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INTRODUCTION 

 
Image denoising is a basic problem in image 

processing. It represents an important task in almost all 
image processing applications. It is defined as the 
process of removing unwanted noise in order to restore 
the original image. Among all image denoising 
techniques, wavelet based methods are known to yield 
the best results. This is due to their excellent 
localization property which became an indispensable 
signal and image processing tool to many image 
processing of application since it provides an 
appropriate basis for separation noisy signal from the 
image signal.  

Over the last two decades several methods were 
proposed for image denoising using wavelet 
thresholding. These techniques can be grouped in two 
classes: individually thresholding (Donoho and 
Johnstone, 1994; Donoho, 1995; Chang
Kalavathy and Suresh, 2011) and block thresholding 
(Efroimovich, 1986; Kerkyacharian et al
1997, 1999, 2002; Cai and Zhou, 
perspective images, omnidirectional images offer a 
large field of view. However they present a non
uniform resolution and important geometric distortions. 
Figure 1 shows an example of omnidirectional sensor.

Recently, several works have been interested in the 
denoising problem for omnidirectional images.
Marchand (2008) used the sphere as a projection s
for omnidirectional images and defined image 
processing tools in that space in order to perform the 
image denoising. Demonceaux and Vasseur (2006) 
used Markov Random Fields and defined an adapted 
system neighborhood for omnidirectional images. 
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denoising problem for omnidirectional images. Bigot-
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processing tools in that space in order to perform the 
image denoising. Demonceaux and Vasseur (2006) 
used Markov Random Fields and defined an adapted 

neighborhood for omnidirectional images.  

 
Fig. 1: An omnidirectional sensor mounted on mobile robot 

and the obtained omnidirectional image

 
In this study, we will adapt the Stein block 

thresholding algorithm to omnidirectional images. The 
remainder of the study is as follows: In the next section 
we present the Stein block thresholding approach for 
perspective images denoising (Chesneau
 
Stein block thresholding for perspective images 
denoising: Let’s consider the nonparametric regression 
model: 
 

Y X σε= +                                           

 

where, � � �������������
 

is the noiseless image, 

� � �	�����������
 

is the noisy image,

are i.i.d, ,   1, ,n m N= … . The aim is to denoise Y by 

finding an estimate X of the noiseless image X that 

minimize the mean  squared error. 

Let , ,j kY
l , , , , ,,j k j kXθ ψ= 〈 〉

l l  and 

denote, respectively, the matrix of  wavelet  coefficients
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and the obtained omnidirectional image 

, we will adapt the Stein block 
thresholding algorithm to omnidirectional images. The 

is as follows: In the next section 
we present the Stein block thresholding approach for 
perspective images denoising (Chesneau et al., 2010).  
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Fig. 2: Subbands of 2-D orthogonal wavelet transform

 

of Y, the matrix of Unknown coefficients and a 

sequence of noise random variables, where 

two-dimensional dyadic orthogonal wavelet transform 

operator, { }0,...,j J=  is the scale parameter, 

10logJ N= , { }1, 2 , 3∈l  is a generic integer 

indexing of subband, {2

1
0,...,2 1j i

k D
=

∈ = −∏
position parameters. 

The observed sequence of coefficients is defined by:

 

, ,k , ,k , ,j j j kY Zθ σ= +
l l l

             

 

Figure 2 shows a representation of the Wavelet 

Transform. The subbands HHj, HLj
 
and 

the details. The subband LLj is the low resolution 

residual. 

The block thresholding methods was proposed in 

Hall et al. (1999) and developed, generalized to any 

dimension and applied to image denoising in Chesneau

et al. (2010). The main of this method is to increase the 

quality of estimation by using the neighborhood 

information of the wavelet coefficients. The procedure 

first divides the wavelet coefficients at each resolution 

level into non-overlapping blocks and then keeps all the

coefficients within a block if and only if, the magnitude 

of the sum of the squared empirical coefficients within 

that block is greater than a fixed threshold (Chesneau

et al., 2010). 

Let Aj = {1,…, 2
j
L

-1
}
 

be the set indexing the 

blocks at scale j where L is the block length. For each 

block index jK A∈ , let ,j kB  be the set indexing the 

position of coefficients within the K
th

 block:
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Otherwise , ,
ˆ

j kθ
l

is estimated by zero (Chesneau

2010).
  

ADAPTED METHOD FOR 
OMNIDIRECTIONAL IMAGES

 
Omnidirectional images offer a large field of view, 

nevertheless, they contains significant radial distortions 
and present non-uniform resolution due to the non
linear projection. Consequently, denoising such images 
in the same way as a perspective image will lead to 
mistaken results. In the literature there are two ways to 
treat omnidirectional images. One is treating them such 
as perspective images by adapting their characteristic
The other, is to use the projection on the sphere and 
perform all treatments in this domain.

 
Stereographic projection: Geyer and Daniilidis (20
introduced the unifying theory for all central 
catadioptric sensors. They prove 
catadioptric    projection   is   equivalent
 

 

Fig. 3: Representation of a block as defined by 
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at  scale  
if the mean energy within the block 

then , ,j ky
l is shrunk 

zero (Chesneau et al., 

ADAPTED METHOD FOR  
OMNIDIRECTIONAL IMAGES 

Omnidirectional images offer a large field of view, 
nevertheless, they contains significant radial distortions 

uniform resolution due to the non-
Consequently, denoising such images 

in the same way as a perspective image will lead to 
mistaken results. In the literature there are two ways to 
treat omnidirectional images. One is treating them such 
as perspective images by adapting their characteristic. 
The other, is to use the projection on the sphere and 
perform all treatments in this domain. 

Geyer and Daniilidis (2000) 
introduced the unifying theory for all central 
catadioptric sensors. They prove that the central 

equivalent   to   a   central 

 

Representation of a block as defined by Eq. (3) 
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Fig. 4: Equivalence between the catadioptric projection and the two step mapping via the sphere

Fig. 5: The subband of DWT (left) subband projection to hemi

projection to a virtual sphere followed by a projection 

from the sphere to the retina. This second projection 

depends on the shape of the mirror. 

shows the equivalence between the catadioptric 

projection  and  the  two  step  mapping 

sphere. 
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to a virtual sphere followed by a projection 

from the sphere to the retina. This second projection 

depends on the shape of the mirror. Figure 3 and 4 

uivalence between the catadioptric 

mapping  via  the  

The parameter ξ
 
defines the shape of mirror. In 

our case, we consider parabolic mirror where
However, the method can easily be adapted to the 

general case, let ( , ) (X , Y , Z )s s s s sP Pθ ϕ =

the sphere. The Cartesian coordinates of this point are 
given by:  

 

 

defines the shape of mirror. In 
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However, the method can easily be adapted to the 

( , ) (X , Y , Z )s s s s s
be the point on 

the sphere. The Cartesian coordinates of this point are 
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Fig. 6: Representation of the spherical block as defined in Eq. (8) 
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The stereographic projection of Ps 

on the image 
plane yields point Pi (x, y) given by: 
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By combining Eq. (5) and (6) we obtain the 

spherical coordinates of point Pi: 
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Adapted spherical block estimator: The block as 

defined in the classic stein block thresholding method 

has the shape of a rectangle. In our case we need to 

define the block in the sphere in order to take into 

account the radial distortions present in omnidirectional 

images. Each subband is mapped on the sphere (Fig. 5) 

and a spherical block is defined according to the 

spherical coordinates θ and � as shown in Fig. 6. 

The set indexing the position of coefficients within 

the K
th

 block in the sphere is defined by: 
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A θ −=
 
is 

the set indexing the blocks in the sphere at scale j. 

The suitable estimator for omnidirectional images 

is given using the Stereographic Projection: 
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where Up
 
is the spherical block as defined in Eq. (8) for 

omnidirectional images. 

 

APPLICATION AND RESULTS 

 

To show the improvement given by our proposed 

adapted method, we have applied it on synthetic 

omnidirectional images of 512*512 pixels obtained 

using the ray tracing program POV-Ray. We created a 

scene where a parabolic camera, initially at the origin of 

the three dimensional Cartesian coordinate system and 

looking  in  the y-axis. This camera observes two planes  
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Fig. 7: Comparison of PSNR evolution against the noise level 

for different image denoising methods on synthetic 

image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8: Comparison of MSE evolution against the noise level 

for different image denoising methods on synthetic 

image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Comparison of SNR evolution against the noise level 

for different image denoising methods on synthetic 

image 

 

at the same distance of the origin and parallel to yz
plane. These images are corrupted by different levels of 
additive white Gaussian noises σ = (5, 10, 15, 20, 25, 
30, 35, 40). As in Chesneau et al. (2010), we used a 

block size L = 4 and a threshold 4.5λ =
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Fig. 10: Visual comparison of denoising methods on synthetic 

image (a) noisy 30σ = , (b), (c) and (d) denoising 

using  respectively the soft

(Donoho, 1995), the classical Stein block 

thresholding method result of denoising methods 

(Chesneau et al., 2010) and our proposed method

 

We have compared our results with the classical 

method proposed in Chesneau et al. 

soft-thresholding method proposed in Donoho

We have applied the orthogonal wavelet transform to 

get the wavelet coefficients using the Symmlet wavelet 

with 6 order vanishing moments.  

In order to measure methods 
calculate the Peak Signal to Noise Ratio (PSNR), the 
Mean Square Error (MSE) and the Signal to Noise 
Ratio (SNR) given by: 
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where  f  and f̂ are respectively the reference and the 

denoised image. 

Figure 7 and 8 respectively show the evolution of 
the PSNR and the SNR against the noise level. Overall, 
both the PSNR and the SNR values of our proposed 
approach remain higher than those for the other two 
methods. The evolution of the MSE
level is displayed in Fig. 9 and 10 shows a visual4.5
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calculate the Peak Signal to Noise Ratio (PSNR), the 
Mean Square Error (MSE) and the Signal to Noise 
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Table 1: PSNR evolution against the noise level for different image denoising methods on real image

 

Noise 

Soft-thresholding (Donoho, 1995) 

Classical blockJS (Chesneau et al., 2010) 

Proposed method 

 

Table 2: SNR evolution against the noise level for different image denoising methods on real image

 

Noise 

Soft-thresholding (Donoho, 1995) 

Classical blockJS (Chesneau et al., 2010)  

Proposed method 

 

Table 3: MSE evolution against the noise level for different image denoising methods on real image

 

Noise 

Soft-thresholding (Donoho, 1995) 

Classical blockJS (Chesneau et al., 2010) 

Proposed method 

 (a)                                            

Fig. 11: Visual comparison of denoising methods on real image

the soft-thresholding method (Donoho, 1995), the classical 

(Chesneau et al., 2010) and our proposed method

 

comparison of denoising results obtained by different 

methods using the same noise level σ
seen that our method achieves the smallest values of 
MSE compared with the other two methods.

We used also real omnidirectional images. They 

are captured using a catadioptric camera embedded on a 

mobile robot as shown in Fig. 1. Table 1 to

respectively, the evolution of the PSNR, the SNR and 

the MSE against the noise level. Figure 11 shows a 

visual comparison of denoising results obtained by 

different methods using the same noise level 

These results confirm the previous positive results 

obtained on synthetic images and show that the 

classical approaches (Donoho, 1995; Chesneau

2010), even if these methods work well

images, are not appropriate to omnidirectional images.

 

CONCLUSION 

 

Omnidirectional images are rich in information 

since they depict almost the whole scene. 

Unfortunately, they include severe distortions. That is 

why classical image denoising techniques th
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31.3507 26.4295 23.8834 

33.1495 27.4372 24.5298 

34.6340 30.5891 28.5212 

34.8089 31.2183 29.3155 

SNR evolution against the noise level for different image denoising methods on real image 

10 20 30 

10.4708 7.46048 5.69957 

11.5508 8.13632 6.17621 

12.2542 10.03050 8.87319 

12.3713 10.23020 9.11607 

MSE evolution against the noise level for different image denoising methods on real image 

10 20 30 

63.665574 254.66230 572.99017 

43.913260 191.04300 463.26880 

35.201790 94.95507 161.66690 

34.272860 93.18572 155.11100 

 

 

              (b)                                            (c)                                          

 

denoising methods on real image (a) noisy 30σ = , (b), (c) and (d) denoising using respectively

thresholding method (Donoho, 1995), the classical stein block thresholding method result of denoising methods 

, 2010) and our proposed method 

comparison of denoising results obtained by different 

30σ = . It can be 

seen that our method achieves the smallest values of 
MSE compared with the other two methods. 

We used also real omnidirectional images. They 

using a catadioptric camera embedded on a 

Table 1 to 3 shows, 

respectively, the evolution of the PSNR, the SNR and 

the MSE against the noise level. Figure 11 shows a 

visual comparison of denoising results obtained by 

ent methods using the same noise level 30σ = . 

These results confirm the previous positive results 

obtained on synthetic images and show that the 

classical approaches (Donoho, 1995; Chesneau et al., 

well for perspectives 

images, are not appropriate to omnidirectional images. 

Omnidirectional images are rich in information 

since they depict almost the whole scene. 

Unfortunately, they include severe distortions. That is 

why classical image denoising techniques that work for 

perspectives images need to be adapted for 

omnidirectional ones. 

In this study we have proposed an adaptation to 

Stein block thresholding (Chesneau

applied our approach in synthetic and real images and 

we compared it to the classical methods (Donoho, 

1995; Chesneau et al., 2010). The comparison shows 

that our adapted method has the best overall results 

over any other method. 
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