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Abstract: The object of this study is to study the Bayes estimation of the unknown shape parameter of Minimax 
distribution. The prior distribution used here is the non-informative quasi-prior of the parameter. Bayes estimators 
are derived under squared error loss function and three asymmetric loss functions, which are the LINEX loss, 
precaution loss and entropy loss functions. Monte Carlo simulations are performed to compare the performances of 
these Bayes estimates under different situations. Finally, we summarize the result and give the conclusion of this 
study. 
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INTRODUCTION 

 

In lifetime and reliability field, there are many 
distributions such as exponential, Weibull, Gamma and 
inverse Gamma distribution used in modeling lifetime 
model. Despite the many alternatives and 
generalizations (Kotz and Van Dorp, 2004; Nadarajah 
and Gupta, 2004), it remains fair to say that the Beta 
distribution provides the premier family of continuous 
distributions on bounded support (which is taken to be 
interval (0, 1)). The beta distribution with two shape 
parameters a and b is denoted by Beta (a, b) and it has 
following probability density function (pdf): 
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Here a and b are positive real numbers and B (.,.) is 
the Beta function. The shapes of the pdf of Beta (a, b) 
are unimodal, uniantimodal, increasing, decreasing or 
constant depending on the values of a and b relative to 
1 and have a host of other attractive properties (Johnson 
et al., 1994).  

Minimax distribution is a special case of 
generalized beta distribution, which firstly proposed by 
McDonald (1984). Jones (2007) suggested an 
alternative two-parameter distribution on (0, 1), which 
has many of the same properties as the Beta distribution 
but has some advantages in terms of tractability. He 
called this distribution Minimax distribution and termed 
it as Minimax (α, θ), where its two shape parameters α 
and θ are positive. Let X is a random variable 
distributed with Minimax (α, θ), the corresponding 
probability density function (pdf) and cumulative 
distribution function (cdf) of a Minimax distributed are 
respectively given by: 
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and, 
 

1
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where, θ>0 and a>0 are shape parameters, respectively. 
Here we assume that the parameter α is known. 

For Minimax distribution, Shadrokh and Pazira 
(2010) study the minimax estimation on the Minimax 
distribution; Makhdoom (2011) and Deiri (2011) are 
respectively obtained the maximum likelihood and 
moment estimators of the parameters of the Minimax 
distribution in the presence of one outlier and two 
outlier.  

This paper will study the Bayes estimation of the 
shape parameter θ of Minimax (α, θ) under various loss 
functions on the basis of the Gamma prior distribution 
of shape parameter. 
 

PRELIMINARIES KNOWLEDGE 
 

In Bayesian statistics analysis, loss function and 
prior distribution are two important elements. In this 
study, we suppose the prior distribution of the shape 
parameter θ is non-informative quasi-prior distribution 
with respect to the following form: 
 

1
( ; ) , 0, 0

d
d dπ θ θ

θ
∝ > >                 (3) 

 

Here, d = 0 leads to a diffuse prior and d = 1 to a 

non-informative prior. 
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The other important element of Bayesian analysis 

is the selection of a loss function, � (��, �), where �� is a 
decision rule based on the data. One disadvantage of 
squared error loss is that it assigns equal losses to 
overestimation and underestimation. Overestimation of 
a parameter can lead to more severe or less severe 
consequences than underestimation, or vice versa. 
Subsequently, an asymmetrical loss function can 
associate greater importance to overestimation or 
underestimation and thus it can be as an alternative of 
symmetric loss function. Several useful asymmetric 
loss functions are studied and proposed by many 
authors (Varian, 1975; Zellner, 1986; Basu and 
Ebrahimi, 1991; Norstorm, 1996; Dey et al., 1987). In 
this study, the three asymmetric loss functions are used 
as follows. 

 
LINEX loss function: For the reason of using of the 
symmetric loss function may be inappropriate in some 
cases, especially in estimation of reliability, Varian 
(1975) firstly proposed the LINEX loss function and 
then it is developed and used in Bayes analysis by 
Zellner (1986). LINEX loss function has become the 
mostly important asymmetric function, which is 
suitable for situations where overestimation is more 
costly than underestimation. When estimating a 

parameter � by ��, the LINEX loss function is given by 
Basu and Ebrahimi (1991): 

 

( ) 1, 0cL e c c∆∆ = − ∆− ≠                 (4) 

 

where, 
ˆ

1
θ

θ
∆ = − .  

Under the LINEX loss function (4), the Bayes 

estimator of θ, denoted by ���	 is the solution of the 

following equation: 
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Provide that the posterior expectation ( | )E X⋅  in 

Eq. (5) exists and is finite. 

 

Precautionary loss function: A very useful and simple 

asymmetric precaution loss function proposed by 

Norstorm (1996), is given by: 
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The loss function (6) infinitely near to the origin 

and thus it can prevent underestimation, thus giving 

conservative estimators, especially when low failure 

rates are being estimator. It is very useful when 

underestimation may lead to serious consequences. This 

loss function was used by several authors 

(Yarmohammadi and Pazira, 2010; Pandey and Rao, 

2009). 
Under the precautionary loss function (6), the 

Bayes estimator, denoted by ���
 can be given by: 
  

2 1/2ˆ [ ( | )]BP E Xθ θ=                  (7) 

 
Entropy loss function: In many practical situations, it 
appears to be more realistic to express the loss in term 

of the ratio ��/�. In this case, another useful asymmetric 
loss function is the entropy loss function (Dey et al., 
1987) with respect to the following form: 
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                               (8) 

 
Under the entropy loss function (8), the Bayes 

estimator, denoted by ����, can be derived as follows: 
 

1 1ˆ [ ( | )]BE E Xθ θ − −=                  (9) 

 
Bayes estimation: In this Section, we will discuss 
Bayes estimation of the shape parameter θ under above 
loss functions. The results are reported in Theorem 1. 
 
Theorem 1: Suppose that we observe n samples 

1 2, , , nX X XK  
from the Minimax distribution (1) and 

x = (x1, x2,…, xn) 
is the observation of X = (X1, X2,…, 

Xn). Set 
1

ln(1 )
n

i

i

T X α

=

= − −∑ , the prior distribution of θ 

is quasi-prior (3), then:  
 

i. Under squared error loss function 2ˆ ˆ( , ) ( )L θ θ θ θ= − , 

the Bayes estimator of θ, denoted by ˆ
BSθ , can be 

obtained as: 
 

ˆ , 2
2
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T
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                           (10) 

 

ii. The Bayes estimator ���	 under LINEX loss 
function (4), can be derived as: 
 

 ˆ [1 exp( )]BL

T c

c n d
θ = − −

+
              (11) 

 

iii. The Bayes estimator ���
 under Precautionary loss 
function (6), can be obtained as: 

  

ˆ

( 2)( 3)
BP

T

n d n d
θ =

+ − + −
              (12) 

 

iv. The Bayes estimator ����  under entropy loss 
function (8), is given by: 

 

ˆ
1
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T

n d
θ =
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               (13) 
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Proof: For given sample observation x = (x1, x2,…, xn), 

the likelihood function of θ is given by: 
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That is: 
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where, 
1

ln1
n

i

i

t xα

=

= − −∑  is the observation of  T.  

Combining the quasi-prior distribution (3), with the 

likelihood function l (θ; x)
 
using Bayes theorem, the 

posterior density of θ is given as: 

 

( | ) ( ; ) ( )x l xπ θ θ π θ∝ ⋅  
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It is obvious that | Xθ  is distributed with inverted 

Gamma distribution, denoted ( 1, )I n d TΓ + − . Then 

from the properties of inverted Gamma distribution, we 

have the following results: 
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and, 
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Then, (i), (iii) and (iv) are directly proved.  

To see (ii), we need the following calculation: 
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By using Eq. (5) and (16), we can solve the Bayes 

estimator ���� under LINEX loss function (4) and given 

by: 

 

ˆ [1 exp( )]BL
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EMPIRICAL STUDY 

 

To compare the Bayes estimators obtained in this 

study, Monte Carlo simulations are used to generate 

random samples of different sizes. The Mean Square 

Errors (MSEs) are used to compare the performance of 

different Bayes estimates. The simulations are 

generated as follows: 

 

Step 1: For given α = 3, θ = 0.5, generate random 

samples of different sizes: n = 10, 20, 30, 50, 75 

and 100 from the Minimax (α, θ) distribution 

Step 2: Set c = -1, -0.5, 0.5, 1 and the Bayes estimates 

are computed according to the Eq. (10)-(13) 

Table 1: Estimates and MSEs under different loss for different sample sizes with d = 0 

n θ�BS 

 θ�BL 
 ----------------------------------------------------------------------------------------------- 

θ�BP θ�BE  c = -1 c = -0.5  c = 0.5  c = 1.0 

10 0.6193 (0.0550)  0.5211 (0.0293) 0.5081 (0.0275)  0.4833 (0.0251)  0.4715 (0.0244) 0.6621 (0.0728) 0.5505 (0.0347) 
20 0.5535 (0.0184)  0.5108 (0.0134) 0.5044 (0.0129)  0.4919 (0.0123)  0.4859 (0.0122) 0.5695 (0.0213) 0.5243 (0.0145) 

30 0.5383 (0.0112)  0.5109 (0.0089) 0.5066 (0.0087)  0.4983 (0.0083)  0.4942 (0.0082) 0.5482 (0.0124) 0.5198 (0.0094) 

50 0.5229 (0.0060)  0.5070 (0.0052) 0.5045 (0.0051)  0.4995 (0.0050)  0.4970 (0.0049) 0.5284 (0.0064) 0.5122 (0.0054) 
75 0.5116 (0.0037)  0.5013 (0.0035) 0.4996 (0.0034)  0.4963 (0.0034)  0.4947 (0.0034) 0.5152 (0.0039) 0.5047 (0.0035) 

100 0.5105 (0.0027)  0.5028 (0.0026) 0.5015 (0.0025)  0.4990 (0.0025)  0.4978 (0.0025) 0.5131 (0.0028) 0.5053 (0.0026) 

 
Table 2: Estimates and MSEs under different loss for different sample sizes with d = 1.0 

n θ�BS 

 θ�BL 

 ----------------------------------------------------------------------------------------------- 

θ�BP θ�BE  c = -1 c = -0.5  c = 0.5  c = 1.0 

10 0.5505 (0.0347)  0.4715 (0.0244) 0.4608 (0.0241)  0.4403 (0.0242)  0.4403 (0.0245) 0.5839 (0.0433) 0.4955 (0.0261) 
20 0.5243 (0.0145)  0.4859 (0.0122) 0.4801 (0.0121)  0.4688 (0.0121)  0.4688  (0.0122) 0.5387 (0.0162) 0.4981 (0.0126) 
30 0.5198 (0.0094)  0.4942 (0.0082) 0.4902 (0.0082)  0.4823 (0.0081)  0.4823 (0.0081) 0.5290 (0.0102) 0.5024 (0.0085) 
50 0.5122 (0.0054)  0.4970 (0.0049) 0.4946 (0.0049)  0.4897 (0.0049)  0.4897 (0.0049) 0.5175 (0.0056) 0.5020 (0.0050) 
75 0.5047 (0.0035)  0.4947 (0.0034) 0.4930 (0.0034)  0.4898 (0.0034)  0.4898 (0.0034) 0.5081 (0.0036) 0.4980 (0.0034) 
100 0.5053 (0.0026)  0.4978 (0.0025) 0.4965 (0.0025)  0.4941 (0.0025)  0.4941 (0.0025) 0.5079 (0.0027) 0.5003 (0.0025) 
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Step 3: The above steps are repeated N = 2000 times 

and the Mean Square Errors (MSEs) are 

computed for different sample sizes n. The 

Mean Square Error (MSE) is defined as: 

 

2

1

1ˆ ˆ( ) ( )
N

i

i

ER
N

θ θ θ
=

= −∑  

 

where ˆ
iθ  is the estimate at the i

th
 run. 

The computational results are computed by 

MATLAB 19.0. The Bayes estimates and MSEs (in 

brackets) are reported in Table 1 and 2. 

Numerical simulations expressed in Table 1 and 2 

show that though under small sample sizes, the value of 

MSE under squared-error loss is larger than that of 

other Bayes estimates under asymmetric loss functions, 

but when the sample sizes are large (i.e., n>50), the 

MSES are almost equal, thus any of the these Bayes 

estimators can be selected for the practical application.  

 

CONCLUSION 

 

In this study, we have derived Bayes estimators of 

the shape parameter of Minimax distribution under 

squared error loss, LINEX loss, Precautionary loss and 

entropy loss functions. Simulation results show that the 

Bayes estimates under the squared error loss function 

have the largest MSEs as compared with estimates 

under other loss functions. It is immediate to note that 

MSEs decrease as sample size increases. When the 

sample size n is large, such as n>50, the MSEs are 

almost the same. The result concluded in this study can 

also be extended to other distributions, such as Poisson 

distribution, exponential and Rayleigh distribution. 
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