 
2008). One the other hand, in tree-based systems, 
namely ZSTREAM (Mei and Madden, 2009), they use 
a ternary of buffers to confine number of composite 
events. In Mei and Madden (2009), they argued on 
shortcoming in NFA-based models to support 
concurrency. 

According to some of previous work, improving 
expressibility of query languages to support wide range 
of  queries  is  considered  as  an  important  issue (Diao 
et al., 2008; Cugola and Margara, 2012). In SASE (Wu 
et al., 2006), a CEP system developed to support 
sequence and negation operator as well as some 
strategies to set level of relaxation on relevant events; 
however, SASE does not support kleene operator. In 
SASE+ (Agrawal et al., 2008), they addressed the need 
to improve expressibility of SASE by developing an 
algorithm to support kleene operator. They developed 
match buffer as a shared buffer for multiple processes. 
However, NFA-based systems have the following 
shortcomings:  

 

• These systems are limited to perform matching 
from left to right (Cugola and Margara, 2012), or 
right to left (Diao et al., 2008; Agrawal et al., 
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Fig. 1: Binaty tree-based graph in FAEM 

 
2008), which makes these systems limited to 
reorder join operators.  

• We argue and show in this study that their 
proposed shared buffer, cannot guaranty the 
validity of results. 
 
In contrast to NFA-based models, ZSTREAM (Mei 

and Madden, 2009) manage events in tree-based 
structure. In supporting kleene, they developed a 
ternary including three event classes that are joined 
through an edge into the parent buffer which keeps the 
result of applying kleene operator. In their system, the 
kleene event class is surrounded by two other non-
kleene event classes. ZSTREAM uses right and left 
buffers to erase irrelevant events from kleene buffer 
which is only considered in middle buffer. Their 
technique reduces memory space required for applying 
composition and reduces processing time. 

However, kleene operator in ZSTREAM imposes 
some limitations as:  

 

• Connecting three buffers as a ternary, with a kleene 
buffer in the middle, between left and right buffers, 
negatively affects the expresibility of the kleene 
operator because user may define some queries that 
violates this limitation. 

• The sequence operators to join in right and left side 
of kleene buffer are compulsory while other 
operators may occur instead. 

• Some of events out of the ternary may discard the 
events in range of ternary; this imposes an extra 
burden in creating and then removing invalid 

events. For the first time, we show these 
shortcomings in expressibility section. 

  

Figure 1 shows the arrangement of buffers and 
cursors in FAEM, the system that we previously 
developed (Behravesh et al., 2014). Given the stream of 
events and a user-defined query, FAEM generates a 
tree-based directed graph. Event classes as appeared in 
PATTERN section of the query forms single class 
events and their composition creates multi-class events. 
The predicates Google.value <1.2 * Microsoft.value is 
determined based on Where clause and assigned to the 
lowest class as possible. Each event contains ID, 
timestamp and value. Buffers are hashed by the ID 
based on pattern section of the query. In event stream, 
events are placed in their respective buffers and after 
satisfying evaluation; their composition is placed in 
their parent buffer. The constraints are logical and 
temporal, the logical constraints are define in WHERE 
clause and join operator here is ";" implying sequence 
operator. Temporal constraints are either sliding time-
window constraint which is determined by WITHIN, or 
order constraint that here defines it is expected to find 
Microsoft events following Google events. The aim of 
this study to improve expressibility and performance of 
pattern matching in CEP systems through optimization 
on various kleene operators. In order to achieve this 
goal, following objective are satisfied: 

 

• Designing kleene operators' algorithms on binary 
tree-based directed graph to improve expressibility 
of applying kleene on concurrent events. 

g 5 87events
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Moreover, the directed graph helps the system to 
the perform matching as soon as receiving an 
event. 

• Developing an optimized kleene num algorithm to 
improve performance of event matching through 
not to generating excessive intermediate results. In 
addition, the algorithm avoids unbiased removal of 
valid composite events. 

 
However, the shortcoming of these systems is 

described in details in results section.  
 

METHODOLOGY 

 
One of the inputs of a CEP system is a user-defined 

query which finds its match cases over stream of input 
events. The queries in below are related to stock market 
that are define by an expert user. In dealing with 
endless stream of stock market events, these queries are 
some of the sample queries to discover their match 
cases: 

 
Query 1: 
PATTERN Google; Microsoft+ 
WHERE Google.value >100$ 
AND Google.value <Microsoft 
WITHIN 5 UNIT 
Query 2: 
PATTERN Google; Microsoft [3] and Del 
WHERE Google.value>1.12 * Mircosoft.value 
AND Google.value >1.2 * Del.value 
WITHIN 10 SEC 
Query 3: 
PATTERN Google; Microsoft*; Del; Intel 
WHERE Intel.value>Mircosoft.value 
WITHIN 200 UNIT 

  
Query 1 searches for as many as Google events 

within the range of time window, 5 events, each of 

these events worth more than 100$ that these are 

followed by a Microsoft event which worth more than 
all of these Google events. The symbol+implies that 1 

or more Google events. Query 2, in a floating time 

window of 10 sec, discovers Google events that 
followed by three Microsoft events which their prices 

have at least 12% less values than Google these are 
followed by a Del event which its price is at least 20% 

less than Google's. Query 3, searches input stream for 

match cases when Google event is followed by as many 
as Microsoft events, 1 Del event and 1 Intel event 

within 200 events, so that the value of Intel stock event 

is more than Microsoft's. The symbol * implies 0 or 
more Microsoft events. 
 
Kleene operator in FAEM: In this study, kleene 
operator for all sorts of kleene (*/+/ num) follows an 
identical structure based on BTDG. However, for 

kleene num, an extra step is applied to generate all sets 
in the final step. Likewise other buffers, events in 
kleene buffer collect all of their respective events in its 
buffer with respect to requirements of time-window and 
WHERE clause. The only difference is as they join with 
other operators, a group of events, more than one 
instance of kleene events are selected from kleene 
buffer. 

 

Kleene star and plus: When a new event is received, 
the system pushes the event into its related buffer. If its 
pair buffer based on query is found a kleene, grouping 
is applied on kleene events with respect to temporal and 
logical constraints and composite event is pushed into 
their parent buffer; similarly for each newly received 
kleene event, grouping is applied based on constraints 
and the event instances in its adjacent buffer which is a 
non-kleene buffer. When the left buffer is a kleene 
buffer and associative operator is between right and left 
buffer, the algorithm below generates composite events 
in MBuf. 
 
Algorithm 1: Kleene on Left 
Input: LBuf, RBuf, MBuf are left, right and result 
event buffers, respectively; 
qry is query 

Output: MBuf result buffer ◃ left buffer is kleene and 

right buffer is a non-kleene 
 
1: initialize LGroupTemp 

2: for Rr = RBuf [end]; Rr = RBuf [init]; ++Rr do 

3:       if Rr.start ts<Now-time window then 

4:  remove RBuf [init] to Rr; continue; 

5:       for Lr = LBuf [0]; Lr = LBuf [end]; ++Lr do 

6:    if Lr.start ts<Now-time window then 

7:          remove LBuf [0] to Lr; continue; 

8:    if Have Constraints Satis_ed (Lr, Rr) &&   

   Lr.end ts<Rr.start ts then 

9:                   insert Lr into LGroupTemp 

10:      if (LGroupTemp is empty) AND        

           (LBuf.KleeneType == '*') then 

11:            insert Rr into MBuf 

12:      else if (LGroupTemp is not empty) then 

13:            insert (LGroupTemp+Rr) into MBuf; clear 

        LGroupTemp 

14: RBuf [initial] = RBuf [end]; ◃ setting initial 

location  for next round 

 
Provided a pair of engaged-in-join event classes, if 

the left event class is a kleene then algorithm 1 is 
applied. The input are LBuf and RBuf which are the left 
and right buffers, representing the left and right 
engaged-in-join event classes. MBuf is the parent buffer 
which keeps results of join between events in LBuf and 
MBuf. qry is the user-defined continuous query. The 
output is set of composite events stored in MBuf that 
keeps the result of applying a  binary  operator  between 
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events in LBuf and RBuf. LGroupTemp is a temporary 
composite event, which is populated incrementally and 
inserted in MBuf upon completion. In lines (2-4), the 
algorithm checks all events in right buffer from the end 
to the beginning and checks if the events are in range of 
time-window. The out-of range events are subjected to 
deletion. Similarly, in lines (5-7) events in left buffer 
are checked. In each round, if the left and right events 
satisfy logical and time order constraints, only the left 
event is inserted into LGroupTemp, lines (8-9). So, at 
the end of the inner loop, LGroupTemp is populated by 
all events in LBuf which are matched to Rr. In line (10- 
13), the function checks if the LGroupTemp is empty, 
since only kleene start is allowed to have a composite 
event entered when there is no event match in kleene 
section. Otherwise, Rr is added at the end of 
LGroupTemp and then LGroupTemp is inserted into 
MBuf. LGroupTemp is cleared for the next round. In 
order to not generate duplicate composite events we 
need to start from the last position of a non-kleene 
buffer (line 15). 

Algorithm 2, applies kleene on pair of buffers 
where the left and right buffers represent a non-kleene 
and a kleene event classes, respectively. The input and 
output parameters of algorithm 2 is the same as 
algorithm 1. The two variables defined in lines 1 and 2 
are boolean and are set to false by default. The first 
variable determines if the specified event in kleene 
section is matched with at least one event in the left 
buffer. The second variable determines if the MBuf 
contains an event starting by a specific event in left 
buffer. For all events in right buffer the algorithm 
checks if its start time is within the range of time 
window and the out-of-range events are removed from 
the buffer (lines 3-5). The validity in range of time-
window is checked for events in left buffer (lines 7-9), 
which is a nested loop in the right buffer loop. For all 
events in left buffer, the algorithm checks logical 
constraints and order constraint, if at least one of the 
events in left buffer, Lr is satis_ed (10-11). The third 
nested loop checks for in range-of-time window event, 
Mr, in parent buffer, MBuf, that starts with Lr and 
inserts Rr at the end of Mr (12-17). At the end of 
searching the MBuf (lines 18-19), if Lr is not found at 
the beginning of any events in MBuf, the composition 
of Lr+Rr is inserted into MBuf.  
 
Algorithm 2: Kleene on Right 
Input: LBuf, RBuf, MBuf are left, right and result 
event buffers, respectively 
qry is query 

Output: MBuf result buffer ◃ right buffer is kleene and 

left buffer is a non-kleene 
 

1: initialize is_R_satisfied = false ◃ if a right event is 
satisfied 

2: initialize is_in_MBuf = false ◃ if event is in MBuf or 
is new 

3: for Rr = RBuf [0]; Rr = RBuf [end]; ++ Rr do 

4:       if Rr.start ts<Now-time window then 
5:             remove Rr; continue 
6:       is_R_satisfied = false; is in MBuf = false; 
7:       for Lr = LBuf [0]; Lr = LBuf [end]; ++ Lr do 
8:             if Lr.start ts<Now-time window then 
9:                    remove Lr; continue 
10:          if Have_Constraints_Satisfied (Lr, Rr) && 
 Lr.end ts<Rr.start ts then 
11:                  is_in_MBuf = false; is_R_satisfied = true 
12:                  for Mr = MBuf [0]; Mr = MBuf [end]; + 
   +Mr do 
13:                        if Mr.start ts<Now-time window then 
14:                              remove Mr; continue 
15:                        if Mr starts with Lr then 
16:                              Mr = Mr+Rr 
17:                              is_in_MBuf = true; 
18:                   if is_in_MBuf == false then 
19:                         insert (Lr+Rr) into MBuf 
20:             if (is_R_satisfied == false) AND         
    (RBuf).KleeneType == '*' then 
21:                  insert Lr into MBuf 
  

If the operator is a kleene*, only satisfaction of 
non-kleene event is enough for insertion into the parent 
buffer and Lr is inserted into MBuf (lines 20- 21). It is 
obvious that the time complexity of Algorithm 1 is 
better than the algorithm 2. So, in plan adaptation 
algorithm that we previously addressed in FAEM, 
Algorithm 1 is more beneficial than algorithm 2, 
regardless of other factors affecting the optimal plan. 
 
Kleene on concurrent join: Another benefit of 
applying binary tree-based directed graph is to perform 
matching on kleene events when the join operator is 
either conjunction or disjunction. Conjunction supports 
concurrency between pair pf event classes. According 
to the definition of conjunction (Mei and Madden, 
2009), events from A or B classes only needs to be in 
the range of time-window without any constraint on 
their order of occurrence. In FAEM, we developed this 
definition on BTDG to support conjunction not only 
between two non-kleene event classes, but between a 
kleene and a non-kleene event class. Figure 2 shows 
how (A+& B) can be represented by (A+;B) ∪ (B;A+).  

 For every new event in the buffer A, grouping in 
buffer A is performed with respect to each of B events 
in algorithm 2 and for a new event instance of B 
grouping is performed on buffer A Algorithm 1. 
Similarly, (A* &B) and (A [num]&B) are represented by 
(A*;B) ∪ (B;A*) and (A [num]; B) ∪ (B;A [num]), 
respectively. 

Given Query 1, Fig. 3 shows how matching 
performs on receiving events. The system receives m1 
and stores it in buffer M; the system then checks for a 
match case in G buffer. When it checks content of 
buffer G through previous cursor, it finds no event in G. 
Thus, no matching is performed. Another event 
instance, m2, in M is received from input stream, but 
buffer G is still empty, so no evaluation is performed. A 
new event instance, g3, is received in buffer G arrives
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Fig. 2: Conjunction kleene in FAEM 
 

 
 

(a)                                                                                                  (b) 
 

 
 

                  (c)                                                                                                 (d) 

 

Fig. 3: Throughput (a) number of match cases, (b) memory consumption (c) and intermediate results, (d) on kleene plus in 

FAEM 

 

and checks the buffer M through next cursor. As g3 is 
received the algorithm checks buffer M from beginning 
to find those M instances matched to g3, as a group and 
at the end g3 is added to the end of group generating m1 
m2 g3. The composite event is inserted into the parent 
buffer. The same scenario happens when g4 is received 
and makes composite events with m1 and m2 with 
respect to constraints. When event m5 is received, 
algorithm performs grouping on M buffer with respect 
to all events in buffer G. In buffer M, the algorithm 
creates a group by combining M events instances as 
many matched with g3. The first event pushes in 
temporary composite event is g3 followed by m5. Here, 
in buffer M, m5 is the only event match with g3; so, 
g3m5 is inserted into the parent buffer. Similarly, g4m5 
is inserted into the parent buffer. 

After receiving g6, the right buffer is checked to 
find match cases. In M buffer, m1 is found invalid as it 

cannot satisfy temporal constraint defined in time-
window and is removed from M buffer. m2 and m5 are 
matched with g6 and their composition is inserted into 
G&M+ buffer. As m7 is received, the algorithm checks 
G buffer to find match cases. m2 is removed because it 
is out of time window. m7 is found match to g3 and 
algorithm checks composite events in G&M+ to find 
any event starting with g3 and adds m7 to the end of the 
composite event making g3m5m7. Similarly g4m5m7 is 
generated. In comparison between m7 and the last event 
in G buffer, g6 is found match to m7 but there is no 
event in G&M+ starting with g6; so, g6m7 is inserted 
into G&M+. 

For a pattern section of a query as (A+; B) and (A; 
B+), the algorithm 1 and 2 can be applied respectively. 
For the conjunction between A and B when either is a 
kleene event, union of algorithm 1 and 2 generates 
results. 

A+ & B

BA

A+ ; B

BA

B ; A+

A+B

U

G& M+

M+G
g3

g4

m1

m2

m1 m2 g3
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m1 m2 g3 g4 …
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g4
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Fig. 4: Kleene num in FAEM 

 
Kleene num: Likewise, kleene+ and kleene*, in kleene 
num the algorithm groups as many events in kleene 
buffer as match with temporal and logical constraints. 
In higher levels before applying join operator, the 
number of kleene events in a composite event is 
checked if it fulfills the num as well as temporal and 
logical constraints. The checking in higher levels is 
because some of kleene events may be discarded from 
composite events if they do not satisfy constraints in 
next evaluations. Removing these event instances from 
kleene section is because number of valid events in 
kleene is less than num for some of composite events. 
In final stage some of composite events may have more 
kleene event instances so various composite events are 
generated so that with kleene length equal to num. 

Given Query 3, Fig. 4 shows matching in buffers 
where Google, Microsoft, Del and Intel are represented 
by A, B, C, D. In this figure, we start the description 
after receiving d12 because earlier steps are straight 
forward; however, later steps refer to these steps. When 
d12 is received, it invalidates for instance one of the 
kleene events, namely B. In FAEM, only that event, b3 
is subjected to removal from the respective composite 
event. 

The kleene operator in FAEM is applied after 
applying each operator in higher levels of hierarchy to 
check if number of kleene items is met. If number of 
items are less than kleene number the composite event 
is removed; otherwise, the proposed combination 
method in below is applied to generate all possible 
composite events when the process arrives to the final 
state.  

 
Proposition: The events are arrived to the system based 
on their timestamps, or out of order events are not 
considered. In order to present steps clearly, we first 
show the function of the system through an example, 
then a formal definition following the algorithm for 
FAEM combination are presented. Given set of events 
placed in their related buffer based on hashing on their 
IDs and a continuous query as below, we apply FAEM 
combination. 
 
Combination algorithm: Kleene num generates some 
or all of composite events as result of applying a partial 
combination (Mei and Madden, 2009) or a complete 
combination algorithm. During process kleene num is 
considered as kleene plus. FAEM  applies  combination 
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a2 b3 b4 b6 b7 b8 b9
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algorithm on top of full match cases. FAEM considers 
maximum number of matched events. The combination 
algorithm in FAEM functions in three steps: The 
algorithm checks the previous results of combination on 
kleene events, e0 to ei-1, to use for generating new 
combinations for ei. Generating all combinations using 
conventional combination algorithm for n-2 kleene 
events, e1 .. en-2, out n events. Then, adding the en-1 and 
en to the end of event of each composite event. Here, 
a2b4b6b7b8b9c10d12 is the first events in down buffer with 
5 kleene events, b4b6b7b8b9: 
 

• To make combination with length of 3 as defined 
in pattern section of the query, A; B (Cugola and 
Margara, 2012); C; D, according to FAEM 
Combination algorithm, the algorithm selects the 
first three events in kleene, b4b6b7. Then, the events 
related to other classes are placed before and after 
kleene section, a2 and c10d12 to generate the first 
results of combination. So, it generates 
a2b4b6b7c10d12 and adds this composite event to the 
final buffer. Time complexity is O (1). 

• Then, the algorithm makes a copy of newly 
generated composite event and replaces the last 
event in kleene section, b7, with next kleene event 
which has not been considered yet, b8, which 
produces a2b4b6b8c10d12 and adds this composite 
event to the final buffer. 

 
Algorithm 3: Kleene Num 
Input: n, r, r events from n valid events as in 
combination, finalBuf 
Output: result buffer finalBuf 
 
1: ce = deque from downBuf 
2: cePrefix = copy prefix section of ce, not including 

the kleene section 
3: cePostfix = copy postfix section of ce, not including 

the kleene section 
4: ceKleene = copy Kleene section of ce 
5: if Size of ceKleene<r then 
6:       break; 
7: else if size of ceKleene = r then 
8:       ceNewItem = cePrefix+ceKleene+cePostfix 

9:      insert ceNewItem into FirstSetBuff ◃ should be 

sorted 
10: else if size of ceKleene>r then 
11:     for i = 1; i< = r; i++do 
12:           ceTemp ceTemp+ceKleene [i] 
13:     ceNewItem = cePrefix+ceTemp+cePostfix 
14:     insert ceNewItem into FirstSetBuf 
15:     i = r 
16:     while i<n do 
17:            i = i+1 
18:            j = sizeof FirstSetBuff; 
19:            while j> = 1 do 
20:                   ceTemp = kleene section of   
          FirstSetBuff (j) 

21:                   if last event of ceTemp = ceKleene [i-1] 

          then 
22:                          ceTemp = replace the last event of 
    ceTemp with ceKleene [i] 
23:                          ceNewItem = cePrefix+ceTemp+  
      cePostfix 
24:                          insert ceNewItem into FirstSetBuff 
25:                   else 
26:                           break; 
27:                   j- -; 
28:            ceTempBuffer = Combination (n-2, r-2,    
   ceTemp) 
29:            for all composite event ceTB in       
    ceTempBuffer do 
30:                   ceTemp = ceTB+ceTemp [i-1]+    
          ceTemp [i] 
31:                   ceNewItem = cePrefix+ceTemp+  
          cePostfix 
32:                   insert ceNewItem into SecondSetBuff 
33:     return FinalBuffer 
 

• Then the algorithm takes the previously final event 
in kleene, b7 and concatenates it to current final 
event in kleene, b8; keep them as two last events of 
new composite events for later use. Then, place it 
as two last final events in kleene section of new 
events. The beginning events are obtained from 
combination algorithm where it is applied on r-2 
first events in kleene, b4b6, apart from b7 and b8 
which have been already considered. For all 
composite events as result of combination of r-2 
first events in kleene, the combination result is 
attached to b7b8 and adds the other events a2 and 
c10d12 to make composite events. The new 
composite events are also added to the final buffer. 

  
Finally MergeJoinSort algorithm is applied twice 

to sort composite events in buffer in ascending order 

based on their time stamps:  

 

• At first MergeJoinSort algorithm is applied to sort 
composite events added in step 2 and 3 produces a 
sorted set of newly added composite events in final 
buffer.  

• Given the sorted composite events in i section 
which only covers the newly added events and old 
composite events previously placed in final buffer, 
MergeSortJoin algorithm applied to sort all 
composite events in final buffer.  
 

The process is continued with a new event in kleene 
section, b9 and stops when there is no more kleene 
event to check. The algorithm 3 presents kleene num in 
FAEM. 

For composite events with non-kleene events if 
constraint is not satisfied, the system ignores the 
composite event and proceeds to the next composite 
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event. In order to avoid false negatives for each 
composite events including kleene events, if the 
constraint is not satisfied, the system ignores only 
unmatched kleene event instances and checks if number 
of kleene events, in kleene events group, still meets the 
constraints; then, composite event is generated for 
matching. For example, for kleene num, number of 
kleene events is expected to be greater equal to num 
and in case of finding less than num matched the 
composite event is ignored and proceeds to the next 
composite event.  

 

IMPLEMENTATION 

 

In implementation of FAEM, buffers are 
instantiated at run-time with respect to the pattern 
section of a given query. FAEM considers one buffer 
for each event class, specifically: single event class 
buffers which are in the lowest level of hierarchy in a 
tree-based architecture and composite event class 
buffers which are instantiated to preserve composite 
events as results of applying join operators. Buffer is a 
collection of events of the same type. The events in 
each buffer determined based on hashing on its ID and 
preserves the respective events as long as they are 
within range of a time window. Single and Composite 
event buffers are connected to each other in a 
hierarchical tree-based directed graph. During 
implementation, a composite event class consists of a 
vector of simple events arranged by their timestamp; 
while a single event class consists of event ID, 
timestamp and values attributes where the latter is a 
vector of value. Each buffer instance is in join with 
another buffer through next and previous cursors 
considering that only the next cursor exists between a 
pair of buffers with two-way operators in between. For 
single event class predicates, FAEM places predicates 
in the buffer of respective simple event buffer; while 
for multi-class predicates, the predicate is placed in the 
internal node containing involved event classes in 
predicates at the lowest possible level. 

The dataset that we used in this study is Yahoo! 

KDD cup dataset related to music tracks downloaded 
by users. The dataset represents a sampled snapshot of 

the Yahoo! Music community's preferences for various 
musical items with different entities including tracks, 

albums, artists and genres. The number of user ratings 

is varied from tenths to thousands of ratings (events) a 
day. FAEM reads from a file containing more than 

1,000,000 user ratings at maximum speed and allocates 

a time-stamp to each event at their respective arrival 
time. 

 

RESULTS 
 

In order to evaluate the expressibility and 
performance of FAEM in supporting kleene operator, 
the tests performed as follows:  

• On expressibility, we compare FAEM with NFA-
based systems (Agrawal et al., 2008; Cugola and 
Margara, 2012; Mei and Madden, 2009) as tree-
based system to show the limitations of these 
systems to support range of user-defined queries.  

• On performance, we first show the dynamic 
behavior of tree-based system to switch to efficient 
plan while NFA-based plans does not support. 
Then, we compare performance of kleene num in 
FAEM with ZSTREAM (Cugola and Margara, 
2012) which both are tree-based systems.  
 
FAEM is implemented in C++ using STL: vector 

to support buffers. We implemented the tree-based 
approach as described in (Mei and Madden, 2009) (in 
C++ using STL: List to maintain buffers). In our 
experiments STL: vector performs faster than STL: List 
when data is small. Conversely, for large amount of 
data STL: List performs better than STL: Vector. 

We performed all experiments on a dual core CPU 
2.1 GHz. Intel Pentium 4 and 2 GB RAM DDR2. The 
system reads data from a pre-recorded data file and data 
pulled into the system with the maximum rate system 
accept, where the rate is calculated as the number of 
events in a second. The time required to read data from 
files, in addition to the time needed to deliver output is 
not considered. We run some experiments on Yahoo! 
KDD Cup2011. In some of the experiments we report 
peak memory. The average of 40 runs performed on all 
experiments. 
 
Expressibility: At first we present the expressibilty of 
ZSTREAM on queries presented on methodology 
section. ZSTREAM presented algorithm to support 
kleene operator only lets the kleene event class appears 
between two non-kleene event classes joined as a 
ternary with sequence operators between them. Thus, 
ZSTREAM is not able to run Query 1 because the 
length of pattern is less than 3 and does not support 
Query 2 because the join between 2nd and 3rd event 
classes is a conjunction, while ZSTREAM only 
supports sequence operator to join event classes. 

ZSTREAM is expressible to support Query 3; 
However, some of the useful intermediate results are 
removed during matching. Figure 5 illustrates event 
composition in ZSTREAM. The superscript and 
subscript of each event shows its value and timestamp, 
respectively. A composite event is generated as result 
of applying on kleene operator, g12

2; m
16

3; m
12

6; m
13

7; 
d

18
8. This composite event in joining with a i11

9 in 
buffer I, instead of removing the unmatched single 
events from kleene section of the composite event, 
removes the entire composite event, as their proposed 
method presented no mechanism to deal with this 
situations. 

On the other hand, in NFA-based systems namely, 
SASE+  (Agrawal   et   al.,  2008)  uses  a  breadth  first 
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Fig. 5: Shortcoming of kleene+ and * in ZSTREAM 
 

 
 
Fig. 6: Shortcoming of SASE in sharing buffer 

 
algorithm to search for all the items in breadth to find 
match cases. Then search is continued in previous 
breadths in backward manner. They used a shared 
buffer to avoid assigning numerous stacks and store 
events in them. To keep track of each run they assign a 
version number to connect events. However, we show 
that in some scenarios, using their share buffer 
technique would be troublesome. According to their 
model, events related to different runs can be placed in 
their respective buffers and pointing to each other as 
shown in Fig. 6. 

When a new event is received a version number id 
assigned to its cursor as a reference to track events and 
shares the path with other processes. The problem 
arises when an instance of buffer B violates one or more 
events in a [i] which are in common with the previous 
runs. For example, if e8 in B invalidates any of i 
(Gyllstrom et al., 2007) instances, namely e3 which is in 
common with 1.0.0 version of e6 in B, the path in a [i] 
is not straight forward as addressed in Agrawal et al. 
(2008) that "If two runs, despite their distinct history, 
have  the  same  computation  state  at present, they will  

Table 1: Events population in 1 million records of Yahoo! music 
dataset 

Track ID  t147073  t56437  t189820  t531386

Population in 1 
million records 

1661  1350  1325  1268 

 
select the same set of events until completion". We 
even thought about an alternative solution for their 
system through assigning extra pointers to jump over 
uncommon events in a [i], but it can dramatically 
increase number of pointers and neutralize the benefit 
of shared buffer. In Cugola and Margara (2010, 2012) 
they improved kleene operator on finite state machine, 
however these systems are unable to support two of key 
event operators namely, conjunction and disjunction. 

In contrast to these systems, FAEM avoids 
aforementioned problems through applying the method 
presented in kleene num section. FAEM is implemented 
based on BTDG and supports conjunction between pair 
of event classes when one of the event classes is either 
kleene*, +or num. In performance section, we present 
the experiments on kleene and conjunction in FAEM. 
For the patterns with length of one, FAEM inserts a 
dummy buffer as the left child of the binary tree and the 
result of applying kleene is placed in their parent buffer.  
 
Performance: The performance in CEP systems is 

measured as maximum of rate of input which can be 

processed in a second. We have not considered the time 

to read from input and to display output. The 

performance is affected by various factors including, 

order of joins, population of events on kleene operator, 

Selectivity of Events, Time window on throughput and 

memory consumption, position of kleene on throughput 

and allocated memory that we present in details. In 

addition, the process is performed in-memory, so 

memory allocation is an important measure that we 

show here. 

However, if in the 3rd query, we change kleene+ 
into kleene num, ZSTREAM has two shortcomings 
affecting the performance: 

 

• It creates many events during applying kleene on a 

ternary Google; Microsoft (Mei and Madden, 

2009); Dell which later in join with Intel some of 

these events may found invalid and needs to be 

removed. Due to this extra burden on kleene in 

ZSTREAM, throughput of the system is affected 

negatively. 

• The limitation of ternary on kleene, limits 
ZSTREAM is unable to switch to an efficient 
matching plan.  

  
The population of events in each buffer affects on 

performance of matching. In KDD Cup 2011 dataset we 
selected the most frequent events to define queries on 
them with the population presented in Table 1 
aggregated on 1 million users' ratings. 

g2
12; m3

16; m6
12; m7

13; d8
18

i5
10

i9
11

g2
12; m3

16; m6
12; m7

13; d8
18

m1
14

m3
16

m4
10

m6
12

m7
13

d8
18g2

12

expected

e1

e3

e2

e3

e4

e5

e6

e7

e6

e8

a a[i] b

2.0.0

2.0.0

1.1.0

2.0

1.0
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        (a)                                                                                               (b) 
 
Fig. 7: Throughput and memory of kleene on various plans 

 
Order of joins: The matching plans determine the 
order of applying join on each pair of event classes. For 
a Pattern of a query with the length of 4 as G; M; D; I, 
there are several plans can be applied as Left, Right, 
Bushy and Inner a ((G; M); D); I, (G; (M; (D; I))), ((G; 
M); (D; I)) and (G; ((M; D); I)) respectively. The Fig. 7 
shows throughput and allocated memory for FAEM on 
1,000,000 events on three queries as below: 
  
• PATTERN 147073; 56437; 189820; 531386+ 

WITHIN 5000 unit  

• PATTERN 147073+; 56437; 189820; 531386 
WITHIN 5000 unit  

• PATTERN 147073; 56437; 189820; 531386 
WITHIN 5000 unit 
 
When the kleene is on the right side, the Inner plan 

performs better than other plans. The results of 
applying (56437; 189820) generates less intermediate 
results than any other pair of adjacent buffers. For Right 
and Bushy plans because kleene is appeared on the 
right side (189820; 531386+), the number of composite 
events as result of join never exceed number of events 
in (189820); However, when a new instance of 
(531386) is received and found match, the length of 
composite events is increased for all existing events in 
(189820; 531386+) buffer. Thus, Right and Bushy 
plans are not as efficient as Inner plan; However, these 
two plans perform better than Left plan because of 
rather high number of events in (147073) buffer that 
generates large number of composite events which 
many of these composite events are discarded as they 
do not satisfy time-window constraints. 

When the kleene is located on the leftmost event 
class, the throughput of Left and Bushy plans 
outperforms other plans. As result of applying Left 
plan, the number of composite events is decreased in 
compare with a case where the kleene is does not exists 
in query. The number of composite events never exceed 
number of events in right side. For example: (147073; 
56437) generates more composite events than 

(147073+; 56437) and number of composite events in 
(147073+; 56437) never exceed the number of events in 
(56437), due to grouping of events in (147073) matched 
with respect to every instance of (56437). The less 
number of intermediate results causes the less memory 
required for event matching, so Bushy and Left plans 
required less memory in compare to Right and Inner 
plans. The reason of achieving better performance and 
memory consumption for Left and Bushy plans on 2nd 
query is, applying join when kleene event is on the left 
side is less costly than the cases where kleene is on the 
right side of a join or there is no kleene in query 
because time complexity of Algorithm 1 is less than 
Algorithm 2. The worst memory consumption happens 
when the right most buffer is a kleene buffer and Bushy 
plan is selected because both of buffers involved in 
(147073; 56437) are highly populated and generates 
many results. 

When there is no kleene in the query, Left plan 
performs worst of all, because many intermediate 
results are generated in early stages of matching which 
many of them may discard from further process as they 
do not fulfill the requirement of time window 
constraints. Starting from less populated event classes 
which are located on right and the efficiency of back-
track event matching in preventing generation of 
excessive intermediate results, Right plan performs 
slightly better than Bushy and Inner plan on the 3rd 
query. 
 
Population of events in kleene: We applied four 
queries on a time window with size of 5000 events. The 
Pattern section of these queries are as follows:  
 

• 531386; 189820; 56437; 147073+  

• +531386; 189820; 56437; 147073  

• +147073; 56437; 189820; 531386  

• 147073; 56437; 189820  

• The size of time-window for all these queries is 
selected 5000 events  
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(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Fig. 8: Population of events on throughput and memory for 
various queries 

 
The Fig. 8 shows the performance and memory 

consumption of the system when the population of 
events affect on different plans. 

For Query 1, left plan Inner plan out performs 
other plans because it consumes the least memory and 
provides the highest throughput, while left plan 
consumes too much memory to apply matching and 
needs a rather extended time to perform the same task. 
It is notable that population of 147073 is more than 
531386 and it is expected to have left plan prominent; 
however, grouping of events for 147073 in the right 
side of the query reduces the overall number of 
composite events in right side and increases the speed 
of matching. For the second query the grouping is 
applied on left most event class and performance is 
higher for plans containing joins between two first even 
classes. In Query 3, the grouping is applied on the left 
most event class and causes to achieve a higher 
performance for Left and Bushy plans. Finally for the 
forth query, the population of events in Left plan is 
much higher than others, so Left plan performs worst 
than other plans. It can be seen, the population of events 
along with the position of kleene in a query are 
influential to select the best plan. 
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Fig. 9: Position of aggregation on throughput and memory for 
various queries 

 
Selectivity of events: In WHERE clause of queries, 
logical constraints may affect on performance regarding 
the filtering power of the predicates. The filtering 
power, selectivity, is tested on PATTERN 147073; 
56437; 189820; 531386+. Figure 9 show throughputs 
and the amount of allocated memory for event matching 
in various rates of selectivity between two first event 
classes 147073 and 56437. The various rate of 
selectivity between 147073 and 56437 has a great effect 
on Left and Bushy plans due to these two classes are 
evaluated in finer levels of hierarchy. Left plan is the 
more affected than Bushy plan because of descending 
number of events from left to right. The Right and Inner 
are not much affected because the filtering between 
147073 and 56437 is applied in final stage where not 
many composite events are discarded. Similarly, the 
various rates of selectivity between 189820 and 531386 
is not much effective on Left plan but other plans are 
affected. 
 

Time window on throughput and memory 

consumption: Figure 10 shows the effectiveness of 
time window on throughput of event matching. The 
performance for patterns with kleene shows better 
results than no-kleene because kleene collects  as  many 
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(b) 

 
Fig. 10: Length of time-window on throughput and memory 

for various queries 

 
events in a group to create a single composite event and 
produces much less distinctive composite events. 

 This saves memory space and rather high 
throughput for patterns with no kleene. On the other 
hand, Right plan performs better than Left plan as it has 
less number of composite events in lower levels of 
hierarchy. However, increasing size of time window 
increases the allocated memory and more events to 
evaluate decreases the throughput. 
 

Position of kleene on throughput and allocated 
memory: Figure 11 shows the throughput and memory 
space in Right plan when the position of kleene Num 
(with size = 3), + and * changes from 1st to 4th position 
on the PATTERN 147073; 56437; 189820; 531386 
WITHIN 10000 unit. 

Kleene Num performs the best of all; however, the 
gap between kleene Num and other plan is higher when 
the kleene is located on first and last position. Because 
only 3 events, in accordance to size of kleene num are 
selected and needs an extra step to generate 
combinations, the throughput is less than all. The 
amount of consumed memory for the kleene Num 
except   for  the   fourth  position  is  more  than  others.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
Fig. 11: Position of kleene on throughput and allocated 

memory 

 
Because in final stage of matching many events are 
generated that their size in kleene num are 3, while the 
final stage is not applied for the kleene+ and *. For the 
4th position, kleene Num consumes 1/3 of memory in 
compare to kleene+ and * due to generating less 
composite events with the size of 3. 
 

CONCLUSION 
 

The focus of this study is on improving 

expressibility and performance measures of kleene 

operator on our previously developed BTDG. Through 

addressing the shortcomings of both NFA-based and 

ternary tree-based systems to support kleene operator, 

we developed kleene operator including three 

algorithms for kleene+, * and num. The experiments 

show that our implementation supports wider range of 

queries than these systems. In addition, the high 

performance of the system is due to fast directing 

events into higher levels of event hierarchy through the 

cursors, the dynamic installation of optimal plan as well 

as, late applying combinations because some of the 

events are discarded during matching. 
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