
Research Journal of Applied Sciences, Engineering and Technology 8(13): 1531-1543, 2014
DOI:10.19026/rjaset.8.1131
ISSN: 2040-7459; e-ISSN: 2040-7467
© 2014 Maxwell Scientific Publication Corp.

Submitted: June 03, 2014 Accepted: July 13, 2014 Published: October 05, 2014

Corresponding Author: Babak Behravesh, Faculty of Computing, Universiti Teknologi Malaysia, Malaysia
This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/).

1531

Research Article
Optimizing Expressibility and Performance of Kleene Operators on Binary Tree-based

Directed Graph in Complex Event Processing

Babak Behravesh, Siti Mariyam Shamsuddin, Alex Hiang Tze Sim and Hassan Chizari
Faculty of Computing, Universiti Teknologi Malaysia, Malaysia

Abstract: This study presents a novel method to develop kleene operators on a Binary Tree-Based Directed Graph
(BTDG) to improve expressibility and performance of our developed complex event processing system. Complex
Event Processing (CEP) systems are widely employed to notify opportunities and threats, which many of these
situations are discovered through detection of multiple occurrences of the similar set of events. Many of CEP
systems proposed kleene operators to detect these situations. The high expressibility of our implemented CEP
system achieved by developing algorithms on kleene operator. These algorithms are designed on a BTDG as a
unified basis to arrange input data and joining this input according to a given query. The performance is improved
through directing events instantly to join with other events, dynamically switching to an optimal plan and late
applying combination for kleene with specified size. The experiments shows kleene operator on BTDG brings rather
high degree of expressiblity and performance in compare to its counterparts.

Keywords: Binary tree-based directed graph, complex event processing, event matching, kleene operator

INTRODUCTION

In event processing systems, events are received

from several peripherals; the events are investigated to
discover match cases against user-defined queries and
the results are either notification messages or automated
actions. The user-defined queries determine the
relationship between events with respect to logical and
temporal constraints and the queries containing kleene
closure, in particular, search for multiple occurrences of
events. A large body of applications in many areas
employs CEP systems to monitor iterative occurrences
of events in supply chain management systems to count
number of pallets that read by RFID antenna (Gyllstrom
et al., 2007), in health care services to track health-care
workers for hygiene compliance (Wang et al., 2010)
and in stock market analysis to monitor multiple
changes in stock price (Mei and Madden, 2009; Peer
et al., 2013).

Several CEP systems developed in academia and
enterprise used either finite state machine or tree
structure as a foundation to perform event matching. In
FSM (Wu et al., 2006; Agrawal et al., 2008; Cugola
and Margara, 2012) and Tree-based (Mei and Madden,
2009) systems event processing systems kleene is
defined for three possible cases; kleene *, denotes that
the event can have no occurrence or can occur more
than 0. kleene +, implies event can occur once or more
times; kleene num, detects situations that event occurs
in a specified times. In FSM systems a great deal of
discussions dedicated to kleene operator and ignoring

some events to cover this operator (Agrawal et al.,
2008; Muthusamy et al., 2010; Demers et al., 2007).
These systems use Non-deterministic Finite Automaton
(NFA) as a basis to distinguish the relevant from
irrelevant events with respect to the query. They added
an option in their query definition that determines the
level of relaxation for event selection (Agrawal et al.,
2008). One the other hand, in tree-based systems,
namely ZSTREAM (Mei and Madden, 2009), they use
a ternary of buffers to confine number of composite
events. In Mei and Madden (2009), they argued on
shortcoming in NFA-based models to support
concurrency.

According to some of previous work, improving
expressibility of query languages to support wide range
of queries is considered as an important issue (Diao
et al., 2008; Cugola and Margara, 2012). In SASE (Wu
et al., 2006), a CEP system developed to support
sequence and negation operator as well as some
strategies to set level of relaxation on relevant events;
however, SASE does not support kleene operator. In
SASE+ (Agrawal et al., 2008), they addressed the need
to improve expressibility of SASE by developing an
algorithm to support kleene operator. They developed
match buffer as a shared buffer for multiple processes.
However, NFA-based systems have the following
shortcomings:

• These systems are limited to perform matching
from left to right (Cugola and Margara, 2012), or
right to left (Diao et al., 2008; Agrawal et al.,

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1532

Fig. 1: Binaty tree-based graph in FAEM

2008), which makes these systems limited to
reorder join operators.

• We argue and show in this study that their
proposed shared buffer, cannot guaranty the
validity of results.

In contrast to NFA-based models, ZSTREAM (Mei

and Madden, 2009) manage events in tree-based
structure. In supporting kleene, they developed a
ternary including three event classes that are joined
through an edge into the parent buffer which keeps the
result of applying kleene operator. In their system, the
kleene event class is surrounded by two other non-
kleene event classes. ZSTREAM uses right and left
buffers to erase irrelevant events from kleene buffer
which is only considered in middle buffer. Their
technique reduces memory space required for applying
composition and reduces processing time.

However, kleene operator in ZSTREAM imposes
some limitations as:

• Connecting three buffers as a ternary, with a kleene
buffer in the middle, between left and right buffers,
negatively affects the expresibility of the kleene
operator because user may define some queries that
violates this limitation.

• The sequence operators to join in right and left side
of kleene buffer are compulsory while other
operators may occur instead.

• Some of events out of the ternary may discard the
events in range of ternary; this imposes an extra
burden in creating and then removing invalid

events. For the first time, we show these
shortcomings in expressibility section.

Figure 1 shows the arrangement of buffers and
cursors in FAEM, the system that we previously
developed (Behravesh et al., 2014). Given the stream of
events and a user-defined query, FAEM generates a
tree-based directed graph. Event classes as appeared in
PATTERN section of the query forms single class
events and their composition creates multi-class events.
The predicates Google.value <1.2 * Microsoft.value is
determined based on Where clause and assigned to the
lowest class as possible. Each event contains ID,
timestamp and value. Buffers are hashed by the ID
based on pattern section of the query. In event stream,
events are placed in their respective buffers and after
satisfying evaluation; their composition is placed in
their parent buffer. The constraints are logical and
temporal, the logical constraints are define in WHERE
clause and join operator here is ";" implying sequence
operator. Temporal constraints are either sliding time-
window constraint which is determined by WITHIN, or
order constraint that here defines it is expected to find
Microsoft events following Google events. The aim of
this study to improve expressibility and performance of
pattern matching in CEP systems through optimization
on various kleene operators. In order to achieve this
goal, following objective are satisfied:

• Designing kleene operators' algorithms on binary
tree-based directed graph to improve expressibility
of applying kleene on concurrent events.

g 5 87events

PATTERN Google; Microsoft; Del

WHERE Google.value < 1.2 * Microsoft.value

WITHIN 5 units

Google.value >

Microsoft.value m 2 97

Google; Microsoft; Del

Google; Microsoft

DelMicrosoftGoogle

g 1 15

g 1 15

g 5 87

m 2 97
d 3 65

d 4 76

m 2 97g 1 15

m 2 97g 1 15 d 3 65

d 4 76

m 2 97g 1 15 d 3 65 g 5 87d 4 76

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1533

Moreover, the directed graph helps the system to
the perform matching as soon as receiving an
event.

• Developing an optimized kleene num algorithm to
improve performance of event matching through
not to generating excessive intermediate results. In
addition, the algorithm avoids unbiased removal of
valid composite events.

However, the shortcoming of these systems is

described in details in results section.

METHODOLOGY

One of the inputs of a CEP system is a user-defined

query which finds its match cases over stream of input
events. The queries in below are related to stock market
that are define by an expert user. In dealing with
endless stream of stock market events, these queries are
some of the sample queries to discover their match
cases:

Query 1:
PATTERN Google; Microsoft+
WHERE Google.value >100$
AND Google.value <Microsoft
WITHIN 5 UNIT
Query 2:
PATTERN Google; Microsoft [3] and Del
WHERE Google.value>1.12 * Mircosoft.value
AND Google.value >1.2 * Del.value
WITHIN 10 SEC
Query 3:
PATTERN Google; Microsoft*; Del; Intel
WHERE Intel.value>Mircosoft.value
WITHIN 200 UNIT

Query 1 searches for as many as Google events

within the range of time window, 5 events, each of

these events worth more than 100$ that these are

followed by a Microsoft event which worth more than
all of these Google events. The symbol+implies that 1

or more Google events. Query 2, in a floating time

window of 10 sec, discovers Google events that
followed by three Microsoft events which their prices

have at least 12% less values than Google these are
followed by a Del event which its price is at least 20%

less than Google's. Query 3, searches input stream for

match cases when Google event is followed by as many
as Microsoft events, 1 Del event and 1 Intel event

within 200 events, so that the value of Intel stock event

is more than Microsoft's. The symbol * implies 0 or
more Microsoft events.

Kleene operator in FAEM: In this study, kleene
operator for all sorts of kleene (*/+/ num) follows an
identical structure based on BTDG. However, for

kleene num, an extra step is applied to generate all sets
in the final step. Likewise other buffers, events in
kleene buffer collect all of their respective events in its
buffer with respect to requirements of time-window and
WHERE clause. The only difference is as they join with
other operators, a group of events, more than one
instance of kleene events are selected from kleene
buffer.

Kleene star and plus: When a new event is received,
the system pushes the event into its related buffer. If its
pair buffer based on query is found a kleene, grouping
is applied on kleene events with respect to temporal and
logical constraints and composite event is pushed into
their parent buffer; similarly for each newly received
kleene event, grouping is applied based on constraints
and the event instances in its adjacent buffer which is a
non-kleene buffer. When the left buffer is a kleene
buffer and associative operator is between right and left
buffer, the algorithm below generates composite events
in MBuf.

Algorithm 1: Kleene on Left
Input: LBuf, RBuf, MBuf are left, right and result
event buffers, respectively;
qry is query

Output: MBuf result buffer ◃ left buffer is kleene and

right buffer is a non-kleene

1: initialize LGroupTemp

2: for Rr = RBuf [end]; Rr = RBuf [init]; ++Rr do

3: if Rr.start ts<Now-time window then

4: remove RBuf [init] to Rr; continue;

5: for Lr = LBuf [0]; Lr = LBuf [end]; ++Lr do

6: if Lr.start ts<Now-time window then

7: remove LBuf [0] to Lr; continue;

8: if Have Constraints Satis_ed (Lr, Rr) &&

 Lr.end ts<Rr.start ts then

9: insert Lr into LGroupTemp

10: if (LGroupTemp is empty) AND

 (LBuf.KleeneType == '*') then

11: insert Rr into MBuf

12: else if (LGroupTemp is not empty) then

13: insert (LGroupTemp+Rr) into MBuf; clear

 LGroupTemp

14: RBuf [initial] = RBuf [end]; ◃ setting initial

location for next round

Provided a pair of engaged-in-join event classes, if

the left event class is a kleene then algorithm 1 is
applied. The input are LBuf and RBuf which are the left
and right buffers, representing the left and right
engaged-in-join event classes. MBuf is the parent buffer
which keeps results of join between events in LBuf and
MBuf. qry is the user-defined continuous query. The
output is set of composite events stored in MBuf that
keeps the result of applying a binary operator between

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1534

events in LBuf and RBuf. LGroupTemp is a temporary
composite event, which is populated incrementally and
inserted in MBuf upon completion. In lines (2-4), the
algorithm checks all events in right buffer from the end
to the beginning and checks if the events are in range of
time-window. The out-of range events are subjected to
deletion. Similarly, in lines (5-7) events in left buffer
are checked. In each round, if the left and right events
satisfy logical and time order constraints, only the left
event is inserted into LGroupTemp, lines (8-9). So, at
the end of the inner loop, LGroupTemp is populated by
all events in LBuf which are matched to Rr. In line (10-
13), the function checks if the LGroupTemp is empty,
since only kleene start is allowed to have a composite
event entered when there is no event match in kleene
section. Otherwise, Rr is added at the end of
LGroupTemp and then LGroupTemp is inserted into
MBuf. LGroupTemp is cleared for the next round. In
order to not generate duplicate composite events we
need to start from the last position of a non-kleene
buffer (line 15).

Algorithm 2, applies kleene on pair of buffers
where the left and right buffers represent a non-kleene
and a kleene event classes, respectively. The input and
output parameters of algorithm 2 is the same as
algorithm 1. The two variables defined in lines 1 and 2
are boolean and are set to false by default. The first
variable determines if the specified event in kleene
section is matched with at least one event in the left
buffer. The second variable determines if the MBuf
contains an event starting by a specific event in left
buffer. For all events in right buffer the algorithm
checks if its start time is within the range of time
window and the out-of-range events are removed from
the buffer (lines 3-5). The validity in range of time-
window is checked for events in left buffer (lines 7-9),
which is a nested loop in the right buffer loop. For all
events in left buffer, the algorithm checks logical
constraints and order constraint, if at least one of the
events in left buffer, Lr is satis_ed (10-11). The third
nested loop checks for in range-of-time window event,
Mr, in parent buffer, MBuf, that starts with Lr and
inserts Rr at the end of Mr (12-17). At the end of
searching the MBuf (lines 18-19), if Lr is not found at
the beginning of any events in MBuf, the composition
of Lr+Rr is inserted into MBuf.

Algorithm 2: Kleene on Right
Input: LBuf, RBuf, MBuf are left, right and result
event buffers, respectively
qry is query

Output: MBuf result buffer ◃ right buffer is kleene and

left buffer is a non-kleene

1: initialize is_R_satisfied = false ◃ if a right event is
satisfied

2: initialize is_in_MBuf = false ◃ if event is in MBuf or
is new

3: for Rr = RBuf [0]; Rr = RBuf [end]; ++ Rr do

4: if Rr.start ts<Now-time window then
5: remove Rr; continue
6: is_R_satisfied = false; is in MBuf = false;
7: for Lr = LBuf [0]; Lr = LBuf [end]; ++ Lr do
8: if Lr.start ts<Now-time window then
9: remove Lr; continue
10: if Have_Constraints_Satisfied (Lr, Rr) &&
 Lr.end ts<Rr.start ts then
11: is_in_MBuf = false; is_R_satisfied = true
12: for Mr = MBuf [0]; Mr = MBuf [end]; +
 +Mr do
13: if Mr.start ts<Now-time window then
14: remove Mr; continue
15: if Mr starts with Lr then
16: Mr = Mr+Rr
17: is_in_MBuf = true;
18: if is_in_MBuf == false then
19: insert (Lr+Rr) into MBuf
20: if (is_R_satisfied == false) AND
 (RBuf).KleeneType == '*' then
21: insert Lr into MBuf

If the operator is a kleene*, only satisfaction of
non-kleene event is enough for insertion into the parent
buffer and Lr is inserted into MBuf (lines 20- 21). It is
obvious that the time complexity of Algorithm 1 is
better than the algorithm 2. So, in plan adaptation
algorithm that we previously addressed in FAEM,
Algorithm 1 is more beneficial than algorithm 2,
regardless of other factors affecting the optimal plan.

Kleene on concurrent join: Another benefit of
applying binary tree-based directed graph is to perform
matching on kleene events when the join operator is
either conjunction or disjunction. Conjunction supports
concurrency between pair pf event classes. According
to the definition of conjunction (Mei and Madden,
2009), events from A or B classes only needs to be in
the range of time-window without any constraint on
their order of occurrence. In FAEM, we developed this
definition on BTDG to support conjunction not only
between two non-kleene event classes, but between a
kleene and a non-kleene event class. Figure 2 shows
how (A+& B) can be represented by (A+;B) ∪ (B;A+).

 For every new event in the buffer A, grouping in
buffer A is performed with respect to each of B events
in algorithm 2 and for a new event instance of B
grouping is performed on buffer A Algorithm 1.
Similarly, (A* &B) and (A [num]&B) are represented by
(A*;B) ∪ (B;A*) and (A [num]; B) ∪ (B;A [num]),
respectively.

Given Query 1, Fig. 3 shows how matching
performs on receiving events. The system receives m1
and stores it in buffer M; the system then checks for a
match case in G buffer. When it checks content of
buffer G through previous cursor, it finds no event in G.
Thus, no matching is performed. Another event
instance, m2, in M is received from input stream, but
buffer G is still empty, so no evaluation is performed. A
new event instance, g3, is received in buffer G arrives

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1535

Fig. 2: Conjunction kleene in FAEM

(a) (b)

 (c) (d)

Fig. 3: Throughput (a) number of match cases, (b) memory consumption (c) and intermediate results, (d) on kleene plus in

FAEM

and checks the buffer M through next cursor. As g3 is
received the algorithm checks buffer M from beginning
to find those M instances matched to g3, as a group and
at the end g3 is added to the end of group generating m1
m2 g3. The composite event is inserted into the parent
buffer. The same scenario happens when g4 is received
and makes composite events with m1 and m2 with
respect to constraints. When event m5 is received,
algorithm performs grouping on M buffer with respect
to all events in buffer G. In buffer M, the algorithm
creates a group by combining M events instances as
many matched with g3. The first event pushes in
temporary composite event is g3 followed by m5. Here,
in buffer M, m5 is the only event match with g3; so,
g3m5 is inserted into the parent buffer. Similarly, g4m5
is inserted into the parent buffer.

After receiving g6, the right buffer is checked to
find match cases. In M buffer, m1 is found invalid as it

cannot satisfy temporal constraint defined in time-
window and is removed from M buffer. m2 and m5 are
matched with g6 and their composition is inserted into
G&M+ buffer. As m7 is received, the algorithm checks
G buffer to find match cases. m2 is removed because it
is out of time window. m7 is found match to g3 and
algorithm checks composite events in G&M+ to find
any event starting with g3 and adds m7 to the end of the
composite event making g3m5m7. Similarly g4m5m7 is
generated. In comparison between m7 and the last event
in G buffer, g6 is found match to m7 but there is no
event in G&M+ starting with g6; so, g6m7 is inserted
into G&M+.

For a pattern section of a query as (A+; B) and (A;
B+), the algorithm 1 and 2 can be applied respectively.
For the conjunction between A and B when either is a
kleene event, union of algorithm 1 and 2 generates
results.

A+ & B

BA

A+ ; B

BA

B ; A+

A+B

U

G& M+

M+G
g3

g4

m1

m2

m1 m2 g3

m1 m2 g4

m1 m2 g3 g4 …

Now

G& M+

M+G
g3

g4

m1

m2

m5

m1 m2 g3

m1 m2 g4

g3 m5

g4 m5m1 m2 g3 g4 m5 …

Now

G& M+

M+G g3

g4

g6

m2

m5

m2 g3

m2 g4

g3 m5

g4 m5

m2 m5 g6

m1 m2 g3 g4 m5 g6 …

Now

G& M+

M+G g3

g4

g6

m5

m7

g3 m5 m7

g4 m5 m7

m5 g6

g6 m7m1 m2 g3 g4 m5 g6 m7 …

Now

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1536

Fig. 4: Kleene num in FAEM

Kleene num: Likewise, kleene+ and kleene*, in kleene
num the algorithm groups as many events in kleene
buffer as match with temporal and logical constraints.
In higher levels before applying join operator, the
number of kleene events in a composite event is
checked if it fulfills the num as well as temporal and
logical constraints. The checking in higher levels is
because some of kleene events may be discarded from
composite events if they do not satisfy constraints in
next evaluations. Removing these event instances from
kleene section is because number of valid events in
kleene is less than num for some of composite events.
In final stage some of composite events may have more
kleene event instances so various composite events are
generated so that with kleene length equal to num.

Given Query 3, Fig. 4 shows matching in buffers
where Google, Microsoft, Del and Intel are represented
by A, B, C, D. In this figure, we start the description
after receiving d12 because earlier steps are straight
forward; however, later steps refer to these steps. When
d12 is received, it invalidates for instance one of the
kleene events, namely B. In FAEM, only that event, b3
is subjected to removal from the respective composite
event.

The kleene operator in FAEM is applied after
applying each operator in higher levels of hierarchy to
check if number of kleene items is met. If number of
items are less than kleene number the composite event
is removed; otherwise, the proposed combination
method in below is applied to generate all possible
composite events when the process arrives to the final
state.

Proposition: The events are arrived to the system based
on their timestamps, or out of order events are not
considered. In order to present steps clearly, we first
show the function of the system through an example,
then a formal definition following the algorithm for
FAEM combination are presented. Given set of events
placed in their related buffer based on hashing on their
IDs and a continuous query as below, we apply FAEM
combination.

Combination algorithm: Kleene num generates some
or all of composite events as result of applying a partial
combination (Mei and Madden, 2009) or a complete
combination algorithm. During process kleene num is
considered as kleene plus. FAEM applies combination

b3

b4

b6

b7

b8

b9

a2

a5

a2 b3 b4 b6 b7 b8 b9

a5 b6 b7 b8 b9

c1

c10

c11

a2 b3 b4 b6 b7 b8 b9 c10

a2 b3 b4 b6 b7 b8 b9 c11

a5 b6 b7b8 b9 c10

a5 b6 b7b8 b9 c11

d12

only applies on Kleene num

a2 b4 b6 b7 b8 b9 c10 d12

a2 b4 b6 b7 b8 b9 c11 d12

a5 b6 b7b8 b9 c10 d12

a5 b6 b7b8 b9 c11 d12

a2 b4 b6 b7 c10 d12

a2 b6 b7 b8 c10 d12

a2 b7 b8 b9 c10 d12

…

A; B+; C; D

A; B+

A; B+ ; C

DCBA

A; B[3]; C; D

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1537

algorithm on top of full match cases. FAEM considers
maximum number of matched events. The combination
algorithm in FAEM functions in three steps: The
algorithm checks the previous results of combination on
kleene events, e0 to ei-1, to use for generating new
combinations for ei. Generating all combinations using
conventional combination algorithm for n-2 kleene
events, e1 .. en-2, out n events. Then, adding the en-1 and
en to the end of event of each composite event. Here,
a2b4b6b7b8b9c10d12 is the first events in down buffer with
5 kleene events, b4b6b7b8b9:

• To make combination with length of 3 as defined
in pattern section of the query, A; B (Cugola and
Margara, 2012); C; D, according to FAEM
Combination algorithm, the algorithm selects the
first three events in kleene, b4b6b7. Then, the events
related to other classes are placed before and after
kleene section, a2 and c10d12 to generate the first
results of combination. So, it generates
a2b4b6b7c10d12 and adds this composite event to the
final buffer. Time complexity is O (1).

• Then, the algorithm makes a copy of newly
generated composite event and replaces the last
event in kleene section, b7, with next kleene event
which has not been considered yet, b8, which
produces a2b4b6b8c10d12 and adds this composite
event to the final buffer.

Algorithm 3: Kleene Num
Input: n, r, r events from n valid events as in
combination, finalBuf
Output: result buffer finalBuf

1: ce = deque from downBuf
2: cePrefix = copy prefix section of ce, not including

the kleene section
3: cePostfix = copy postfix section of ce, not including

the kleene section
4: ceKleene = copy Kleene section of ce
5: if Size of ceKleene<r then
6: break;
7: else if size of ceKleene = r then
8: ceNewItem = cePrefix+ceKleene+cePostfix

9: insert ceNewItem into FirstSetBuff ◃ should be

sorted
10: else if size of ceKleene>r then
11: for i = 1; i< = r; i++do
12: ceTemp ceTemp+ceKleene [i]
13: ceNewItem = cePrefix+ceTemp+cePostfix
14: insert ceNewItem into FirstSetBuf
15: i = r
16: while i<n do
17: i = i+1
18: j = sizeof FirstSetBuff;
19: while j> = 1 do
20: ceTemp = kleene section of
 FirstSetBuff (j)

21: if last event of ceTemp = ceKleene [i-1]

 then
22: ceTemp = replace the last event of
 ceTemp with ceKleene [i]
23: ceNewItem = cePrefix+ceTemp+
 cePostfix
24: insert ceNewItem into FirstSetBuff
25: else
26: break;
27: j- -;
28: ceTempBuffer = Combination (n-2, r-2,
 ceTemp)
29: for all composite event ceTB in
 ceTempBuffer do
30: ceTemp = ceTB+ceTemp [i-1]+
 ceTemp [i]
31: ceNewItem = cePrefix+ceTemp+
 cePostfix
32: insert ceNewItem into SecondSetBuff
33: return FinalBuffer

• Then the algorithm takes the previously final event
in kleene, b7 and concatenates it to current final
event in kleene, b8; keep them as two last events of
new composite events for later use. Then, place it
as two last final events in kleene section of new
events. The beginning events are obtained from
combination algorithm where it is applied on r-2
first events in kleene, b4b6, apart from b7 and b8
which have been already considered. For all
composite events as result of combination of r-2
first events in kleene, the combination result is
attached to b7b8 and adds the other events a2 and
c10d12 to make composite events. The new
composite events are also added to the final buffer.

Finally MergeJoinSort algorithm is applied twice

to sort composite events in buffer in ascending order

based on their time stamps:

• At first MergeJoinSort algorithm is applied to sort
composite events added in step 2 and 3 produces a
sorted set of newly added composite events in final
buffer.

• Given the sorted composite events in i section
which only covers the newly added events and old
composite events previously placed in final buffer,
MergeSortJoin algorithm applied to sort all
composite events in final buffer.

The process is continued with a new event in kleene
section, b9 and stops when there is no more kleene
event to check. The algorithm 3 presents kleene num in
FAEM.

For composite events with non-kleene events if
constraint is not satisfied, the system ignores the
composite event and proceeds to the next composite

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1538

event. In order to avoid false negatives for each
composite events including kleene events, if the
constraint is not satisfied, the system ignores only
unmatched kleene event instances and checks if number
of kleene events, in kleene events group, still meets the
constraints; then, composite event is generated for
matching. For example, for kleene num, number of
kleene events is expected to be greater equal to num
and in case of finding less than num matched the
composite event is ignored and proceeds to the next
composite event.

IMPLEMENTATION

In implementation of FAEM, buffers are
instantiated at run-time with respect to the pattern
section of a given query. FAEM considers one buffer
for each event class, specifically: single event class
buffers which are in the lowest level of hierarchy in a
tree-based architecture and composite event class
buffers which are instantiated to preserve composite
events as results of applying join operators. Buffer is a
collection of events of the same type. The events in
each buffer determined based on hashing on its ID and
preserves the respective events as long as they are
within range of a time window. Single and Composite
event buffers are connected to each other in a
hierarchical tree-based directed graph. During
implementation, a composite event class consists of a
vector of simple events arranged by their timestamp;
while a single event class consists of event ID,
timestamp and values attributes where the latter is a
vector of value. Each buffer instance is in join with
another buffer through next and previous cursors
considering that only the next cursor exists between a
pair of buffers with two-way operators in between. For
single event class predicates, FAEM places predicates
in the buffer of respective simple event buffer; while
for multi-class predicates, the predicate is placed in the
internal node containing involved event classes in
predicates at the lowest possible level.

The dataset that we used in this study is Yahoo!

KDD cup dataset related to music tracks downloaded
by users. The dataset represents a sampled snapshot of

the Yahoo! Music community's preferences for various
musical items with different entities including tracks,

albums, artists and genres. The number of user ratings

is varied from tenths to thousands of ratings (events) a
day. FAEM reads from a file containing more than

1,000,000 user ratings at maximum speed and allocates

a time-stamp to each event at their respective arrival
time.

RESULTS

In order to evaluate the expressibility and
performance of FAEM in supporting kleene operator,
the tests performed as follows:

• On expressibility, we compare FAEM with NFA-
based systems (Agrawal et al., 2008; Cugola and
Margara, 2012; Mei and Madden, 2009) as tree-
based system to show the limitations of these
systems to support range of user-defined queries.

• On performance, we first show the dynamic
behavior of tree-based system to switch to efficient
plan while NFA-based plans does not support.
Then, we compare performance of kleene num in
FAEM with ZSTREAM (Cugola and Margara,
2012) which both are tree-based systems.

FAEM is implemented in C++ using STL: vector

to support buffers. We implemented the tree-based
approach as described in (Mei and Madden, 2009) (in
C++ using STL: List to maintain buffers). In our
experiments STL: vector performs faster than STL: List
when data is small. Conversely, for large amount of
data STL: List performs better than STL: Vector.

We performed all experiments on a dual core CPU
2.1 GHz. Intel Pentium 4 and 2 GB RAM DDR2. The
system reads data from a pre-recorded data file and data
pulled into the system with the maximum rate system
accept, where the rate is calculated as the number of
events in a second. The time required to read data from
files, in addition to the time needed to deliver output is
not considered. We run some experiments on Yahoo!
KDD Cup2011. In some of the experiments we report
peak memory. The average of 40 runs performed on all
experiments.

Expressibility: At first we present the expressibilty of
ZSTREAM on queries presented on methodology
section. ZSTREAM presented algorithm to support
kleene operator only lets the kleene event class appears
between two non-kleene event classes joined as a
ternary with sequence operators between them. Thus,
ZSTREAM is not able to run Query 1 because the
length of pattern is less than 3 and does not support
Query 2 because the join between 2nd and 3rd event
classes is a conjunction, while ZSTREAM only
supports sequence operator to join event classes.

ZSTREAM is expressible to support Query 3;
However, some of the useful intermediate results are
removed during matching. Figure 5 illustrates event
composition in ZSTREAM. The superscript and
subscript of each event shows its value and timestamp,
respectively. A composite event is generated as result
of applying on kleene operator, g12

2; m
16

3; m
12

6; m
13

7;
d

18
8. This composite event in joining with a i11

9 in
buffer I, instead of removing the unmatched single
events from kleene section of the composite event,
removes the entire composite event, as their proposed
method presented no mechanism to deal with this
situations.

On the other hand, in NFA-based systems namely,
SASE+ (Agrawal et al., 2008) uses a breadth first

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1539

Fig. 5: Shortcoming of kleene+ and * in ZSTREAM

Fig. 6: Shortcoming of SASE in sharing buffer

algorithm to search for all the items in breadth to find
match cases. Then search is continued in previous
breadths in backward manner. They used a shared
buffer to avoid assigning numerous stacks and store
events in them. To keep track of each run they assign a
version number to connect events. However, we show
that in some scenarios, using their share buffer
technique would be troublesome. According to their
model, events related to different runs can be placed in
their respective buffers and pointing to each other as
shown in Fig. 6.

When a new event is received a version number id
assigned to its cursor as a reference to track events and
shares the path with other processes. The problem
arises when an instance of buffer B violates one or more
events in a [i] which are in common with the previous
runs. For example, if e8 in B invalidates any of i
(Gyllstrom et al., 2007) instances, namely e3 which is in
common with 1.0.0 version of e6 in B, the path in a [i]
is not straight forward as addressed in Agrawal et al.
(2008) that "If two runs, despite their distinct history,
have the same computation state at present, they will

Table 1: Events population in 1 million records of Yahoo! music
dataset

Track ID t147073 t56437 t189820 t531386

Population in 1
million records

1661 1350 1325 1268

select the same set of events until completion". We
even thought about an alternative solution for their
system through assigning extra pointers to jump over
uncommon events in a [i], but it can dramatically
increase number of pointers and neutralize the benefit
of shared buffer. In Cugola and Margara (2010, 2012)
they improved kleene operator on finite state machine,
however these systems are unable to support two of key
event operators namely, conjunction and disjunction.

In contrast to these systems, FAEM avoids
aforementioned problems through applying the method
presented in kleene num section. FAEM is implemented
based on BTDG and supports conjunction between pair
of event classes when one of the event classes is either
kleene*, +or num. In performance section, we present
the experiments on kleene and conjunction in FAEM.
For the patterns with length of one, FAEM inserts a
dummy buffer as the left child of the binary tree and the
result of applying kleene is placed in their parent buffer.

Performance: The performance in CEP systems is

measured as maximum of rate of input which can be

processed in a second. We have not considered the time

to read from input and to display output. The

performance is affected by various factors including,

order of joins, population of events on kleene operator,

Selectivity of Events, Time window on throughput and

memory consumption, position of kleene on throughput

and allocated memory that we present in details. In

addition, the process is performed in-memory, so

memory allocation is an important measure that we

show here.

However, if in the 3rd query, we change kleene+
into kleene num, ZSTREAM has two shortcomings
affecting the performance:

• It creates many events during applying kleene on a

ternary Google; Microsoft (Mei and Madden,

2009); Dell which later in join with Intel some of

these events may found invalid and needs to be

removed. Due to this extra burden on kleene in

ZSTREAM, throughput of the system is affected

negatively.

• The limitation of ternary on kleene, limits
ZSTREAM is unable to switch to an efficient
matching plan.

The population of events in each buffer affects on

performance of matching. In KDD Cup 2011 dataset we
selected the most frequent events to define queries on
them with the population presented in Table 1
aggregated on 1 million users' ratings.

g2
12; m3

16; m6
12; m7

13; d8
18

i5
10

i9
11

g2
12; m3

16; m6
12; m7

13; d8
18

m1
14

m3
16

m4
10

m6
12

m7
13

d8
18g2

12

expected

e1

e3

e2

e3

e4

e5

e6

e7

e6

e8

a a[i] b

2.0.0

2.0.0

1.1.0

2.0

1.0

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1540

 (a) (b)

Fig. 7: Throughput and memory of kleene on various plans

Order of joins: The matching plans determine the
order of applying join on each pair of event classes. For
a Pattern of a query with the length of 4 as G; M; D; I,
there are several plans can be applied as Left, Right,
Bushy and Inner a ((G; M); D); I, (G; (M; (D; I))), ((G;
M); (D; I)) and (G; ((M; D); I)) respectively. The Fig. 7
shows throughput and allocated memory for FAEM on
1,000,000 events on three queries as below:

• PATTERN 147073; 56437; 189820; 531386+

WITHIN 5000 unit

• PATTERN 147073+; 56437; 189820; 531386
WITHIN 5000 unit

• PATTERN 147073; 56437; 189820; 531386
WITHIN 5000 unit

When the kleene is on the right side, the Inner plan

performs better than other plans. The results of
applying (56437; 189820) generates less intermediate
results than any other pair of adjacent buffers. For Right
and Bushy plans because kleene is appeared on the
right side (189820; 531386+), the number of composite
events as result of join never exceed number of events
in (189820); However, when a new instance of
(531386) is received and found match, the length of
composite events is increased for all existing events in
(189820; 531386+) buffer. Thus, Right and Bushy
plans are not as efficient as Inner plan; However, these
two plans perform better than Left plan because of
rather high number of events in (147073) buffer that
generates large number of composite events which
many of these composite events are discarded as they
do not satisfy time-window constraints.

When the kleene is located on the leftmost event
class, the throughput of Left and Bushy plans
outperforms other plans. As result of applying Left
plan, the number of composite events is decreased in
compare with a case where the kleene is does not exists
in query. The number of composite events never exceed
number of events in right side. For example: (147073;
56437) generates more composite events than

(147073+; 56437) and number of composite events in
(147073+; 56437) never exceed the number of events in
(56437), due to grouping of events in (147073) matched
with respect to every instance of (56437). The less
number of intermediate results causes the less memory
required for event matching, so Bushy and Left plans
required less memory in compare to Right and Inner
plans. The reason of achieving better performance and
memory consumption for Left and Bushy plans on 2nd
query is, applying join when kleene event is on the left
side is less costly than the cases where kleene is on the
right side of a join or there is no kleene in query
because time complexity of Algorithm 1 is less than
Algorithm 2. The worst memory consumption happens
when the right most buffer is a kleene buffer and Bushy
plan is selected because both of buffers involved in
(147073; 56437) are highly populated and generates
many results.

When there is no kleene in the query, Left plan
performs worst of all, because many intermediate
results are generated in early stages of matching which
many of them may discard from further process as they
do not fulfill the requirement of time window
constraints. Starting from less populated event classes
which are located on right and the efficiency of back-
track event matching in preventing generation of
excessive intermediate results, Right plan performs
slightly better than Bushy and Inner plan on the 3rd
query.

Population of events in kleene: We applied four
queries on a time window with size of 5000 events. The
Pattern section of these queries are as follows:

• 531386; 189820; 56437; 147073+

• +531386; 189820; 56437; 147073

• +147073; 56437; 189820; 531386

• 147073; 56437; 189820

• The size of time-window for all these queries is
selected 5000 events

70000

60000

50000

40000

30000

20000

10000

0

T
h
ro

u
g
h
p
u
t
(e

v
en

ts
/s

ec
)

Left plan Right plan Bush plan Inner plan

Matching plan

147073; 56437;189820;531386+
147073+;56437;189820;531386
147073;56437;189820;531386 30

25

20

15

10

5

0

A
ll
o
ca

te
d
 m

em
o
ry

 (
M

 b
y
te

s)

Left plan Right plan Bush plan Inner plan

Matching plan

147073; 56437;189820;531386+
147073+;56437;189820;531386
147073;56437;189820;531386

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1541

(a)

(b)

Fig. 8: Population of events on throughput and memory for
various queries

The Fig. 8 shows the performance and memory

consumption of the system when the population of
events affect on different plans.

For Query 1, left plan Inner plan out performs
other plans because it consumes the least memory and
provides the highest throughput, while left plan
consumes too much memory to apply matching and
needs a rather extended time to perform the same task.
It is notable that population of 147073 is more than
531386 and it is expected to have left plan prominent;
however, grouping of events for 147073 in the right
side of the query reduces the overall number of
composite events in right side and increases the speed
of matching. For the second query the grouping is
applied on left most event class and performance is
higher for plans containing joins between two first even
classes. In Query 3, the grouping is applied on the left
most event class and causes to achieve a higher
performance for Left and Bushy plans. Finally for the
forth query, the population of events in Left plan is
much higher than others, so Left plan performs worst
than other plans. It can be seen, the population of events
along with the position of kleene in a query are
influential to select the best plan.

(a)

(b)

Fig. 9: Position of aggregation on throughput and memory for
various queries

Selectivity of events: In WHERE clause of queries,
logical constraints may affect on performance regarding
the filtering power of the predicates. The filtering
power, selectivity, is tested on PATTERN 147073;
56437; 189820; 531386+. Figure 9 show throughputs
and the amount of allocated memory for event matching
in various rates of selectivity between two first event
classes 147073 and 56437. The various rate of
selectivity between 147073 and 56437 has a great effect
on Left and Bushy plans due to these two classes are
evaluated in finer levels of hierarchy. Left plan is the
more affected than Bushy plan because of descending
number of events from left to right. The Right and Inner
are not much affected because the filtering between
147073 and 56437 is applied in final stage where not
many composite events are discarded. Similarly, the
various rates of selectivity between 189820 and 531386
is not much effective on Left plan but other plans are
affected.

Time window on throughput and memory

consumption: Figure 10 shows the effectiveness of
time window on throughput of event matching. The
performance for patterns with kleene shows better
results than no-kleene because kleene collects as many

70000

60000

50000

40000

30000

20000

10000

0

T
h
ro

u
g
h
p
u
t
(e

v
en

ts
/s

ec
)

Query 1 Query 2 Query 3 Query 4

Left plan
Right plan
Inner plan
Bush plan

30

25

20

15

10

5

0

A
ll
o
ca

te
d
 m

em
o
ry

 (
M

 b
y
te

s)

Left plan
Right plan
Inner plan
Bush plan

Query 1 Query 2 Query 3 Query 4

70000

60000

50000

40000

30000

20000

10000

0

T
h
ro

u
g
h
p
u
t
(e

v
en

ts
/s

ec
)

1 ½ ¼ 1/8 1/16 1/32 1/64

Selectivity

Left plan

Bush plan

Right plan

Inner plan

Left plan

Bush plan

Right plan

Inner plan 30

25

20

15

10

5

0

A
ll
o
ca

te
d
 m

em
o
ry

 (
M

 b
y
te

s)

1 ½ ¼ 1/8 1/16 1/32 1/64

Selectivity

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1542

(a)

(b)

Fig. 10: Length of time-window on throughput and memory

for various queries

events in a group to create a single composite event and
produces much less distinctive composite events.

 This saves memory space and rather high
throughput for patterns with no kleene. On the other
hand, Right plan performs better than Left plan as it has
less number of composite events in lower levels of
hierarchy. However, increasing size of time window
increases the allocated memory and more events to
evaluate decreases the throughput.

Position of kleene on throughput and allocated
memory: Figure 11 shows the throughput and memory
space in Right plan when the position of kleene Num
(with size = 3), + and * changes from 1st to 4th position
on the PATTERN 147073; 56437; 189820; 531386
WITHIN 10000 unit.

Kleene Num performs the best of all; however, the
gap between kleene Num and other plan is higher when
the kleene is located on first and last position. Because
only 3 events, in accordance to size of kleene num are
selected and needs an extra step to generate
combinations, the throughput is less than all. The
amount of consumed memory for the kleene Num
except for the fourth position is more than others.

(a)

(b)

Fig. 11: Position of kleene on throughput and allocated

memory

Because in final stage of matching many events are
generated that their size in kleene num are 3, while the
final stage is not applied for the kleene+ and *. For the
4th position, kleene Num consumes 1/3 of memory in
compare to kleene+ and * due to generating less
composite events with the size of 3.

CONCLUSION

The focus of this study is on improving

expressibility and performance measures of kleene

operator on our previously developed BTDG. Through

addressing the shortcomings of both NFA-based and

ternary tree-based systems to support kleene operator,

we developed kleene operator including three

algorithms for kleene+, * and num. The experiments

show that our implementation supports wider range of

queries than these systems. In addition, the high

performance of the system is due to fast directing

events into higher levels of event hierarchy through the

cursors, the dynamic installation of optimal plan as well

as, late applying combinations because some of the

events are discarded during matching.

70000

60000

50000

40000

30000

20000

10000

0

T
h
ro

u
g
h
p
u
t
(e

v
en

ts
/s

ec
)

10000 20000 30000 40000 50000 60000
Size of time window (events)

Left plan-kleene

Right plan-kleene

Left plan-no kleene

Right plan-no kleene

450

400

50

0
10000 20000 30000 40000 50000 60000

Size of time window (events)

Left plan-kleene

Right plan-kleene

Left plan-no kleene

Right plan-no kleene

A
ll
o
ca

te
d
 m

em
o
ry

 (
M

 b
y
te

s)

350

300

250

200

150

100

70000

60000

50000

40000

30000

20000

10000

0

T
h
ro

u
g
h
p
u
t
(e

v
en

ts
/s

ec
)

Position 1

Kleene Num
Kleene *
Kleene +

Position 2 Position 3 Position 4

Position of kleene in qu ry e

30

25

20

15

10

5

0

A
ll
o
ca

te
d
 m

em
o
ry

 (
M

 b
y
te

s)

Position 1 Position 2 Position 3 Position 4

Position of kleene in qu ry e

Kleene Num
Kleene *
Kleene +

Res. J. Appl. Sci. Eng. Technol., 8(13): 1531-1543, 2014

1543

ACKNOWLEDGMENT

Support for this project from UTM Big Data

Centre, Universiti Teknologi Malaysia in the form of
UTM Flagship Project-UTM E-Learning Big Data
Analytics is gratefully acknowledged.

REFERENCES

Agrawal, J., Y. Diao, D. Gyllstrom and N. Immerman,

2008. Efficient pattern matching over event
streams. Proceeding of the ACM SIGMOD
International Conference on Management of Data.
Vancouver, Canada, pp: 147-160.

Behravesh, B., S. Mariyam and A.H.T. Sim, 2014.
Optimizing throughput and end-to-end latency in
complex event processing. Under Revision in Math
Probl. Eng., pp: 1-33.

Cugola, G. and A. Margara, 2010. TESLA: A formally
defined event specification language. Proceeding
of the 4th ACM International Conference on
Distributed Event-based Systems, pp: 50-61.

Cugola, G. and A. Margara, 2012. Processing flows of
information: From data stream to complex event
processing. ACM Comput. Surv., 44(3): 1-70.

Demers, A.J., J. Gehrke, B. Panda, M. Riedewald,
V. Sharma and W.M White, 2007. Cayuga: A
general purpose event monitoring system.
Proceeding of the 3rd Biennial Conference on
Innovative Data Research (CIDR, 2007), Jan. 7-10,
pp: 412-422.

Diao, Y., N. Immerman and D. Gyllstrom, 2008.
SASE+: An agile language for kleene closure over
event streams. Technical Report, UMass, pp: 1-13.

Gyllstrom, D., Y. Diao, E. Wu, P. Stahlberg and
G. Anderson, 2007. SASE: Complex event
processing over streams. Proceeding of the
Biennial Conference on Innovative Data Systems
Research (CIDR), pp: 407-411.

Mei, Y. and S. Madden, 2009. Zstream: A cost-based
query processor for adaptively detecting composite
events. Proceeding of the 35th SIGMOD
International Conference on Management of Data,
pp: 193-206.

Muthusamy, V., H. Liu and H.A. Jacobsen, 2010.
Predictive publish/subscribe matching. Proceeding
of the 4th ACM International Conference on
Distributed Event-based Systems, pp: 14-25.

Peer, B., P. Rajbhoj and N. Chathanur, 2013. Complex
events processing: Unburdening big data
complexities. Infosys Labs Briefings, 11(1): 53-64.

Wang, D., E.A. Rundensteiner, H. Wang and
R.T. Ellison, 2010. Active complex event
processing: Applications in real-time health
care. Proceeding of 36th International Conference
on Very Large Data Bases, Sept. 13-17, pp:
1545-1548.

Wu, E., Y. Diao and S. Rizvi, 2006. High-performance
complex event processing over streams.
Proceeding of the 2006 ACM SIGMOD
International Conference on Management of Data,
pp: 407-418.

