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Abstract: In the present study, a new feature extraction method based on relative spectra and gammachirp auditory 
filterbank is proposed for robust noisy speech recognition. The relative spectra filtering are applied to the log of the 
output of the gammachirp filterbank which incorporates the properties of the cochlear filter in order to remove 
uncorrelated additive noise components. The performances of this method have been evaluated on the isolated 
speech word corrupted by real-world noisy environments using the continuous Gausian-Mixture density Hidden 
Markov Model. The evaluation of the experimental results shows that the proposed method achieves best 
recognition rates compared to the conventional techniques like Perceptual Linear Prediction (PLP), Linear 
Predictive Cepstral Coefficients (LPCC) and Mel-Frequency Cepstral Coefficients (MFCC). 
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INTRODUCTION 

 
In many practical applications, the performance of 

Automatic Speech Recognition (ASR) system is limited 
due to its lack of the robustness in the presence of 
background noises. ASR relies on speech feature 
vectors which contain relevant information to 
distinguish between different speech sounds. To 
increase the robustness of ASR-systems, the speech 
feature must be less sensitive in the presence of 
background noises, while retaining good of 
distinguished properties (Gajic and Paliwal, 2006). The 
most commonly used feature extraction algorithms as 
PLP (Perceptual Linear Prediction) (Hermansky, 1990), 
LPCC (Linear Prediction Cepstral Coefficients) (Atal, 
1974) and MFCC (Mel-Frequency Cepstral 
Coefficients) (Davis and Mermelstein, 1980), are highly 
affected in the presence of noisy environments. There 
are some other algorithms aiming at improving noise 
robustness by combining the classic algorithms with 
other technique like the RASTA (Relative Spectra) 
filtering (Hermansky and Morgan, 1994) or CMN 
(Cepstral  mean  normalization)  (Liu  et  al.,  1993; 
Shao et al., 2007; Droppo and Acero, 2008). 

In addition, the auditory system of human has a 
remarkable ability to recognize the speech signal in 
noisy environments. This ability has inspired the 
development of many feature extraction algorithms 
which take into account certain knowledge on human 
speech perception (Gajic and Paliwal, 2006). The 
developed algorithms usually use the gammatone filter 
as the auditory filter modelling in order to simulate the 

cochlear  filtering  (Wang  and  Brown,  2006;  Meddis 
et al., 2010). A new auditory filter known as 
gammachirp filter is developed by Irino and Patterson 
(1997, 2006). This filter with an asymmetric amplitude 
spectrum represents a good approximation to the 
asymmetry and level dependent characteristics of 
the cochlea filtering (Meddis et al., 2010). 

A robust feature extractor for noisy speech 

recognition is presented in this study. The proposed 

method is based on relative spectra and gammachirp 

filterbank. The relative spectra is band-pass time-

filtering applied to the log of the output spectral 

representation of the gammachirp filterbank in order to 

reduce linear channel distortions which appear as 

additive components in the logarithmic spectral 

domain. The used gammachirp filterbank is a filterbank 

of 34 gammachirp filters covering the frequency range 

(50 and 8000 Hz) (Zouhir and Ouni, 2013, 2014). The 

gammachirp filter is used as a model of auditory filter 

to provide a spectrum reflecting the cochlea spectral 

behavior  (Irino  and  Patterson, 1997, 2006; Patterson 

et al., 2003).  
The HTK (Hidden Markov Model Toolkit) 

recognizer (Young et al., 2009) is employed for 
isolated-word speech recognition with whole word 
HMM-GM (HMM with four Gaussian Mixture density) 
models. Each isolated-word is modeled by a five-state 
HMM with four mixtures per state. 

The isolated speech words extracted from the 
TIMIT (Garofolo et al., 1990) database and corrupted 
by real-world noisy environments are used for the 
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performance evaluation of proposed feature extractor. To compare the performances, the following

conventional techniques are used: PLP, LPCC and 

MFCC. Experimental results in the presence of ambient 

background noises show that the proposed feature 

extractor outperforms all the classical techniques 

mentioned above. 

 

Classical feature for speech recognition: The 

classical feature extractors MFCC, PLP and LPCC are 

similar in several stages. As shown in Fig. 1, these 

similar stages are linked by the broken arrows. The 

procedure to obtain the coefficients of each technique is 

briefly described here. 

 

The MFCC coefficients: A Discrete Fourier Transform 

(DFT) is computed for each frame of windowed speech 

to obtain a short-term power spectrum. Then, the power 

spectrum of the speech signal is weighted by the 

magnitude frequency response of a Mel-scale filterbank 

which uses triangular shaped windows. Logarithmic 

compression of the Mel-filterbank output is applied. 

The cepstrum coefficients are then obtained by a 

Discrete Cosine Transform (DCT) (Davis and 

Mermelstein, 1980). 

 

The PLP coefficients: Similar to the MFCC procedure, 

the discrete Fourier transform power spectrum is firstly 

calculated. Then, the auditory-based warping of the 

frequency axis is employed to weight the obtained 

spectrum. The window shape used in PLP analysis is 

designed to obtain a simulation of the critical-band 

masking curves. After pre-emphasize the filtered power 

spectrum by an equal-loudness curve, a cubic root

 

 
 

Fig. 1: Flowcharts for MFCC, PLP and LPCC feature extraction techniques 
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compression of critical-band energies is applied 

whereas for MFCC logarithmic compression is used. 

The result spectrum is converted into LP coefficients 

using Auto-Regression (AR) modelling. The PLP 

coefficients are computed by applying a cepstral 

transformation to the LP coefficients (Hermansky, 

1990). 

 

The LPCC coefficients: After the extraction of the 

LPC coefficients from each speech signal frame using 

autocorrelation method, 12 cepstral coefficients which 

correspond to LPCC coefficients are computed from the 

obtained eight coefficients using cepstral transform 

(Atal, 1974). 

 

METHODOLOGY 

 

Proposed feature extractor: The proposed feature 

extraction method is based on relative spectra and 

gammachirp auditory filterbank for robust noisy speech 

recognition. An illustrative block diagram of the 

various steps of the proposed feature extractor is shown 

in Fig. 2. 

In the first step, the speech signal is framed (length 

of analysis frame is 25 msec with a frame shift of 10 

msec) and windowed using a Hamming window. Then 

we apply the square of Discrete Fourier Transform 

(DFT) for each window segment to obtain the power 

spectrum. The second step is the Relative spectra-

Gammachirp filterbank. In this step, the power 

spectrum is analyzed using a 34-channel gammachirp 

filterbank. The latter is characterized by a centre 

frequencies covering the frequency range of 50-8000 

Hz (sampling frequency = 16 kHz) according to the 

ERB-rate scale. The used filterbank is developed to 

provide a realistic auditory filterbank for auditory 

perception models. The complex analytic form of the 

gammachirp filter is (Irino and Patterson, 1997): 

 

( ) ( )1( ) exp 2 ( ) exp 2 ln( )n
c r rg t at bERB f t j f t jc t jπ π ϕ−= − + +

  
(1)  

where, a , ϕ , c  and rf are respectively, the amplitude, 

the phase, the chirp factor and the asymptotic 
frequency. b and n are parameters defining the gamma 

distribution envelope. The time t>0, "ln" is the natural 
logarithmic operator and ERB (fr) 

is the equivalent 
rectangular bandwidth of the auditory filter at fr. The 
ERB value at frequency f in Hz is defined by (Glasberg 
and Moore, 1990; Moore, 2012; Wang and Brown, 
2006):

 
 

  

( ) 24.7 0.108ERB f f= +
               

(2) 

 
The    equivalent     rectangular    bandwidth    rate 

(ERBrate (f)) at frequency f is given by (Glasberg and 
Moore, 1990; Moore, 2012; Wang and Brown, 2006):

  
 

10( ) 21.4 log (0.00437 1)ERBrate f f= +
              

(3) 

 

The Fourier magnitude spectrum | ( ) |GcH f  of the 

gammachirp filter (Irino and Patterson, 2006; Patterson 
et al., 2003) is given by:

   

( )
2 2

( ) exp( )
( )

2 ERB( ) ( )

Gc n

r r

a n jc c
H f

b f f f

θ

π

Γ + ⋅ ⋅
=

+ −

              (4) 

 

where,
 

( )arctan ( ) /( ERB( ))r rf f b fθ = −
 
and ( )n jcΓ + is 

the gamma distribution function.  
Afterward, a relative spectral band-pass filtering is 

applied to the filterbank outputs in the logarithmic 
domain in order to remove uncorrelated additive noise 
components. The transfer function of this filter is 
defined by (Hermansky and Morgan, 1994):  
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In the third step, the inverse logarithm of the 

relative logarithm spectrum is calculated, yielding a

 

 
 

Fig. 2: Diagram of the proposed feature extraction method 
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relative auditory spectrum (Hermansky and Morgan, 

1994). The latter is weighted, in the fourth step, by an 

equal-loudness pre-emphasis, to compensate for the non 

equal sensitivity of human hearing system across 

frequency. Then, the cubic-root compression step which 

aims at simulating the non-linear relation between 

sound intensity and its perceived loudness is applied to 

the pre-emphasis spectrum. The sixth step consists to 

obtain the autoregressive coefficients of the all-pole 

model using Inverse-DFT and the Levinson-Durbin 

Recursion, which is designed to estimate of the 

auditory-like spectrum of speech (Hermansky, 1990; 

Zouhir and Ouni, 2014). In the seventh step, the 

proposed feature are obtained by performs a cepstral 

transformation. 

 

EXPERIMENTAL RESULTS 

 

This section presents the evaluation results of the 

experiments that were performed with the various 

techniques, using an isolated-word speech recognizer, 

in the presence of various types of the ambient 

background noises. A total of 13227 isolated-words 

used in these experiments were manually extracted 

from the TIMIT database (contains speech signals of 

630 speakers from eight English dialect regions and the 

sampling frequency of these signals is 16 kHz) 

(Garofolo et al., 1990). The training set consisted of 

9702 isolated-words and the testing set contains 3525 

isolated-words. The all isolated-words used in the 

testing phase were corrupted by different background 

noise (Passing-car, Shopping-mall, Rain, Sea waves 

noise) for various SNR ranging from -3 to 9 dB. These 

noises were taken from PacDV (PacDV Sound Effects, 

2014).  

The HTK.3.4.1 toolkit (Young et al., 2009) was 

used to implement an isolated-word based HMM 

recognizer. Each isolated-word was represented by a 

simple left-to-right HMM (HMM-GM) of five states 

with four diagonal Gaussians per state.  

The  used  parameters  of  gammachirp  filter  are  

n = 4; a = 1; b = 1.019; c = 2 and φ
 
= 0. 

The recognition performance of the proposed 

PLPrGc (Perceptual Linear Predictive relative spectra-

 
Table 1: Comparison of recognition rates of the proposed and the other classical features with passing-car noise at various SNR’s for HMM-4-

GM           

 

SNR level (dB) 

Feature  

---------------------------------------------------------------------------------------------------------- 

PLPrGc PLP LPCC MFCC

Passing-car noise -3  46.24 33.84 25.93 30.72 

0  62.55 48.45 38.04 45.16 

3  76.23 62.95 50.67 61.48 

6  84.43 77.84 68.91 77.56 

9  90.33 87.40 81.19 87.72 

 

Table 2:  Comparison of recognition rates of the proposed and the other classical features with shopping-mall noise at various SNR’s for HMM-4-

GM 

 

SNR level (dB) 

Feature 

---------------------------------------------------------------------------------------------------------- 

 PLPrGc PLP LPCC MFCC

Shopping-mall noise -3  25.28 17.13 15.86 17.67 

0  45.56 33.11 25.84 32.60 

3  63.66 51.97 40.51 51.46 

6  77.19 71.49 56.45 70.35 

9  84.57 82.95 71.86 82.18 

 

Table 3: Comparison of recognition rates of the proposed and the other classical features with sea waves noise at various SNR’s for HMM-4-GM 

 

SNR level (dB) 

Feature  

---------------------------------------------------------------------------------------------------------- 

 PLPrGc PLP LPCC MFCC

Sea waves noise -3  18.67 10.27 10.72 10.55 

0  32.60 21.56 19.21 19.86 

3  51.52 38.18 31.80 36.65 

6  67.57 56.31 46.95 53.99 

9  79.26 72.57 61.70 70.98 

 

Table 4: Comparison of recognition rates of the proposed and the other classical features with rain noise at various SNR’s for HMM-4-GM 

 

SNR level (dB) 

Feature 

---------------------------------------------------------------------------------------------------------- 

 PLPrGc PLP LPCC MFCC

Rain noise -3  30.21 22.87 14.41 19.26 

0  44.26 31.86 21.36 28.51 

3  59.97 42.67 31.09 41.16 

6  72.88 55.09 42.50 54.01 

9  81.19 66.41 53.96 66.07 
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Gammachirp) feature has been compared to that of the 

baseline PLP, LPCC and MFCC feature. The feature 

vector of each technique consisted of 39 coefficients 

including 12 static coefficients of feature techniques 

were added to energy (E), differential coefficients first 

order (∆) and second order (A).  

Table 1 to 4 represent the recognition rates 

obtained using the proposed PLPrGc feature and three 

kinds of PLP, LPCC and MFCC feature for various 

types of ambient background noise at SNR equal to -3, 

0, 3, 6 and 9 dB, respectively. These tables show the 

effectiveness of proposed feature compared to the other 

baseline features for the four ambient background 

noises. It can be observed that PLPrGc feature gives 

better results of recognition rate for all SNR levels, 

particularly for low values of SNR values. For example, 

in the case of passing-car noise at 0 dB SNR, the 

recognition rate of the PLPrGc is higher than that of the 

PLP, MFCC and LPCC by 14.1, 17.39 and 24.51, 

respectively. 

 

CONCLUSION 
 

In this study, we have presented a robust feature 

extractor based on relative spectra and gammachirp 

filterbank for noisy speech recognition. Speech 

recognition results were reported on the isolated speech 

words TIMIT corrupted by real-world noisy 

environments and performances were compared with 

the PLP, LPCC and MFCC. Four different background 

noises with various SNR ranging from -3 to 9 dB were 

used. Experimental results show that proposed feature 

extractor outperformed all the other classical feature 

extractors for all SNR levels. 
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