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Abstract: The purpose of research-the study of the flow in the center of the centered isentropic compression waves. 
Gas-dynamic discontinuities cover shocks, shockwaves, interfaces and sliding surfaces and also the center of the 
centered compression wave one-dimensional and two-dimensional. For a long time there has been no analysis of the 
shockwave structures arising in the center of compression waves. At the same time, the problem of development of 
supersonic and hypersonic air inlets demands to consider the process of the stream isentropic compression. This 
problem is connected (three-dimensional case) to the problem of arising inside the streams of hinged shocks as 
opposite to the usual discontinuities not resulted by interaction of supersonic streams, waves and discontinuities, but 
like from nowhere. This study sets the problem for study in the terms of the developed theory of the interference of 
gas-dynamic discontinuities of the area of existing solutions for the structures of possible types. We have obtained 
the relations describing the parameters in the center of the compression wave. We have considered the neutral polar 
of neither compression meeting the case when in the center of the compression wave there neither shocks nor 
depression waves. The analysis of properties of the centered compression wave adds to the theory of stationary gas-
dynamic discontinuities. We have specified the borders of the shock structure existence area optimal for 
development of supersonic diffusers. 
 
Keywords: Centered compression wave, compression polar, isentropic compression, shockwave structure, 

shockwave, shock 
 

INTRODUCTION 
 

Objects of study are centered isentropic 
compression waves, mathematical model of the 
boundaries of the existence of different shock-wave 
structures in the center of the wave, as well as 
application of the theory developed for the design of 
isentropic air intakes. 

If to assign the form of a concave surface 
according to the equation of the streamline in the 
Prandtl-Mayer plane wave, when it is covered with a 
supersonic stream of the compression wave 
(characteristics) of the Centered Compression Wave 
(CCW) ωσ cross in the same point (point А in Fig. 1) 
(Uskov and Bulat, 2012; Bulat and Bulat, 2013; Uskov 
and Chernishev, 2006a). The shockwave structure 
forms with the basic shock σ by the limit intensity and 
with reflected gas-dynamic discontinuity R, which can 
be a shock, a centered depression wave or a weak 
discontinuity of the second order (discontinuity 
characteristics when not the values of gas-dynamic 
variables but their derivatives of discontinuity 
characteristic endure a discontinuity). 

Until recently, the analysis of Such Shockwave 
Structures (SWS) has not been completed and 

classification of discontinuities and SWS arising as the 
result of their interference (Uskov et al., 1995), did not 
contain the information on the centered compression 
waves. This study`s objective is the gap recovery.  

Stokes (1848) inserted the concept of discontinuity 
in the field of continuous medium stream and received 
two conditions for density ρ and gas velocity w on the 
continuity sides, following the law of mass 
conservation and the law of momentum. The 
discontinuities considered by Stokes (1848), according 
to the modern classification, are called as normal, 
therefore gas travels through their surface. The normal 
strong gas-dynamic discontinuities serve as a model for 
the shockwaves which were named by Riemann (1860). 
In the Russian literature, stationary waves are often 
called as shocks and shockwaves mean only running 
waves. Rankine in 1869-1870 (Rankine, 1869, 1870a, 
b) received the equation adding the system of the 
Stokes equations. He specified the link between the 
parameters on the shockwave sides having considered 
continuously changing inside medium conditions with 
equilibrium heat exchange. The total amount of the heat 
received by the medium he specified as equal to zero. 
Using the relations of the equilibrium thermodynamics 
and the formula in the Stokes` work, Rankine received 
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Fig. 1: Centered compression wave; a): Common 
depression wave 

the expressions for the velocity of 
normal discontinuity according to 
medium D and the following stream velocity
the known pressures before the discontinuity
and specific volume before the discontinuity.

The third condition on the normal 
consequence of the law of conservation
consideration of the gas condition 
shockwave, for the first time was received
in 1887–1889 (Hugoniot, 1889). 
coincides with the earlier condition of 
its derivation Hugoniot needed no extra

Other types of discontinuity
discontinuities. Gas cannot travel through
The contact discontinuity concept in 1868
by Von Helmholtz (1868), who, in the
works, considered the stationary vortex
non viscous medium. Helmholtz laid
conditions of the dynamic compatibility
(CDC) on the contact discontinuity: the
pressure on the sides of its surface and 
to its surface components of the gas stream

The detailed analysis of gas-dynamic
(isentropic waves of depression and compression)
angle shocks arising in the plane stationary
nonviscous low-conductivity perfect gas,
in 1908 by Mayer (1908). Starting from
work, as the basic parameter characterizing
dynamic discontinuity, they consider its
relation of static pressure J = P2/P1 on its

In an explicit form, the centers of
of depression and compression were
discontinuities only in the works of the 
of Uskov and Bulat (2012) and Bulat et

M.V. Chernyshev (Uskov and Chernishev
2008) in 2006-2008 analyzed travelling
expanded stream around the edge of Laval
nozzle, where gas-dynamic parameters
discontinuity. Further, P.V. Bulat carried
analysis of the centered compression wave
Bulat, 2012; Bulat and Bulat, 2013). 

Let`s consider the domains of existence
SWS appearing in the CCW center. 
 

MATHEMATICAL MODEL O
SHOCKWAVE STRUCTURE

 
It is known that inside the compression

stream parameters are described with the
solution for the plane centered wave: 
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Common case; b): Reflected discontinuity-shock; c): Reflected 
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the series of his 
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the equity of static 
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dynamic waves 
compression) and 

stationary streams of 
gas, was published 
from the Mayer`s 

characterizing the gas-
its intensity, i.e., 

its sides. 
of centered waves 

were considered as 
 scientific school 
et al. (1993) and 

Chernishev, 2006b, 
travelling of the under-

Laval supersonic 
parameters endure 
carried out a short 

wave (Uskov and 

existence of different 

MATHEMATICAL MODEL OF THE 
SHOCKWAVE STRUCTURE 

compression wave the 
the Prandtl-Mayer 

1 1ω ϑ ω ϑ∞ ∞+ = +
 

 
where,  
ω  =  The Prandtl-Mayer function 
ϑ  =  The angle of velocity vector 
 

Then, inserting the concept of 

compression wave intensity can be written:
 

22 1
1 1

1 2
M Jω ω

γ
ω ω ϑ ϑ

γ
−

∞

 − − + − = −   −   
 

The angle of the stream turn β
following functional dependences: in the center of 
isentropic compression wave: 
  

22 1
1 1

1 2
M Jω

γ
β ω ω

γ
− −  = + − −  −    

 
On the shock: 
 

(1 )( 1) 1

( ) (1 )( 1) 1
m

m

J J J
tg

J J J

ε γ
β ε

ε ε ε γ
− − − −

= =
+ + − − − +

 
where, 
 

2(1 )mJ Mε ε= + −  
 

The curves described by these equations we will 
call as compression polar and 
correspondingly. Points on the compression polar show 
the relation of pressure after CCW to the pressure in the 
undisturbed stream and the stream turn angle in the 
center of the compression wave. 

 At the origin (Λ = 0, β = 0, 
compression polar and the shock polar have the order of 
contact not less than the second one. This property can 
be simply expressed as follows: 
 

( ) ( ) (1)i i

iδ ωβ β β= +∆  
 
where, 
 

( 2

1 2 (1)

1

0,
j

Md

dJ M

β
β

γ=

−
∆ = ∆ = = =

 

Reflected discontinuity-centered 

Then, inserting the concept of 
1J P Pω ∞=  

the 

compression wave intensity can be written: 

1

11 1M J
γ
γ

ω ωω ω ϑ ϑ
−− 

− + − = −  
   

β is specified by the 
following functional dependences: in the center of 

1

1 1M J
γ
γβ ω ω
−−

∞

  
= + − − 

    

(1 )( 1) 1
,

( ) (1 )( 1) 1J J J

ε γ
β ε

ε ε ε γ
− − −

= =
+ + − − − +  

The curves described by these equations we will 
and shock polar 

correspondingly. Points on the compression polar show 
the relation of pressure after CCW to the pressure in the 
undisturbed stream and the stream turn angle in the 

 where Λ = lnJ) the 
n polar and the shock polar have the order of 

contact not less than the second one. This property can 

)1/22

2

1

dJ M

−
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Fig. 2: CCW with reflected discontinuity

depression wave 
 

The difference in values of the higher derivatives 
(i>2) of these curves at J = 1 depends on 

out elementary computation, one can write for 

3.4: 
 

( )( )
212

3 2

1 1 4

4 (1 )

M ε

ε

−
− − −

∆ =
+

 

4 2 4 6 2 2 2 2 31 ( 1) ( 1)

A B C D E F

M M M M M M
∆ = − − + + − +

− − −
 
where, 
 

2
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1
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, 12
B
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= , 16

C
γ

=

2 3
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17

8
D

γ γ γ
 

= − − − 
 

,  

2 3 4
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4

8 8
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Fig. 3: Transformation of polars according
transparent 
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discontinuity shock and 

The difference in values of the higher derivatives 
depends on ∆i. Leaving 

out elementary computation, one can write for ∆i at i = 

2 4 6 2 2 2 2 31 ( 1) ( 1)

A B C D E F
G

M M M M M M
∆ = − − + + − +

− − −
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16
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2 3
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8
F

γ γ γ
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,  

2 3
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23

8
G
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At γ = const dependence ∆

3
(M)

has the roots at the Mach number values equal to: 
 

( )1,2

22
3 1

5 3f
M γ γ

γ
= − ± −

−  
 

And minimal at � � �� for any 
polers (of compression and shock) at the origin have 
third order of contact. Function ∆4(M) has no real

Product ���	

�� has extremums at 

M∆: 
 

( ) ( )
1/2

2 1 3 1
2

1 4
M

ε ε

ε

 − + − 
∆ =  

−    
 

(1)
3 0β∆  

tends to ∞ at M→1 and

product roots coincide with the roots
The type of reflected discontinuity

polars mutual location (Fig. 2). 
As it follows from the abovementioned

compression  polar  can  go  at  the
the  shock  polar  (

1f
M M<

 
and  M M

(
1 2f fM M M< < ) (Fig. 3). 

 

 
 

according to change of the Mach number the compression polar is toned,

) is nonmonotonic. It 

has the roots at the Mach number values equal to:  

3 1
 

for any γ. At M = Mf1,2 the 
(of compression and shock) at the origin have the 

(M) has no real roots. 

 � � ��  and M = 

1 and to 0 at M→∞. The 

product roots coincide with the roots ∆3. 
discontinuity depends on the 

abovementioned results, the 
the  origin both inside 

2f
M M> ) and outside 

toned, the shockwave is 
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RESULTS AND ANALYSIS 

 
NEUTRAL SWS: For some values of M and γ, the 
compression polar and the shock polar can cross each 
other. At the crossing point there is equation of the 
intensities (Jω = Jσ) of the shock σ and CCW, as well as 
the stream turn angles on these discontinuities. And 
consequently, the condition of co linearity of velocity 
vectors on the tangent discontinuity is carried out 
according to degeneration of the reflected discontinuity 
R into the characteristic. Let`s call such SWS as 
neutral, intensity CCW in the polar crossing point we 
designate Jн and relevant curve Jн (М,γ) we call as the 
neutral compression polar. The typical neutral SWS is 
shown in Fig. 4. The compression polar can cross the 
shock polar distributing at the origin inside it and 
outside it. 

The neutral polar has two branches (Fig. 5). As the 
isentropic compression wave cannot break the stream 
up to the velocity lower than the sonic speed, its 
existence domain is limited with upper sound line Jsω. 
For comparison Fig. 5 shows the shock sound intensity 
Js.М2 is a crossing point of the diagram left 
branchJн(M) with the sound line of the compression 
polar Jsω. М3 is a fold point of neutral polar Jн(М). Point  

 

 
 
Fig. 4: Neutral SWS 
 
“s” of crossing Jн and Js meets the case when the neutral 
polar crosses the shock polar in the sound point. 

Dependence Jн (М, γ) is shown in Fig. 6. Here, the 
surface JH is in dark color and Js is semi-transparent. 
The plane γ-M demonstrates diagrams of the 
characteristic Mach numbers МНi. One can wee that at γ 
= 1.67 МН4 tends to infinity. МН3 (projected fold line of 
surface JH (M, γ)) blends at γ = 1.1 with МН4. So, at γ = 
1.1 there is a feature like a “fold”. The resulting picture 
resembles the domain of existence of characteristic 
points for regular interaction of follow shocks (Uskov 
and Starykh, 1990). 

 
 

Fig. 5: Neutral polar and domain of CCW existence with reflected discontinuity-shock (shaded) Jω is the intensity of the centered 
compression wave, Jsω is the sound intensity of the centered compression wave, Js is the sound intensity of shock, М1-4 are 
the special Mach numbers, Мw is the Mach number limiting the domain of existence of shockwave structures with 
reflected discontinuity-shock 
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Fig. 6: Neutral polar at different adiabatic indexes
 

 
Fig. 7: Polars meeting the “special Mach number 

M>Мw SWS with reflected discontinuity
cannot exist 

 

 
Fig. 8: М<МН1 
 
Domains of existence of stable shockwave structure 

in the centered compression wave: The neutral polar 
restricts the domains of SWS existence with different 
type of reflected discontinuity. Two branches of the 
neutral  polar  and  sound  line  limit  the
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Neutral polar at different adiabatic indexes 

 

Polars meeting the “special Mach number Мw. At 
with reflected discontinuity-a shock 

 

omains of existence of stable shockwave structure 

The neutral polar 
restricts the domains of SWS existence with different 
type of reflected discontinuity. Two branches of the 

the  domain of the  

SWS existence on three sides with reflected 
discontinuity-the depression wave (in Fig. 5 this area is 
shaded). In Fig. 5 and 6 the special intensity CCW and 
appropriate Mach number Мw is marked with index 
“w”. For any adiabatic index starting
number Мw, the SWS containing the reflected shock 
cannot exist (polars have no crossing points, Fig. 7). In 
the domain of the Mach numbers, large 
reflected shock is always a depression wave for any 
values of intensity CCW except for 
Mach numbers, appropriate intensities CCW and the 
stream turn angles are given in Table 1.

Let`s consider how the mutual location of the 
shock polar and the compression polar change 
following increasing the Mach number of undisturbed 
stream. For the Mach number М<М

polar is inside the shock polar in full, consequently, in 
this range of Mach numbers only SWS

reflected discontinuity-depression wave (Fig. 8). The 
compression polar for the Mach numbers 
МН1 near the origin distributes beyond the shock polar 
crossing it upper. Here we have as a reflected 
discontinuity a shock or a depression wave, which is 
specified by intensity CCW (Fig. 9). These two cases is 
separated with the neutral configurati
wave intensity more than Jнthe reflected discontinuity
a compression wave and for the wave intensities less 
than Jн the reflected discontinuity is a shock.

 

es with reflected 
the depression wave (in Fig. 5 this area is 

shaded). In Fig. 5 and 6 the special intensity CCW and 
is marked with index 

“w”. For any adiabatic index starting with the Mach 
, the SWS containing the reflected shock 

cannot exist (polars have no crossing points, Fig. 7). In 
the domain of the Mach numbers, large Мw, the 
reflected shock is always a depression wave for any 
values of intensity CCW except for Jн. The special 
Mach numbers, appropriate intensities CCW and the 
stream turn angles are given in Table 1. 

Let`s consider how the mutual location of the 
shock polar and the compression polar change 
following increasing the Mach number of undisturbed 

МН1, the compression 
polar is inside the shock polar in full, consequently, in 

SWS is possible with 
depression wave (Fig. 8). The 

compression polar for the Mach numbers М higher than 
near the origin distributes beyond the shock polar 

crossing it upper. Here we have as a reflected 
discontinuity a shock or a depression wave, which is 
specified by intensity CCW (Fig. 9). These two cases is 
separated with the neutral configuration, i.e., for the 

the reflected discontinuity is 
a compression wave and for the wave intensities less 

the reflected discontinuity is a shock. 
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Table 1: Special Mach numbers, appropriate intensities CCW and the stream turn angles
γ МН1 МН2 
1.10 1.302 1.486 
1.25 1.265 1.484 
1.40 1.245 1.478 
1.67 1.225 1.746 

 

 
Fig. 9: МН1<М<МН2 
 

 
Fig. 10: М = МН2 
 

 
Fig. 11: М = МН3 
 

Following the increasing of М
increases and for МН2 reaches the sound intensity of the 
compression wave. For this Mach number the
compression polar is beyond the shock polar 
completely touching it with “upper edge” (point s in 
Fig. 10). 

In the range of Mach numbers 
compression polar goes beyond the shock polar and 
does not cross it, correspondingly, characteristic 
this range cannot arise. For the Mach number 
to МН3 the compression polar contacts with the shock 
polar. In Fig. 11 the contact point is marked with a 
circle. The circle meets Jн and neutral SWS. For all 
other intensities, the reflected discontinuity is a shock.

Following the decrease of γ, the compression wave 
intensity, appropriate the contact point, decreases and 
for γ = 1.1 turns into 1. This γ meets the third order of 
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Special Mach numbers, appropriate intensities CCW and the stream turn angles 
МН3 МН4 Мw J

- 1.666 2.599 6.345
1.940 2.000 2.990 8.713
2.230 2.539 3.483 12.18
2.857 - 4.670 22.76

 

 

 

М, the value Jн 
reaches the sound intensity of the 

compression wave. For this Mach number the 
compression polar is beyond the shock polar 
completely touching it with “upper edge” (point s in 

In the range of Mach numbers МН2-МН3, the 
compression polar goes beyond the shock polar and 
does not cross it, correspondingly, characteristic SWS in 
this range cannot arise. For the Mach number M equal 

the compression polar contacts with the shock 
polar. In Fig. 11 the contact point is marked with a 

and neutral SWS. For all 
inuity is a shock. 

the compression wave 
intensity, appropriate the contact point, decreases and 

turns into 1. This γ meets the third order of 

the polar contact. At any γ, the contact point lies lower 
than the sound point on the shock polar.

For the Mach numbers over МН

the polars cross in two points. Between the crossing 
points the compression polar goes inside the shock 
polar. Following the increasing М
moves onto the strong branch of the shock polar and the 
intensity appropriate to the lower point decreases and 
turns into 1 for М = МН4. For higher 
only one crossing point. In gas with 
into infinity, i.e., a range where the compression polar 
crosses the shock polar inside and absent in one point.
 

CONCLUSION
 

We have considered the centered compression 
wave. We have studied the domains of different SWS 
existence arising in the center of CCW. We have 
studied the compression polars (dependence of the 
CCW intensity on the stream turn angle). It is shown 
that for the intensities near 1 the compression polar has 
the second order of contact with the shock polar and for 
the special numbers Mf-the third order. Depending on 
the Mach number, the compression polar can distribute 
both inside the shock polar and outside it, 
one or two points. There are contact points of these 
curves. The SWS meeting the polars crossing contains a 
discontinuity characteristic as the reflected 
discontinuity. Such a polar and corresponding SWS are 
called as neutral. The neutral p
domains of existence of SWS with the reflected shock 
and depression wave. 
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