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Abstract: In order to get better performance, lots of optimization methods are used in code transformation. When 
migrating SPMD to multi-core platform, vectorization is one key optimization to improve performance. Control 
flow is the main challenge for vectorization and IF-conversion is usually used to transform control flow into data 
flow. In most researches, after IF-conversion both the two branch vector codes have to be executed even the 
predications in scalar lane for one branch are all false. This study proposes code bypass technology to improve this 
situation in whole function vectorization of SSA from. The region of consecutive instructions guarded by the same 
predicate is first identified. Then detecting operation is added to identify if predications in scalar lane are all false 
and a jump operation followed to bypass the consecutive instructions region. For loop structure, we add loop mask 
to indicate which lane is not alive in loop which could help to treat iteration in loop. The experiment shows our 
method could improve performance by 6.8%. 
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INTRODUCTION 

 
There are several vectorization methods for using 

SIMD units in modern architecture. Most vectorizing 
compilers pay attention to vectorize inner loops and get 
different degrees of success. Under Single Program 
Multiple Data (SPMD) model, programs appear to be 
regular serial program but in parallel execution model. 
Lots of thread instances could execute across SIMD 
lanes on multiple processors like GPU. Some 
programming languages, such as CUDA (NVIDIA, 
2008a), Open CL (Lee et al., 2010), attempt to assist 
the vectorization of loops by stating in outer loop which 
have unspecified order and unsynchronized interaction 
time. When migrating SPMD programs to multi-core 
platform, IF-conversion (Tyson and Farrens, 1994) is 
used to solve the problem that there is no un-
synchronized interaction between loop iterations. 

SPMD programs use kernel function to express 
coarse parallel. When executing, it looks like 
synchronized by outer explicit loop. The outer loop is 
often distributed across multiple vector lanes. When 
implementing SPMD in no-GPU platform, some 
technologies are used to undertake vectorization. The 
whole function vectorization contains two steps: 
Masking and flattening of SPMD code (Karrenberg and 
Hack, 2011). First, mask is created for each basic block 
in the CFG. Next, each instruction in the program 
which has a side-effect is conditioned with a mask. 
After masks are assigned to different basic blocks, the 
blocks are ordered in linear order. 

IF-conversion is a traditional compiler technology 

which converts code with control flow into a single 

control stream code. It places predicates which control 

the execution of instructions. IF-conversion in the 

context of scalar CPU code is studied in the context of 

their interaction with the processor branch predictor 

mechanism. Usually predicted branches are cheaper to 

execute than predicated code. A technique to generate 

Branches-on-Superword-Condition-Codes (BOSCCs) 

automatically is introduced by Jaewook Shin to 

overcome this overhead of executing all control paths 

(Shin et al., 2009). Because a sequence of consecutive 

vector instructions guarded by the same vector 

predicate can be bypassed by a BOSCC if all fields of 

the guarding vector predicate are false.  

In this study, we extend BOSCCs to whole 

function vectorization which we call it Branch-on-

Superword-Condition-Code-in-SSA (BOSCCS). We 

apply BOSCCS after the stages of masking and 

flattening of SPMD code in SSA form.  

Through analyzing the relation of mask in 

consecutive blocks by conjunction transformation, we 

construct the mask region which could be bypass when 

all fields of the mask are false. The contributions of this 

study are mainly summarized as follow: 

 

• We use conjunction transform to analyze the mask 

relation on which consecutive instructions of a 

mask could be identified.  
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• For loop structure, we use loop mask and entry 
mask to indicate the execution of loop. 

• For consecutive region, we add mask checking and 

jump operation after entry mask created to improve 

the performance. 

 

MATERIALS AND METHODS 
 
IF-conversion: IF-conversion is one of the common 
compiler technologies to improve program performance 
(Tyson and Farrens, 1994). With the help of predication 
that modern micro-architectures supply, it transforms 
the branch statement to predication execution 
instruction. In the architecture supporting prediction 
execution, instructions are appended a prediction. When 
the prediction is true, instruction gets executed. 
Otherwise, it is treated as a null instruction. Prediction 
execution could remove the branch instructions 
effectively, which could convert control flow to data 
flow, bring more instruction level parallel.  
For example, the following code: 
 

if (a>b) c = c+1 
else c = d*e+1 

 
The branch a>b could be removed by adding 

prediction code: 
 

pT, pF = compare (a>b) 
(pT) c = c+1 
(pF) c = d*e+1 

 
When a>b is true, pT is set to 1 and pF is 0. Else pT 

is 0  and  pF  is  1. The  control  relation  of c = c+1 and 
c = d*e+1 becomes data relation. 

The main work of IF-conversion includes three 
steps. First, the basic blocks with same branch are 
selected to assign same prediction. Then, remove the 
branch instructions between blocks and replace them 
with prediction instructions. At last, the instructions in 
blocks are replaced by prediction instructions. 

Different architecture has different support for 
prediction. Some architecture like DEC/Compaq alpha, 
SUN SPARC V9 only partly supports prediction in 
specific instructions. Some architecture fully supports 
prediction such as IA64.  
 
BOSCC: Branch-on- Superword- Condition-Code 
(BOSCC) is proposed by Shin et al. (2009) which is a 
branch instruction that can be conditionally taken based 
on the comparison result of two vector variables. For 
example, the predicated vector instruction: 
 

Vdst = vec_add; <Vpred> 
 
Can be bypassed by introducing a BOSCC 

instruction as follows: 
 

NotTaken = vec_any_ne (Vpred, ZeroVector) 

if (NotTaken) { Vdst = vec add;} 

The vec_any_ne instruction returns true if any field 
of Vpred does not equal to 0 in Zero Vector which 
contains false values in all fields, Not Taken will be set 
to false only when all fields of Vpred are false. 

Predicate region refers to a sequence of consecutive 
instructions guarded by the same predicate and BOSCC 
region refer to the sequence of instructions enclosed by 
a BOSCC. The BOSCC regions could be bypassed 
whenever the guarding vector predicate has all false 
values, which is the only case when Not Taken is set to 
false. And BOSCC needs additional treatment in loop 
iteration (Shin, 2007). 
 
Whole function vectorization in SSA: Traditional 
vectorization mainly concern loop structure which has 
better optimization potential. But when transform 
SPMD to multi-core platform, the whole function 
becomes the loop body, which has lots of unsuitable 
elements for traditional vectorization such as irregular 
variable use and complicated structure.  

Under above conditions, Ralf Karrenberg proposes 

the whole function vectorization which implements 

data-parallel languages on machines with SIMD 

instruction sets. They describe an analysis based on a 

data-flow lattice approach. The thread instance in SPMD 

program becomes the scalar instance in SIMD vector. 

The whole-function vectorization algorithm consist 

two main tasks, mask generation and CFG linearization. 

Mask generation mainly treat with divergent control 

flow. Because a condition might be true for some scalar 

instances and false for others. In CFG, if a mask of a 

CFG edge is true, then the corresponding instance of the 

code took the edge branch. Thus, the mask denotes 

which elements in a vector contain valid data on the 

corresponding control-flow edge. Then select 

instructions are used to replace phi function in the 

original CFG. Because blend operations are inserted at 

control-flow join points.  

CFG linearization put blocks into a sequence that 

preserves the execution order of the original CFG. 

Because after all mask and select operations are 

inserted, all control flow, except for loop backedges, is 

effectively encoded by data flow and can thus be 

removed. 

 

Methods: Above all, we know that the whole function 
vectorization of SPMD programs has such 
characteristics: 

 

• The different thread has little data dependence 

between others. Usually, threads communicate by 

explicit synchronization which exchange data in 

shared memory space. In addition, in some 

hardware the data dependence also is guaranteed by 

hardware execution, for example, the NVIDIA 

GPU. We don’t concern implicit synchronization 

for they can be canceled when programming. In 

traditional vectorization, data dependence has to be 
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concerned and detected first. From this point, it’s 

very convenient to do vectorization. 

• Threads have loose synchronization information in 

loops. The can execute loop iteration in different 

times. It’s very different compared with traditional 

vectorization in which the iterations of loop is 

divided into several parts and every part execute 

same iteration times. This means whole function 

vectorization of SPMD programs needs more strict 

method to keep synchronization. 

 

Based on the characteristic of whole function 

vectorization of SPMD program in SSA, we design the 

Branch- on-Superword- Condition-Code -in-SSA 

(BOSCCS) technology. This technology bases on the 

whole function vectorization method, improves the CFG 

linearization. There are three stages: mask relation 

analysis, construct bypass field and add jump operation. 

 
Mask relation analysis: After CFG linearization in 
original vectorization, all basic block have in sequential 
order. We could identify the consecutive basic block or 
instructions which have same mask. It’s possible to 
bypass there consecutive fields when all lanes in vector 
predication are false.  

The challenge for consecutive fields identify is the 

mask relation analysis. Because in whole function 

vectorization, entry mask and edge mask are introduced 

for single block. As Fig. 1 shows, three block A, B, C 

have three entry mask mA, mB, mC. Basic block B has 

only one entry edge A→ B, so mB←mA→ B. And mA→ 

B←mA∧¬c, so mB←mA∧¬c. It means mA is one element 

of mB. Basic block C has two entry edge A→B and 

B→C, so mC←mA→ C∨ mB→C. And we know that 

mA→C←mA∧c and mB→C←mB, mB←mA→ B, so mC← 

(mA∧c) ∨ (mA∧¬c). We transform mC to mC←mA∧ 

(c∨¬c). It also means mA is one element of mC. Based on 

the analysis, we can conclude that if mA is false, then mB 

and mC must be false. A formalized description of this 

relation is: 

 

¬mA→¬ mB and ¬mA→¬ mC 

 

The above analysis is the no-loop situation. In the 

loop structure, mask relation becomes complicated for 

loop iteration.  

In loop structure, for whole function vectorization, 

loop mask mphi is introduced to indicate which lane has 

exit from loop. But entry mask of block is still enough to 

dominate the vector execution in loop. In loop structure, 

mphi and the parter mexit both phi nodes. The mphi just 

needs to be treated in the header block of loop. The mexit 

just needs to be treated in the exit block of loop. 

In Fig. 2 it is a simple loop structure which has 

irreducible CFG graph. Basic block A, B, C have the 

entry mask mA, mB, mC. Block B is in loop structure, is 

has  a  loop  mask mphi.  Because  B is loop header, entry 

 
 

Fig. 1: Entry mask for basic block 

 

 
 

Fig. 2: Entry mask for loop structure 

 
mask mB indicate s the lane execution of vector. We add 
a mphi to indicate which lane has exit the loop. To check 
if one iteration is executed in a lane, just to conform the 
corresponding bit in mB. 

Note that in block C, the entry mask is mexit which is 

the disjunction of loop mask mphi and edge mask mB→C. 

In each iteration, mexit gets updated by the last mexit and 

mB→C in current iteration.  

But in loop we also could conclude that: 

 

¬mA→¬mB and ¬mB→¬ mC 

 

¬mA→¬mB is easy to confirm. We explain ¬mB→¬ mC 

in detail. 
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Fig. 3: Construct bypass region  

 

For we only concern the beginning of basic block, 

all lanes in mB are false only take place after executing 

edge A→B. If this situation happens after edge B→B, 

that means all lanes in mB→B are false in which condition 

edge mB→C should be executed. So it’s conflictive. And 

now mC←mexit←mphi∨mB→C ←mB∧¬cB, so ¬mB→¬ mC. 

So we can see that in loop mask has same relation 

as no-loop structure. So a general method could be 

designed to identify the region of mask. 

 

Construct bypass region: According to the relation, we 

design a linear scan algorithm to identify the 

consecutive instruction field for same mask. The 

algorithm is as in Fig. 3. 

After the algorithm done, every entry mask of basic 

block contains a region which could be bypassed when 

every lane of mask is false (Fig. 3).  

Note that we use conjunction transform to analyze 

the relation of different mask. When identify the relation 

of mask A and B, we just compare the equivalence of 

elements in A and B. 

 

Add jump operation: Based on the consecutive region, 

we can add jump operation to the original code. 

Although there are lots of branch instructions in 

most instruction set, in whole function vectorization of 

SSA we have remove the branch instructions in CFG 

linear stage. So the jump operation adding becomes 

easy.  

In each basic block, after the place of mask 

creation, we add an operation to detect whether all lanes 

are false and a jump instruction. The target of jump is 

the end of mask’s dominated region.  

 

RESULTS AND DISCUSSION 
 

We implement our BOSCCS algorithm based on 

Ralf Karrenberg’s whole function vectorization method. 

After CFG linear stage, we apply BOSCCS algorithm on  

Table 1: Benchmarks for testing 

Case Data set Kernels Block dimensions 

MM 512*512 1 (16, 16, 1) 

Transpose 512*512 1 (16, 16, 1) 
Convolve 512*512 1 (16, 16, 1) 

Histogram 2 M 2 (192, 1, 1), (256, 1, 1) 

Mandelbrot 512*512 1 (16, 16, 1) 

 

 
 

Fig. 4: The speedup results 

 

flattened blocks. Then we take the test on some cases 

from CUDA SDK (NVIDIA, 2008b). 

 

Benchmarks: The test suit include a 2D image filter 
with 5×5 kernel (Convolve), Matrix Multiply (MM), 
256-bin histogram (Histogram), fractal generation 
(Mandelbrot) and matrix transpose (Transpose). Table 1 
lists data sizes and characteristics for all benchmarks. 
 

Test methodology: With the above benchmarks, we get 
two versions of programs. One version is original whole 
function vectorization program. The second version is 
our BOSCCS algorithm.  

The executing circumstance is Intel Pentium Dual 

CPU E2200 @2.2.0 Ghz, 1 GB DDR-1333 DRAM and 

Fedora 10 OS. 

Figure 4 shows the speedup result. Compared with 
original whole function vectorization, the normalized 
speedup of our BOSCCS is obvious. The result shows 
that our optimization is effective for the performance 
could improve by 6.8%.  

Nowadays, many compilers support SIMD 

instructions generation automatically. But the vector 

ability is limited by several factors, one of which is 

control flow. Usually, vectorization in the presence of 

control flow involves if-conversion followed by 

generating vector instrucions guarded by vector 

predicates.  

Park and Schlansker developed an if-conversion 

technique that is optimal in the number of predicates 

used and in the number of predicate-defining 

instructions (Joseph et al., 1991). Shin et al. (2005) used 

this technique to generate SIMD instructions for modern 

microprocessors in the presence of arbitrarily complex 

cyclic control flow.  

To overcome this overhead of executing all control 

paths, Shin et al. (2009) introduced a technique to 

generate Branches-on-Superword- Condition-Codes 
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(BOSCCs) automatically. A sequence of consecutive 

vector instructions guarded by the same vector predicate 

can be bypassed by a BOSCC if all fields of the 

guarding vector predicate are false. For the loops with 

complex control flow where if-statements are nested, a 

technique to nest BOSCC instructions so that multiple 

BOSCCs and the vector instructions enclosed within 

them can be bypassed by a single BOSCC instruction 

(Shin, 2007). 

Rotem and Ben-Asher (2012)
 

present an IF-

conversion method for unifying basic blocks by merging 

similar instructions using operand selection, for 

reducing the number of predicated instructions in the 

code. They use a polynomial time algorithm for finding 

the optimal pairing between similar instructions that 

reduces the overall predication cost. 

 

CONCLUSION 

 

Whole function vectorization is a new 

vectorization technology which takes the thread 

instance in SPMD program as scalar instance in SIMD 

vector. In order to improve the IF-conversion in 

vectorization, we apply the similar technology to 

BOSCCs in SSA. By analyzing the entry mask relation, 

we identify the mask region conveniently. Then we add 

jump operation to the end of mask region. So if all field 

of entry mask are false, the mask region could be 

bypassed. The experiment also shows the effect of our 

algorithm. 
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