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Abstract: This study describes two-dimensional peristaltic flow of non-Newtonian fluid through a porous 
asymmetric channel under the influence of the magnetic field. The slip effect is included in the model. The flow is 
investigated in a wave frame of reference moving with a velocity of the wave. The momentum equations are 
linearized using long wavelength and low Reynolds number approximation. The transformed equations have been 
solved numerically. Analytic solutions for stream function, velocity and pressure gradient are also obtained. The 
effects of various physical parameters of interest have been explained graphically. It is found that the size of the 
trapped bolus reduces for large value of the velocity slip parameter. 
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INTRODUCTION 

 
Peristaltic is one of the major mechanisms for fluid 

transport in many biological systems and industrial 
pumping. This property is naturally associated with a 
progressive wave of area expansion and contraction 
along the length of a fluid filled channel, mixing and 
transporting the fluid in the direction of the wave 
propagation. Peristaltic mechanism in channel has a 
wide range of physiological applications, for examples, 
urine transport from kidney to bladder, swallowing of 
food through esophagus, chyme movement in 
gastrointestinal tract, egg movement in the female 
fallopian tube, blood circulation in small blood vessels 
and water transport from ground to upper branches of 
tall trees. It was reported by de Vries et al. (1990) that 
the intra-uterine contraction due to the myometrial 
(myometrium is the middle layer of the uterine wall) 
contraction is peristaltic type motion and this 
myometrial contraction may occur in both symmetric 
and asymmetric directions.  

Recently the study of peristaltic flow of non-
Newtonian fluids through a porous medium has great 
attention to the researchers due to their vast applications 
in engineering and industry (Tripathi, 2011; Pandey and 
Tripathi, 2011). We know that blood in small vessels 
and fluids in the intestine, urine under certain 
conditions behave as non-Newtonian fluids. The non-
Newtonian character of human blood is mainly due to 
the suspension of red blood cells in the plasma. But the 
formulation of non-Newtonian fluids is complex. So we 

cannot express all non-Newtonian fluid properties in a 
single constitutive equation. Thus, a number of non-
Newtonian fluid models have been proposed (Nadeem 
et al., 2012). Casson fluid is one of the non-Newtonian 
fluids with a different character and was introduced by 
Casson (1959). He reported that human blood can be 
presented by this model. The initial work on peristaltic 
mechanism in a viscous fluid was conducted by Latham 
(1966) and after that we found many experimental 
studies (Nagarani, 2010; Abd-Alla et al., 2013; 
Elangovan and Selvaraj, 2017; Mishra and Rao, 2003; 
Srinivas and Pushparaj, 2008; Akbar and Butt, 2015; 
Ahmed et al., 2017). 

It is well known that the red blood cells contain 
iron and they are magnetic in nature. Magnetic field can 
be used for a healing treatment of the patients who have 
stone pieces in their urinary tract (Li et al., 1994). 
Again, the principle of magnetic field is helpful in the 
treatment of hypertension and certain cardiovascular 
disorders. On the other, Brunn (1975) suggested that the 
red blood cells slip at the vessel wall. In several 
applications, the flow pattern corresponds to a slip flow 
and the fluid presents a loss of adhesion at the wetted 
wall making the fluid slide along the wall 
(Kothandapani and Srinivas, 2008). Fluid shows slip 
effects when mean free path length of the fluid is 
comparable to the distance between the plates as in 
nanochannels or microchannels. In literature, nobody 
was focused on slip parameter with applied magnetic 
field. Keeping such fact in mind the main, objective of 
the   study  is  to  investigate the peristaltic flow of non- 
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Fig. 1: Geometry of the problem 
 
Newtonian fluid through a porous asymmetric channel 
with slip parameter in presence of magnetic field. The 
governing equations are reduced under low Reynolds 
number and long wave length approximation. The 
transformed equations have been solved numerically. 
Analytic solutions are also evaluated for stream 
function, velocity profile and pressure gradient. The 
effects of various important parameters are displayed 
graphically and discussed. The trapping phenomenon 
has been accorded enough attention. This result is 
found to be substantial importance in developing the 
models for blood oxygenator and hemodialysis 
processes. 
 

MATHEMATICAL FORMULATION 
 

We consider the peristaltic motion of non-
Newtonian fluid through a porous medium in two-
dimensional asymmetric channel of width 𝑑" + 𝑑$. 
Here we choose a stationary frame of reference (𝑋, 𝑌) 
such that 𝑋 is selected along the axis of the channel and 
𝑌 perpendicular to it. Let 𝑈, 𝑉 be the velocity 
components in the frame (𝑋, 𝑌). A sinusoidal wave 
with a constant speed 𝑐 propagates along the channel 
walls. The upper and lower walls of the channel (Fig. 1) 
are represented by: 
  

𝑌 = 𝐻" = 𝑑" + 𝑎"𝑐𝑜𝑠 2
$3
4
(𝑋 − 𝑐𝑡)7                   (1) 

 
𝑌 = 𝐻$ = −𝑑$ − 𝑎$𝑐𝑜𝑠 2

$3
4
(𝑋 − 𝑐𝑡) + 𝜙7        (2) 

 
where, 𝑎", 𝑎$ be the waves amplitudes, 𝜆 is the wave 
length, 𝑡 is the time and 𝜙 is the phase difference of 
two waves whose range is 0 ≤ 𝜙 ≤ 𝜋. It is mention that 
the asymmetric channel can be deduced into symmetric 
when 𝑎 = 𝑏, 𝑑 = 1 and 𝜙 = 0. Again, a uniform 
magnetic field strength 𝐵@  is applied in the transverse 
direction of the flow and then the induced magnetic 
field is assumed to be negligible.  

The constitutive equation for Casson fluid (Eldabe 
et al., 2001) is defined as: 

𝜏BC = 2 E𝜇G +
HI
√$3

K 𝑒BC                                          (3) 
 

where, 𝑒BC =
"
$
MNOP
NQR

+
NOR
NSP
T is the (𝑖, 𝑗)th component of 

deformation rate, 𝜏BC  is the (𝑖, 𝑗)th component of the 
stress tensor, 𝜋 is the product of the component of 
deformation rate with itself and 𝜇G is the plastic 
dynamic viscosity. The yield stress 𝑃S is expressed as 

𝑃S =
XY√$3
Z

, where 𝛽 Casson fluid parameter. For non-

Newtonian Casson fluid flow 𝜇 = 𝜇G +
HI
√$3

 which 

gives	𝜈′ = 𝜈 E1 + "
Z
K, where 𝜈 = XY

^
 is the kinematic 

viscosity for Casson fluid. Again, for Newtonian case 
𝑃S = 0.  

With all the above-mentioned considerations, the 
governing equations for of non-Newtonian Casson fluid 
are: 
 

N_
N`
+ Na

Nb
= 0                                                          (4) 

 

       (5) 
 

             (6)  
  
The corresponding boundary conditions are: 
 

					𝑈 = −ℎ N_
Nb
	,									at			𝑌 = 𝐻"

					𝑈 = 	ℎ N_
Nb
	,											at			𝑌 = 𝐻$

					f                   (7) 

  
where, 
𝐵@  = The uniform magnetic field strength 
𝜎  = The electric conductivity 
𝜌  = The fluid density 
𝐾′  = The permeability of the porous space  
ℎ  = The velocity slip parameter 
  

In the laboratory frame (𝑋, 𝑌) the flow is unsteady. 
But if observed in a co-ordinate system moving at the 
wave speed 𝑐 in the wave frame (𝑥, 𝑦), it can be 
considered as steady. The co-ordinates, velocity and 
pressure in two frames are related to: 
 

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑢 = 𝑈 − 𝑐, 𝑣 = 𝑉, 𝑝 = 𝑃      (8) 
 

To minimize the complexity of the governing 
equations, the following non-dimension variables are 
used: 
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𝑥p = Q
4
	 , 𝑦p = S

qr
	 , 	𝑢p = s

t
	 , 	𝑣p = O

tu
	, 𝛿 = qr

4
	 , 	𝑡p = tw

4
	, 	𝑝p = xqry

4tXY

ℎ" =
zr
qr
, ℎ$ =

zy
qr
, 𝑑 = qy

qr
, 𝑎 = {r

qr
, 𝑏 = {y

qr

f	                                                                    (9) 

 
The governing Eq. (4) - (6) under the assumptions of long wave length and low Reynolds number in terms of 

stream function 𝜓 (dropping the das symbols) become: 
 

Nx
NQ
= E1 + "

Z
K }N

~�
NS~

− 𝛼$ EN�
NS
+ 1K�                                                                                                                     (10) 

 
N��
NS�

− 𝛼$ N
y�
NSy

= 0                                                                                                                                                (11) 
  
Nx
NS
= 0                                                                                                                                                                  (12)  

 
The reduced boundary conditions are: 
 

𝜓 =	 �
$
,							N�

NS
+ γ N

y�
NSy

= −1,								at			𝑦 = ℎ" = 1 + 𝑎𝑐𝑜𝑠2𝜋𝑥

									𝜓 = ��
$
,					N�

NS
− γ N

y�
NSy

= −1,			at			𝑦 = ℎ$ = −𝑑 − 𝑏𝑐𝑜𝑠(2𝜋𝑥 + 𝜙)
		f                                      (13) 

 
where, 
 𝛼$ = �y

"�"/Z
+ "

�
  

𝑀 = �
�
XY
𝐵@𝑑" = The magnetic field parameter 

𝐾 = �p
qry

  = The permeability parameter 

𝑞  = The volume flow rate in the wave frame 
𝑅𝑒 = �

tqr
  = The Reynolds numbers  

γ = �
�r

  = The dimensionless velocity slip parameter 
 

ANALYTIC SOLUTION 
 

Equation (12) shows that pressure is a function of 𝑥 only. The fourth order differential Eq. (11) subject to the 
boundary conditions (13) is solved for 𝜓 and is given by: 
 

𝜓 = 𝐶" + 𝐶$𝑦 + 𝐶�𝑐𝑜𝑠ℎ(𝛼𝑦) + 𝐶�𝑠𝑖𝑛ℎ(𝛼𝑦)                                                                                                     (14) 
 
Also from equation (14), we get: 
 

𝑢 = 𝐶$ + 𝐶�𝛼𝑠𝑖𝑛ℎ(𝛼𝑦) + 𝐶�𝛼𝑐𝑜𝑠ℎ(𝛼𝑦)                                                                                                           (15) 
 
where,  

 

𝐶" =
(ℎ" + ℎ$)[𝑞𝛼𝑐𝑜𝑠ℎ

𝛼
2 (ℎ" − ℎ$) + (2 + 𝑞𝛼

$𝛾)𝑠𝑖𝑛ℎ 𝛼2 (ℎ" − ℎ$)]

−2(ℎ" − ℎ$)𝛼𝑐𝑜𝑠ℎ
𝛼
2 (ℎ" − ℎ$) + 2(2 − ℎ"𝛼

$𝛾 + ℎ$𝛼$𝛾)𝑠𝑖𝑛ℎ
𝛼
2 (ℎ" − ℎ$)

	 

 

𝐶$ =
𝑞𝛼𝑐𝑜𝑠ℎ 𝛼2 (ℎ" − ℎ$) + (2 + 𝑞𝛼

$𝛾)𝑠𝑖𝑛ℎ 𝛼2 (ℎ" − ℎ$)

(ℎ" − ℎ$)𝛼𝑐𝑜𝑠ℎ
𝛼
2 (ℎ" − ℎ$) + (−2 + ℎ"𝛼

$𝛾 − ℎ$𝛼$𝛾)𝑠𝑖𝑛ℎ
𝛼
2 (ℎ" − ℎ$)
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𝐶� =
(ℎ" − ℎ$ + 𝑞)𝑠𝑖𝑛ℎ

𝛼
2 (ℎ" + ℎ$)

(ℎ" − ℎ$)𝛼𝑐𝑜𝑠ℎ
𝛼
2 (ℎ" − ℎ$) + (−2 + ℎ"𝛼

$𝛾 − ℎ$𝛼$𝛾)𝑠𝑖𝑛ℎ
𝛼
2 (ℎ" − ℎ$)

 

 

𝐶� =
−(ℎ" − ℎ$ + 𝑞)𝑐𝑜𝑠ℎ

𝛼
2 (ℎ" + ℎ$)

(ℎ" − ℎ$)𝛼𝑐𝑜𝑠ℎ
𝛼
2 (ℎ" − ℎ$) + (−2 + ℎ"𝛼

$𝛾 − ℎ$𝛼$𝛾)𝑠𝑖𝑛ℎ
𝛼
2 (ℎ" − ℎ$)

 

 
Using Eq. (14), the pressure gradient is obtained from Eq. (10) and we get: 
 

qx
qQ
= −(1 + 1/𝛽)𝛼$(𝐶$ + 1)                                                                                                                             (16) 

  
The volume flow rate 𝑞 through each section is a constant and is given by: 
 

𝑞 = ∫ 𝑢𝑑𝑦�r
�y

                                                                                                                                                        (17) 
 
The instantaneous flux at any axial situation is given by: 
 

𝑄 = ∫ (𝑢 + 𝑐)𝑑𝑦�r
�y

= 𝑞 + 𝑐(ℎ" − ℎ$)                                                                                                                (18) 
  
The average flux 𝑄� over one period (𝑇 = 𝜆/𝑐) is defined by: 
  

𝑄� = "
� ∫ 𝑄𝑑𝑡�

@ = 𝑞 + 1 + 𝑑                                                                                                                                 (19)  
 

NUMERICAL SOLUTION 
 

The present problem is also solved numerically by using MATLAB software. We see that the numerical 
solutions agree with the analytic solutions for all the values of parameters. Figure 2 gives the comparison between 
the results obtained in the present study and the results of previous study (Kothandapani and Srinivas, 2008). To do 
so, both the studies have been brought to the same platform by considering equal parameter values (Newtonian 
case).  

 

 
 
Fig. 2: Comparison of velocity profiles 
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Fig. 3:  Velocity profiles for different values of Magnetic field parameter 𝑀 
 

 
 
Fig. 4:  Velocity profiles for different values of Casson fluid parameter 𝛽 
 

RESULTS AND DISCUSSION 
 

In this section the effect of various parameters on 
velocity and pressure gradient profiles are investigated. 
In this present study the following values are taken 
fixed for computations: 𝑎 = 0.4, 𝑏 = 0.5,	𝑑 = 1.2, 𝑞 =
−1,	𝑥 = 0.1, 𝑀 = 0.5, 𝐾 = 0.5, 𝛽 = 2, 𝜙 = 𝜋/3 and 
𝛾 = 0.01. All the graphs therefore correspond to these 
values unless specifically indicated on the appropriate 
figure. 

Figure 3 to 6 present the velocity profiles under the 
effect of Magnetic field parameter(𝑀), Casson fluid 
parameter(𝛽), permeability parameter (𝐾) and velocity 
slip   parameter   (𝛾).  Here   we   see   that  when  𝑀 is  

increased, the axial velocity 𝑢 increases near the walls 
but opposite behavior is observed in the central region 
of the channel. The fact is that the applied magnetic 
field produces a resistive force to the flow and this 
force reduces the velocity of the fluid. So we can say 
that fluid flow will be impeded if we increase the 
magnetic field strength. Again an increase in velocity is 
noticed with increase in 𝛽 in the centre of the channel 
while opposite behavior is observed towards the walls 
as seen in Fig. 4. The Casson fluid parameter is 
proportional to the viscosity of fluid and thus when we 
increase 𝛽 the fluid become less viscous. As a result the 
velocity increased at the central area. The effect of
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Fig. 5:  Velocity profiles for different values of permeability parameter 𝐾 
 

 
 

Fig. 6:  Velocity profiles for different values of velocity slip parameter 𝛾 
 
𝐾 on velocity is displayed in Fig. 5. Here velocity 
increased at the central region for large 𝐾. That is, 
increasing 𝐾 reduces the drag force and hence it causes 
the fluid flow to increase along the center of the 
channel. The influence of 𝛾 on velocity profiles in 
asymmetric channel is sketched in Fig. 6. Here we see 
that velocity decreases near the middle of the channel 
when 𝛾 increases but velocity increases near the wall. 
The reason is that the more the fluid slips at the 
boundary walls the less its velocity affected by the 
motion of the boundary. 

The effects of 𝑀, 𝛽, 𝐾 and 𝛾 on pressure gradient 
over one wave length 𝑥 ∈ [0,1] are displayed in Fig. 7 
to 10. It is observed from Fig. 7 that increasing in 𝑀 
increases the pressure gradient. That’s meant when 
strong 𝑀 is applied then higher-pressure gradient is 
needed to pass the flow of the channel. It is noted from 
Fig. 8 to 10 that pressure gradient decreases with an 
increase in 𝛽, 𝐾 and 𝛾. We know that the porosity of the 
channel reduces when 𝐾 increases. So the pressure 
needed more when porosity of the channel is enhanced. 
On   the   other  hand,   large  values  of  𝛾 give the flow 
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Fig. 7: Pressure gradient for different values of Magnetic field parameter 𝑀 
 

 
 
Fig. 8: Pressure gradient for different values of Casson fluid parameter 𝛽 
 

 
 
Fig. 9: Pressure gradient for different values of permeability parameter 𝐾 
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Fig. 10: Pressure gradient for different values of velocity slip parameter 𝛾 
 

 
 
                                                    (a)                                                                                                   (b) 
 
Fig. 11: Stream lines for 𝑀, 𝑎 = 0.4, 𝑏 = 0.5,𝑑 = 1.1, 𝐾 = 1, 𝛽 = 2, 𝛾 = 0.1,𝑄� = 2.2, 𝜙 = 0.5, (𝑎)	𝑀 = 0,  	(𝑏)	𝑀 = 2 
 
transport towards Newtonian. Consequently, pressure 
gradient decreased with large 𝛾. 

Another interesting phenomenon for peristaltic 
flow is trapping. It is the structure of an internally 
circulating bolus of fluid by closed streamlines. The 
effect of Magnetic field parameter 𝑀 on trapping is 
explained in Fig. 11. It is noted that the size of the 
trapped bolus decreases with increase of 𝑀. This is due 
to the fact that when we increased 𝑀 then the 
electromagnetic forces are higher than the viscous 
forces and this electromagnetic force causes the 
resistance in the flow of the fluid. The influence of 
velocity slip parameter 𝛾 on streamlines is seen in Fig. 
12. Here we see that two circulating trapped boluses 
exist near the wall and the size of the bolus decreases 
with an increase in 𝛾.   Figure 13 is sketched to see the 

property of streamlines for different values of Casson 
fluid parameter 𝛽. The fluid becomes less viscous and 
becomes less thick when we increase the value of 𝛽. 
So, it can be concluded that the volume of the trapping 
bolus increases with increasing 𝛽. Figure 14 describes 
the effect of phase difference 𝜙 on streamlines for 
symmetric (𝑎 = 𝑏, 𝑑 = 1, 𝜙 = 0)    and     asymmetric 
channel. This figure shows that the trapped bolus 
appearing in the middle of the channel for 𝜙 = 0 moves 
towards left and decreases in size as 𝜙 increase. 

 
CONCLUSION 

 
In this study, we have discussed peristaltic flow of 

non-Newtonian fluid through a porous asymmetric 
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channel under the influence of magnetic field. Velocity 
slip effect was considered. Both analytic and numerical 
solutions for stream function, velocity and pressure 
gradient have been developed. The features of flow 
characteristics are analyzed and discussed by sketching 
graphs. We have concluded the following important 
conclusions: 

 
• Velocity field decreases at the central region of the 

channel and increases near the wall for increasing 
𝛾 and 𝑀. 

• Magnitude of pressure gradient increases with 
increasing 𝑀 while decreases with 𝛽	and 	𝐾. 

• The size of the trapped bolus decreases with 
increasing 𝛾. 
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                                                     (a)                                                                                                   (b) 
 
Fig. 12: Stream lines for  𝛾, 𝑎 = 0.4, 𝑏 = 0.5,𝑑 = 1.1,𝐾 = 𝑀 = 1, 𝛽 = 2, 𝑄� = 2.2,𝜙 = 0.5,	 (𝑎)	𝛾 = 0, 	(𝑏)	𝛾 = 0.2 
 

  
 
                                                    (a)                                                                                                  (b) 
 
Fig. 13: Stream lines for 𝛽,  𝑎 = 0.4, 𝑏 = 0.5,𝑑 = 1.1,𝐾 = 1,𝑀 = 2.5, 𝑄� = 2.2,𝜙 = 0.5, 𝛾 = 0.1, (𝑎)	𝛽 = 0.5, (𝑏)	𝛽 = 2 
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                                                    (a)                                                                                                  (b) 
 
Fig. 14: Stream lines for 𝜙, 𝑀 = 𝐾 = 1,𝑄� = 2.2, 𝛽 = 2, 𝛾 = 0.1	(𝑎)	𝑎 = 𝑏 = 0.4,𝑑 = 1,𝜙 = 0, (𝑏)𝑎 = 0.4, 𝑏 = 0.5,𝑑 =

1.1,𝜙 = 𝜋/2 
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