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Abstract: This study develops a feature-based Automatic Modulation Classification (AMC) algorithm for spatially 
multiplexed Multiple-Input Multiple-Output (MIMO) systems employing two Higher Order Cumulants (HOCs) of 
the estimated transmit signal streams as discriminating features and a multiclass Support Vector Machine (SVM) as 
a classification system. The algorithm under study has the capability to recognize a wide range of modulation 
schemes without any prior information about the channel state. The classification performance of the proposed 
algorithm was evaluated via extensive simulations under different operating conditions and was also compared with 
the one obtained with the optimal Hybrid Likelihood Ratio Test (HLRT) approach. The results show that the 
proposed algorithm is capable of classifying the considered modulation schemes with good classification accuracy 
and can achieve performance comparable to that of the HLRT approach while having a significantly lower 
computational complexity. 
 
Keywords: Automatic modulation classification, higher-order cumulants, multiple-input multiple-output, support 

vector machine 

 
INTRODUCTION 

 
Automatic Modulation Classification (AMC) is a 

signal processing technique that automatically 
recognizes the modulation type of a received signal 
with limited or no prior knowledge about the 
parameters of the signal (MacKenzie et al., 2009). 
Although AMC was initially proposed and developed 
for military applications, recent years have witnessed a 
rapid expansion of its employment to cover many 
civilian applications. For military purposes, AMC can 
be used in Electronic Warfare (EW) systems, such as 
for Electronic Surveillance (ES), threat detection 
analysis and Electronic Protect (EP). Other applications 
are for civil purposes such as spectrum management, 
Software Defined Radio (SDR) and Cognitive Radio 
(CR) (MacKenzie et al., 2009). 

Even though intense researches have been carried 
out in the field of AMC during the last decades, most of 
them were mainly conducted for Single-Input Single-
Output (SISO) systems. Over the years, a large number 
of algorithms have been proposed in the literature to 
address the AMC problem for SISO systems. They are 
typically grouped into two main classes; likelihood-
based and feature-based algorithms (Dobre et al., 
2007). The decision in the former algorithms is made 
by computing the likelihood function of the detected 
signal under different hypotheses and comparing the 
likelihood ratio against a Bayesian-criterion-determined 

threshold. For the feature-based algorithms, the 
decision is made by extracting some features and 
comparing their values with previously observed ones 
(Dobre et al., 2007). 

Recently, Multiple-Input Multiple-Output (MIMO) 
techniques have attracted much attention and gained 
more popularity. This is because they can enhance the 
data rate and/or robustness of the wireless links without 
the need for any increase in transmit signal power or 
bandwidth. However, the transmission over multiple 
antennas makes the previous AMC algorithms (i.e., the 
algorithms proposed for SISO systems) not suitable for 
MIMO systems and raises the necessity for new AMC 
algorithms that can operate in such environments 
(Hassan et al., 2012). In practice, the modulation 
classification for MIMO systems is more challenging 
than for SISO due to the mutual interference introduced 
by the MIMO channel. Accordingly, a blind channel 
equalization technique will be needed in order to 
perform properly the modulation classification for 
MIMO systems (Hassan et al., 2012). 

Up to now, little research has been carried out in 
the  area  of  AMC  for  MIMO  systems. In Choqueuse 
et al. (2009), two likelihood-based AMC algorithms for 
spatially multiplexed MIMO systems are proposed. The 
first approach, referred to as Average Likelihood Ratio 
Test (ALRT), provides optimal decisions in a Bayesian 
sense but under the assumption of perfect Channel State 
Information (CSI). The second one, referred to as 
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Hybrid Likelihood Ratio Test (HLRT), is more realistic 
since the true channel is replaced with its estimate. 
However, both algorithms have a high computational 
complexity especially when a high-order modulation 
scheme and/or a large-number transmit antenna are 
employed; therefore their practical implementations are 
greatly limited (Hassan et al., 2012). 

In Hassan et al. (2010, 2012), feature-based AMC 

algorithms for MIMO systems are proposed by using 

the multilayer feed-forward Artificial Neural Network 

(ANN) as a classification system and the M-out-of-N 

rule as a decision fusion rule. The study of Hassan et al. 

(2010) takes into consideration both space-time coding 

and spatial multiplexing MIMO systems, but under the 

assumption of perfect CSI and coding information. 

However, this assumption is unrealistic since this 

information is generally unavailable when utilizing 

AMC algorithms in real wireless communication 

scenarios. The other study (Hassan et al., 2012) 

addresses the AMC problem for spatially-correlated 

MIMO systems and it covers cases with and without 

CSI. However, the applied neural network algorithms 

suffer from many drawbacks such as complex structure, 

long  training  time  and  slow  convergence rate (Islam 

et al., 2014). 

In Mu ̈hlhaus et al. (2012, 2013), low complex 

feature-based AMC algorithms for spatially 

multiplexed MIMO systems are proposed by using the 

Euclidean distance as a classification system and a 

simple weighted sum rule as a feature fusion rule. Cases 

with and without CSI are covered in these algorithms. 

While the Mu ̈hlhaus et al. (2012) uses only the fourth-

order cumulant of the estimated transmit signal stream 

as a discriminating feature, the authors have extended 

their study in Mu ̈hlhaus et al. (2013) to investigate the 

performance when employing various higher-order 

cumulants as features; such as sixth or eighth-order 

cumulants. However, these algorithms cover only a 

limited number of modulation schemes. Furthermore, 

the suggested fusion scheme will be inefficient if a 

wider set of modulation schemes is considered. 

The most recent literature (Chikh et al., 2014) 

addresses the AMC problem for MIMO relay systems 

under the assumption of perfect CSI for all wireless 

links. This study shows the performance improvement 

when performing the AMC based on cooperative 

schemes. 

As seen from the literature, the feature-based 

algorithms were found to be the most widely used 

methods to addresses the AMC problem for MIMO 

systems. This is due to their low computational 

complexity and acceptable classification accuracy in 

comparison with the likelihood-based algorithms. 

However, most of these feature-based algorithms 

usually rely on perfect knowledge of CSI (Hassan et al., 

2010), are computationally intensive (Hassan et al., 

2012), or can classify only a limited number of 

modulation schemes (Mu ̈hlhaus et al., 2012). 

In this study, an efficient and low complexity 
feature-based AMC algorithm for spatially multiplexed 
MIMO systems is presented. The proposed algorithm 
has the capability to recognize a wide range of 
modulation schemes without any prior information 
about the channel state. The performance of the 
proposed algorithm is evaluated via simulations and 
compared with that of the optimal HLRT approach (i.e., 
the optimal approach with blind channel estimation) 
provided in Choqueuse et al. (2009). 
 

METHODOLOGY 
 
Signal model: A spatial multiplexing MIMO system 
with �� transmit antennas and �� ≥ �� receive 
antennas is considered in this study. Under the 
assumption that the channel is time invariant and 
frequency flat, the received symbol vector at time 
instant k can be expressed as: 
 � �	
 = �
 �	
 + � �	
                             (1) 
 
where, 	  : The reception time instant of the symbol 

vectors � �	
 : The �� × 1 received symbol vector under the 
assumption of perfect carrier frequency and 
phase recovery 
 �	
 : The �� × 1 transmitted symbol vector whose 
elements are assumed to be independent and 
identically distributed (i.i.d) and belong to the 
same modulation scheme � �	
: The �� × 1 additive background noise vector 

which corresponds to the zero-mean spatially-

white circularly-symmetric complex Gaussian 

noise with variances ��� �  : The �� × �� complex channel matrix 

 

A Rayleigh fading channel is considered in this 

study; thus all complex entries of H are assumed to 

follow a zero-mean circularly-symmetric complex 

Gaussian distribution with unit variance. 

Without loss of generality, the transmitted signals 

are assumed to have unity average power; hence the 

average SNR can be expressed as SNR = 10 log 

(MT/σ
2

n) (Choqueuse et al., 2009). Moreover, we 

assume that the noise variance ��� and the number of 

transmit antennas �� are known or correctly estimated 

at the receiver side. 
 
Proposed classification algorithm: The proposed 

algorithm has four main stages as shown in Fig. 1. 
In the first stage, blind channel equalization (i.e., 

blind channel estimation and compensation) is 
performed to recover the �� transmit signal streams 
from the received mixtures. Then, in the second stage, a
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Fig. 1: A block diagram of the proposed AMC algorithm 

 

set of robust and discriminative features for modulation 

classification is extracted for each of the �� streams. 

Next, based on the extracted features, a properly trained 

classifier is utilized in the third stage to estimate the 

modulation type for each stream. Finally, the estimated 

decisions for the streams are fused to form the final 

classification decision ��. All the stages are discussed 

below in more detail.  

 

Blind channel equalization: Since the components of 

the received signal vector are linear mixtures of the 

components of the transmitted signal vector plus white 

noise, a blind channel equalization technique is required 

to extract the transmitted symbol streams from their 

noisy linear combinations. 

Independent  Component  Analysis  (ICA)  (Choi 

et al., 2005), which is used in this study, is one of the 

most common and well-established techniques to solve 

this problem. 

However, the ICA technique can blindly recover 

the transmit signal streams as far as the following 

assumptions are met: the transmitted streams are 

mutually statistically independent; at most one of the 

streams may have a Gaussian distribution; the number 

of streams (i.e., number of transmit antennas) is less 

than or equal to the number of mixtures (i.e., number of 

receive antennas) (Choi et al., 2005). Obviously, the 

system proposed in this study fulfills all these 

requirements. 

Several algorithms based on different criteria have 

been proposed so far to perform the ICA. Due to its 

high convergence speed and acceptable separation 

accuracy in a wide variety of applications (Agirman-

Tosun et al., 2011), the Joint Approximate 

Diagonalization of Eigen-matrices (JADE) algorithm 

(Cardoso, 1999) is used in this study to perform ICA.  

In practice, JADE algorithm permits us to estimate 

the channel matrix up to a phase and a permutation 

ambiguity. In other words, under the assumption of 

perfect separation, the true channel matrix can be 

written as (Choqueuse et al., 2009): 

  � = ����                                                          (2) 

where, ��   : The channel matrix estimated by JADE 

D  : A diagonal complex-valued matrix containing the 

phase ambiguities 

P  : A permutation matrix 

 

Accordingly, the transmitted symbol vector at time 

instant k can be expressed as (Choqueuse et al., 2009): 

 
� �	
 = �� ��� �	
 = ��
 �	
 + �� ��� �	
 =��
 �	
 + �� �	
                              (3) 

 

where, �� �	
 : The filtered noise vector at the time instant k 

 

Note that JADE algorithm is able to recover the 

transmitted symbol streams up to a phase and a 

permutation ambiguity. It is clear that permutation 

matrix has no effect on the overall AMC performance 

since the ordering is not that important for the AMC 

algorithms (Choqueuse et al., 2009). However, the 

phase ambiguity inherited from the JADE should be 

taken into consideration in the next stage when 

choosing the features; otherwise a phase correction 

stage is needed. 

 

Feature extraction: The feature extraction is 

performed in the second stage of the proposed 

algorithm for each of the �� transmit signal streams 

estimated in the previous stage-as depicted in Fig. 1, 

where a set of robust and discriminative features for 

modulation classification is considered. 

Many feature types have been proposed so far in 

the context of modulation classification. In practice, it 

is very important to have a proper selection of the 

features as it highly affects the computational efficiency 

and classification accuracy of the AMC algorithm. 

Recent studies conducted in the field of modulation 

classification (Hazza et al., 2013; Mühlhaus et al., 

2013) have shown that Higher Order Cumulants 

(HOCs) of the received signal can be regarded as one of 

the best candidates to classify the modulation type of a 

signal in SISO (Hazza et al., 2013) and also MIMO
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Table 1: Theoretical values of the features for the considered modulated signals 

 Scheme 

-------------------------------------------------------------------------------------------------------------------------------------------------- 
Cumulant BPSK 4-PSK 8-PSK 16-PSK 16-QAM 64-QAM 

� !� -2 -1 -1 -1 -0.680 -0.619 

"� #$" 272 34 1 0 13.988 11.502 

 

systems (Mu ̈hlhaus et al., 2013). This is due to their 
robustness to constellation rotation, resistance to 
additive Gaussian noise and easiness to implementation 

(Hazza et al., 2013; Mühlhaus et al., 2013). 
However, in this study, only two HOCs are used as 

discriminating features for modulation classification; 

they are the normalized fourth-order cumulant (� !�
 
and the magnitude of the normalized eighth-order 

cumulant (|� #$|). 
These features (� !�,|� #$|) are chosen since they are 

robust to phase rotation (Swami and Sadler, 2000; 

Mu ̈hlhaus et al., 2013) which in our study corresponds 
to the phase ambiguity introduced by the JADE 
algorithm. Additionally, they are capable to reliably 
characterize the modulated signals considered in this 

study (Ghosh et al., 2013; Mühlhaus et al., 2013). 

For a random variable x, associated with a 

stationary random process for the data sequence x (k), 

the � !� and |� #$| can be respectively defined as (Xi and 

Wu, 2006; Ghauri et al., 2013; Ghosh et al., 2013): 

 

� !� = %&'(')*�"%&(+*"+��%+&'('+*
%+�'('+
                 (4) 

 

"� #$" =
,%&(-*�./%+&()*��#%&(0*%&(+*1!�$%&()*%+&(+*�2.$%)&(+*

%)�'('+
 , 
                                                          (5) 

 

where, 3�∙
 : The statistical expectation operator 

 

Note, we choose to use the magnitude of the 

normalized eighth-order cumulant in order to make the 

feature robust to phase offsets (Mu ̈hlhaus et al., 2013). 

The theoretical values of � !� and |� #$| for the 

modulated signals of interest are given in Table 1. 

These values are computed by (4), (5) over the ideal 

(noise-free) channels. 

 

SVM based classification: Based on the features 

extracted in the previous stage, the classification is 

carried out in the third stage of the proposed algorithm 

to identify the modulation type for each estimated 

transmit signal stream-as shown in Fig. 1. 

Recent AMC literature (Hazza et al., 2013) has 

demonstrated that Support Vector Machine (SVM) 

approaches outperform traditional statistical and neural 

approaches in classifying the modulated signals. This is 

due to their significant characteristics such as good 

generalization capability and powerful learning ability 

(Hazza et al., 2013). Thus, an SVM-based classifier is 

used in this study. 

Although SVM was originally proposed for binary 

classification problems (two-class classifier), its 

employment was later extended to handle multiclass 

classification problems; where the M-class 

classification problem is treated as M two-class 

classification problems (Lorena et al., 2008). Due to its 

low computational complexity and good classification 

accuracy (Arun Kumar and Gopal, 2011), the one-

against-all scheme is used in this study used to extend 

SVM to multiclass classification case. 

The SVMs perform the classification by mapping 

the input data into a high dimensional feature space via 

kernel functions and constructing an Optimal 

Separating Hyper-plane (OSH) in this space with a 

maximum margin (Jiang and Chen, 2014). Moreover, 

the SVMs employ a regularization parameter C (also 

referred to as a penalty factor) to control the trade-off 

between the separation margin and misclassification 

error (Jiang and Chen, 2014).  

Many kernel functions have been proposed so far, 

with the most commonly used ones are of the linear, 

radial basis (Gaussian) and polynomial functions. In 

this study, the kernel function was studied empirically 

and the best classification results were found using the 

Radial Basis Function (RBF) which is given by the 

following formula (Min and Lee, 2005): 

 

5 &67, 69* = exp =− ?67� 69?+
� @+ A                                (6) 

 

where, 

5 &67, 69* : The kernel function 

67, 69  : The feature vectors 

�  : A kernel parameter 

 

The kernel parameter � and the SVM 

regularization parameter C ought to be carefully 

selected so that the RBF-SVM can achieve accurate 

classification results (Jiang and Chen, 2014).  

 

Decision fusion: After classification of the modulation 

scheme for each estimated transmit signal stream, the 

decisions are fed to the Fusion Center (FC); where they 

are fused to generate the final classification decision-as 

depicted in Fig. 1. 

The decision fusion rule at the FC can typically be 

OR, AND, or Majority rule, which is often generalized 

as the M-out-of-N rule (Hassan et al., 2012). 
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Due to its simplicity and reliability, the majority 

decision fusion rule (M-out-of-N rule, where M = C/2) 
is employed in this study to obtain the final 

classification decision ��.  
 

Complexity analysis: The complexity order of the 

algorithm (D) can be expressed as the sum of the 
complexity orders of the blind channel equalization 

(DEFGH), the feature extraction (DIJK), the classification 

(DLMN) and the decision fusion (DGO) stage, that is: 
 D = DEFGH + DIJK + DLMN + DGO               (7) 

 
where, the complexity order of each stage is 

approximated by DEFGH ≅ D ���� + ��!C + ��/
 (N is 

the observation interval length) (Gao et al., 2009); DIJK ≅  D ���CQRSC
 (CQRS  is the number of HOCs 
features) (Kharbech et al., 2014); DLMN ≅ D ���TCUV�
 (d is the number of kernel operations, CU is the number of support vectors, m is the number of 
modulation schemes) (Ayyildiz and Conrad, 2013); and DGO ≅ D ���
. It should be noted here that the naturals �� , �� , CQRS , T, CU and m can be neglected when 
compared to the observation interval length N. 
 

RESULTS AND DISCUSSION 
 

Extensive Monte-Carlo (MC) simulations were 
carried out in MATLAB to evaluate the performance of 
the proposed algorithm and also compare it with an 
optimal approach introduced in an earlier study. 

MIMO Signals with the BPSK, QPSK, 8PSK, 
16PSK, 16-QAM and 64-QAM modulations were 
considered in this study as they belong to the most 
widely used modulations that can be found in the radio 
spectrum. 

First, two hundred signal realizations were 
generated for each considered modulation scheme and 
SNR value. Each realization consisted of 4096 × �� 
symbols  considering  the  following  configuration   �� = 2, �� = 4. For each processed signal, the features 
were calculated according to Eq. (4) and (5) to form the 
feature set. These realizations were employed only for 
SVM training.  

In this study, the multi-class SVM was 
implemented using LIBSVM package (Version 3.18) 
(Chang and Lin, 2011). The SVM regularization 
parameter C and the RBF parameter σ were chosen 
based on a trial-and-error method so that the SVM 
could achieve accurate classification results. 

The classification performance of the proposed 

algorithm was presented in the form of probability of 

correct classification ([\\) averaged over all the 

considered modulation schemes and over a large 

number of trials. 

Unless otherwise noted, one thousand MC trials 

were performed for each modulation scheme and SNR 

value  in the range -10  to  15  dB.  For  each  MC  trial, 

 

 
 
 
 
 
 
 
 

 

 

 
 

Fig. 2: Average probability of correct classification versus 

SNR for different observation interval lengths 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3: Average probability of correct classification versus 

SNR for different MIMO antenna configurations 

 
N = 4096 i.i.d symbols per transmit antenna was 
considered   as   an   observation  interval   and  �� = 2, �� = 4 as MIMO antenna configuration, unless 
otherwise noted. 

Figure 2 shows the effect of the observation 
interval length N on the average []]  over a wide range 
of SNR (-10 to 15 dB) where �� is set to 2 and �� set 
to 4. Note that, as expected, the algorithm performance 
improves as N increases. The reason is that, as the 
observation interval length (i.e., number of the 
considered symbols) increases, the reliability and 
accuracy of the extracted statistical features will also 
increase, leading to a remarkable improvement in the 
algorithm overall performance. For instance, at SNR 
equal to 10 dB, the average []]  = 88, 93 and 98% for   
N = 1024, 2048 and 4096, respectively, whereas it is 
close to 100% for N = 8192. 

Figure 3 shows the average []]  achieved with the 

proposed algorithm over a wide range of SNR (-10 to 

15 dB) for different MIMO antenna configurations 

where �� is set to 2 and �� to 4, 6 and 8, respectively. 

As illustrated in the figure, the performance improves 

as the difference (�� − ��) increases. The reason for 

this improvement is that, as the difference (�� − ��) 

increases, the diversity gain will also increases, leading 

to a reduction in the symbol error probability and 

accordingly  an  enhancement  in  the  algorithm overall  
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Fig. 4: Performance comparison of the proposed approach 

with that of the HLRT approach when �� = 2 

antennas, �� = 4 antennas 

 

performance (Hassan et al., 2012). Note that for the all 

considered antenna configurations, the average []]  
achieved with the proposed algorithm is close to 90% 

when SNR is not lower than 6 dB. 

Figure 4 compares the performance of the proposed 

algorithm with that of the HLRT approach presented in 

Choqueuse et al. (2009) where 300 trials are performed 

for each modulation scheme. As expected, the HLRT 

approach achieves better performance than the 

proposed one since it relies on a likelihood ratio test to 

find the classification decision. Note that the 

performance difference is not that significant. For 

instance, at []]  equal to 90%, the performance 

difference is only about 5 dB. However, the overall 

complexity order for the proposed algorithm can be 

approximated by D �C ×  ��
 which is significantly 

lower than D �C × �_̂`
 for the HLRT approach; 

where �^ is the number of possible states for the 

considered constellations (e.g., �^ = 16 in the case of 

16-QAM) (Agirman-Tosun et al., 2011). Since both the 

HLRT and the proposed approaches employ JADE 

algorithm, the computational cost that comes as a result 

of the blind channel estimation stage is not considered 

when comparing the computational complexity.  

 

CONCLUSION 

 

In this study, an efficient and low complexity 

feature-based AMC algorithm for spatially multiplexed 

MIMO systems is presented. The proposed algorithm is 

able to recognize a wide range of modulation schemes 

without any prior knowledge about the channel state.  

Simulations show that the proposed algorithm 

works well under different operating conditions over an 

acceptable range of SNR. Furthermore, the simulations 

indicate that our algorithm has a comparable 

performance to that of the HLRT approach while 

having a significantly lower computational complexity. 

Accordingly, the proposed approach is more suitable 

for the practical and real-time applications. 
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