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Abstract: The aim of this study is to determine the architectural configuration and probability structure of the 
sequential logit model. In situations where there are more than two alternatives and where the choice between the 
alternatives are made sequentially, the situation turns into the estimation of sequential models with fewer 
alternatives and this reduces the number of calculations that need to be done. In multiple-choice models, individuals 
make a choice between more than two alternatives and the probability of this choice is calculated. In sequential 
models, dependent variable levels have a multi-staged sequence and response level on each stage contains the 
answer level on the previous stage. Success of each step depends on the success of the previous step. An important 
point regarding sequential models is the necessity that choice probability in each stage must be independent from the 
choice probability in other stages. In this study, the most important factors that affect an individuals indebtedness 
status were estimated using sequential logit model and interpretations were made by calculating odds ratios and 
marginal effect values related to this model. The architecture configuration and detailed interpretations of the 
sequential logit model were discussed over a real data set on indebtedness. 
 

Keywords: Categorical dependent variable, household budget, logit model, sequential modelling 

 
INTRODUCTION 

 

In multiple-choice models, individuals make a 
choice between more than two alternatives and the 
probability of this choice is calculated by creating a 
model. If a variable, which has more than one 
categories is taken as dependent variable, it is very 
important to determine the correct model according to 
data structure and type of the dependent variable. 
Akkuş and Özkoç (2012) discussed the most 
appropriate model or models that can be used 
depending on the dependent variable type and 
necessary assumptions. These are given in Table 1. 

As can be seen from the Table 1, there is a need for 
an additional categorical dependent variable structure 
and a model, which will explain this structure in the 
best way possible. This structure involves the situations 
in which individuals’ choices are nested and sequential 
and called sequential probability models.  

The main purpose of this study is to introduce the 
structure of the sequential logit model, to make 
estimations for each sequential stage of the model and 
to explain how to calculate and interpret the odds 
ratio’s and explanatory variables’ marginal effect 
values on probability over indebtedness data. 
Additionally, important factors among the explanatory 

variables of household size, marital status, education 
level, sex and income are determined while 
indebtedness status of an individual is the dependent 
variable.  
 

METHODOLOGY 
 

If the case in hand involves a categorical dependent 
variable with more than two alternatives, it is important 
to determine which model in Table 1 will give the best 
results in terms of modelling the data. In multiple-
choice models, individuals make a choice between 
more than two alternatives and the probability of this 
choice is calculated. For example, a model in which 
consumers are asked to express their level of 
satisfaction about a certain product and have the 
choices of very bad, bad, fair, good, very good and in 
which this choice is taken as the dependent variable can 
be considered to be a multiple choice model 
(McCullagh and Nelder, 1989). 

Without any limitations regarding explanatory 
variables, in categorical dependent variable models 
with more than two levels: 

 
• If the dependent variable is measured using 

nominal scale and choice based, Multinomial Logit 
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Table 1: Some popular models used for modelling the poychotomous dependent variable (Akkuş and Özkoç, 2012) 
Model Type of the dependent variable  Model assumptions 
Multinomial logit Nominal 1. Only the characteristics of individuals are required. 

2. Strict assumption of Independence of Irrelevant Alternative (IIA) has 
to be satisfied. 

Multinomial probit  Nominal 1. Only the characteristics of indivuduals are required. 
2.  No other assumption is necessary including IIA.  

Ordered logit Ordered 1. Only the characteristics of indivuduals are required. 
2. Parallel Slopes Assumtion (PSA) is required.  

Ordered probit Ordered 1. Only the characteristics of indivuduals are required. 
2. Parallel Slopes Assumtion (PSA) is required. 

Nested logit Nested nominal design 1. Inclusive Value (IV) are required to be positive.   
Conditional Logit Nominal 1. Characteristics of the choice and individuals are both required.  
New model added to the table   
Sequential Logit Nested sequential design 1. Probability of preference in each sequential step is independent from 

the other probabilities. 
*Logit and Probit models only make difference from the link function they used 

 
or Probit Models, if the dependent variable is 
measured using ordinal scale and situation based 
Ordered Logit or Probit Models are used. 

• In choice based models, if the personal properties 
of individuals are taken into account as well, 
Conditional Logit or Probit Models are used. 

• If sequential choices are made between 
alternatives, but there is not a significant sorting 
between levels in a nominal structure, Nested 
Nominal Logit or Probit Models are used.  

• If sequential choices are made between alternatives 
and there is a significant sorting between levels and 
a nested structure, Sequential Logit or Probit 
Models are used. This provides us to satisfy the 
model assumptions and thus improves the quality 
and reliability of the estimated model.  

 

Sequential modelling for the categorical dependent 

variable: The sequential modelling that is created for a 
categorical dependent variable can also be called as a 
sequential response model or a hierarchic response 
model. In sequential models, dependent variable levels 
have a multi-staged sequence and dependent variable 
level on each stage contains the answer level on the 
previous stage (Liao, 1984). The multiple response 
model estimates can be reduced to sequential model 
estimates with fewer response levels (Amemiya, 1981). 
In sequential models, the transition from a level to 
another level is modelled and the success of each step 
depends on the success of the previous step (Tutz, 
2014; Boes and Winkelmann, 2006). 

In sequential modelling, the estimation of 
dependent variable models turn into the estimation of 
binary models and this reduces the number of 
calculations that need to be done. Therefore, general 
information regarding binary categorical dependent 
variable models is given below.  

Here, β indicates the parameter vector, Y indicates 
the binary dependent variable and X indicates the 
explanatory variables vector. The expected value of 

i
Y , 

conditional on explanatory variables is defined as 
follows: 

 

1 2

1 2

21

...

(   ... )

(  X  ... X )

i ik k ik

k

i i ik i i

X X

X X

η = β + β + +β

′β = β β β

′ ′= ⇒ η = β       

1 2 ...i ik k ik i i iY X X X ′= β +β + + β + ε = β + ε     
1 1 0 0 1( / ) . ( / ) . ( / ) ( / )i i i i i i i i iE Y X P Y X P Y X P Y X X= = + = = = = β  

1 1 0 0 1( / ) . ( / ) . ( / ) ( / )i i i i i i i i iE Y X P Y X P Y X P Y X X ′= = + = = = = β                                                (1) 
 
The model given in Eq. (1) is called Linear 

Probability Model (LPM). The model parameters are 
estimated by the method of Ordinary Least Square 
(OLS). However, it is seen that majority of the linear 
regression model assumptions cannot be satisfied 
because of the categorical structure of the dependent 
variable. Alternatively, the use of logit and probit 
models become widespread, which require less 
assumptions relatively (Liao, 1984; McCullagh and 
Nelder, 1989).  

The basis of the transition to logit and probit 
models is the selection of a link function that will form 
a linear structure with linear combinations of 
explanatory variables by determining a special function 
of the conditional expected value ( / )i iE Y X . This 

function cannot be any function, because it must have 
the ability to limit the probability of 1( / )i iP Y X=  in 0-1 

range. 
In the light of this information, the model in Eq. (1) 

is written in the following format and forms a base for 
the transition to logit and probit models where F is the 
specially determined link function: 
 

[ ] [ ]1i i i i iF E(Y / X ) F P(Y / X ) X ′= = = β               (2) 

 
In Eq. (2): 
 
• In case that the F is taken as “logit” link function, 

which is expressed as 1

1 1

( / )
log

( / )
i i

i i

P Y X

P Y X

=

− =
, the 

conditional probability of an observation belongs 
to the level “1” coded in binary dependent variable 
is, as follows: 
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[ ] [ ]1

1
1

1 1 1

( / ) ( / )

( / ) exp( )
log ( / )

( / ) exp( )

i i i i i

i i i
i i i

i i i

F E Y X F P Y X X

P Y X X
X P Y X

P Y X X

′= = = β

′= β′= β⇒ = =
− = ′+ β

  (3) 

 

• In case that F is specially selected as 
1−Φ  where Φ  

indicates the standard normal cumulative 
distribution function, the “Probit” model given 
below is obtained:  

 

 
[ ] [ ]
[ ] [ ]1 1

1

1

1

( / ) ( / )

( / ) ( / )

( / ) ( )

i i i i i

i i i i i

i i i

F E Y X F P Y X X

E Y X P Y X X

P Y X X

− −

′= = = β

′Φ = Φ = = β

′= = Φ β

               (4) 

  
Model parameters can be estimated using 

Maximum Likelihood Estimation (MLE) method, 
which does not require restrictive assumptions 
compared with OLS (Aldrich and Nelson, 1984; 
Maddala, 1983; McCullagh and Nelder, 1989). 

There are three important points to focus on when 
interpreting the categorical dependent variable models: 

 
• Interpretation of event probabilities 
• Interpretation of marginal effect of change in 

explanatory variable on probability 
• Interpretation of “Odds Ratios”, which can only be 

calculated for logistic regression models  
 

Event probabilities can be calculated for each 
observation using Eq. (3) and Eq. (4). Odds ratios are 
found and interpreted by calculating exp(.) values of the 
estimated model parameters in logistic regression.  

In case that the dependent variable is binary, 
marginal effect of a change in explanatory variable on 
the estimated probabilities is generally calculated using 
Eq. (5), while in LPM, Probit and Logit models, it is 
calculated using Eq. (6), (7) and (8), respectively: 
 

i i i
i i k

ik ik ik

P F X X
F X f X

X X X

′ ′∂ ∂ β ∂ β′ ′= = β = β β
∂ ∂ ∂

( )
( ) ( )                 (5) 

 

i
k

ik

P

X

∂
= β

∂
                  (6) 

 

( )i
i k

ik

P
X

X

∂ ′= φ β β
∂

                              (7) 
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exp( )

( exp( ))

i i
k

ik i

P X

X X

′∂ β
= β

∂ ′+ β

                 (8) 

 
In Eq. (5), f indicates the function that is obtained 

by taking the first-order partial derivative of F link 
function with respect to explanatory variables; in Eq. 

(7), φ  indicates the standard normal density function, i 

( 1i , ,n= K ) indicates the observations and k ( 1k , ,K= K ) 

indicates the explanatory variable. 
So far, necessary information regarding binary 

dependent variable models to better explain and 
understand the sequential modelling terminology were 
given. In the following sections, architectural structure 
of a sequential model, data type used, model 
assumptions, advantages and drawbacks of the model 
and estimation methods are discussed and sequential 
logit model interpretations are presented using a real 
data set.  
 
General expressions regarding the sequential models 
and modelling the transition probabilities: The main 
idea in sequential modelling is that the response 
mechanism begins in the first category. Individual 
decides whether to stay in the first category or move on 
to the next one. This two-state decision can be coded as 
0/1.  

i indicating the index corresponding to observation 
values 1( , , )= Ki n  and j indicating the dependent 

variable level 1( , , )j J= K
, 1 1( )

iy =  indicates whether the 

process is ended in the first category or not and in this 
case it is observed as 1iy = . If the process continues, 

(1) 0iy = . The condition for the continuation of the 

process, transition from the second category to third 
category, is determined as 2iy =  with respect to 2y >  

and the process ends if (2) 1iy = . Generally, transition 

from category j to 1+j  can be shown as follows (Boes 

and Winkelmann, 2006): 
 

(j)
i

1
y

0





if the process is completed, there is no transition to the category  j+1

if the process is going on , there is a transition to the category  j+1

 
Category j is chosen based on the rejection 

probability of category ( 1)+j . Therefore, the final 

transition must be modelled. This process points out the 
importance of giving the right decision on whether the 
process will go on or not, when transitions are 
conditionally modeled and category j is reached. 

Conditional transition probabilities need to be 
determined in order to formulate the conditional 
probability model with ordered response levels. Event 
probability 

iy j=  can be shown depending on the 

condition 
iy j> , as follows (Boes and Winkelmann, 

2006): 
 

i i iP(Y = j | Y j,x ) = F( )iX ′≥ β                                   (9) 
 

In Eq. (9), β indicates the parameter vector, 
i

Y  and 

Xi
 indicate the dependent and explanatory variable 

values, respectively. 
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After determining the conditional transition probabilities, unconditional probabilities ( | )i iP y j x=  (probabilities, 

which are unconditional on 
iy j> , but still conditional on 

ix ) can be obtained using repeated relations: 

 

i i iP(y = j | y j, x )ij i i i iP P(y j | x ) P(y j | x )= = = ≥ ≥
                                                                                                  

(10) 

 
In fact, the conditional transition probabilities fully characterize the 

i
y  

probability function and can generally 

be expressed as follows: 
 

[ ]
1 1

´ ´
i i i i i i j i i

0 0

P(y = j | y j,x ) 1 P(y = r | y ,x ) = F(α + x β) 1 F(α + x β)
j j

ij r
r r

P r
− −

= =

 = ≥ − ≥ − ∏ ∏                                       (11) 

 
If Eq. (11) is generalized with respect to β j  parameter vector; the expression is obtained: 

 
1

´ ´
i j i i

0

P(y = j | x ) = F(α + x β ) 1 F(α + x β )
j

ij i j r j
r

P
−

=

 = − ∏                             (12) 

 
Here, while 

0 =−∞α , 0F( )−∞ = . As can be seen, binary model estimations are done in each category of the 

sequential model. One of the most important features of the sequential model is that there is no restrictions on 
parameter space when estimating the probability function. In sequential models, probabilities can be expressed as 
follows with a simple formulation: 
 

ij i j\iP = P.P                                  (13) 

 

i
P  is the probability of 

iy  result and 
j\iP  is the 

iy  
result conditional on observation i. Finally, we should 

emphasize that observation values of 
1 2, ,...y y  

must be conceptually different and statistically independent from each 

other (Liao, 1984). 
 

SOME OF THE STUDIES IN THE LITERATURE RELATED TO THE ARCHITECTURAL STRUCTURE 

OF THE SEQUENTIAL MODEL 

 
Examples of the architectural structure of the sequential modelling in case that choices are made sequentially in 

the literature are given below. 
The data set used in the study conducted by Maddala (1983) is a good example for sequential response models. 

The study deals with the educational success of individuals and the possible values of Y are coded, as follows: 
 

Y = 1: If the individual graduated from high school 
Y = 2: If the individual graduated from high school, but did not graduate from college 
Y = 3: If the individual graduated from college, but did not obtain a professional degree 
Y = 4: If the individual obtained a professional degree 
 

When the data structure is examined in this study, in which a status-based categorical variable is accepted as 
dependent variable, it is seen that statuses continues in a sequential manner. The sequential structure can be better 
understood by creating a model schema (Fig. 1).  
 
The mathematical representation of the estimated probabilities: As shown in the studies conducted by Amemiya 
(1981) ve Maddala (1983), the conditional probability that an individual choice corresponds to one of the sequential 
categories is usually formulated as follows:  
 
• Probability of not graduating from high school: 

 

( )1

1
1 1 1= β∑

K

k kk
P F X

 
 

• Probability of not graduating from college even if it is known that the individual graduated from high school: 
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Fig. 1: Branch structure 1 of the dependent variable in 

sequential modelling 
 

( ) ( )1 2

1 2
2 1 1 2 21 = − β β  ∑ ∑K K

k k k kk k
P F X F X

 
 

• Probability of not obtaining a professional degree 
even if it is known that the individual graduated 
from high school and college: 

 

( ) ( ) ( )1 2 3

1 2 3
3 1 1 2 2 3 31 1   = − β − β β      ∑ ∑ ∑K K K

k k k k k kk k k
P F X F X F X

 
 

• Probability of obtaining a professional degree even 
if it is known that the individual graduated from 
high school and college: 

 

( ) ( ) ( )1 2 3

1 2 3
4 1 1 2 2 3 31 1 1    = − β − β − β        ∑ ∑ ∑

K K K

k k k k k kk k k
P F X F X F X

 
 
In probability equations: 
 
• k1, k2, k3, k4 represent the subcribes of X explanatory 

variables set, which are included in stages 1, 2, 3, 
4, respectively. 

• Stage 1: parameter βk1 can be estimated by 
dividing the whole sample into two groups as 
graduated and not graduated from high school. 

• Stage 2: parameter βk2 can be estimated by 
dividing the sub-sample of high school graduates 
into two groups as graduated and not graduated 
from college. 

• Stage 3: parameter βk3 can be estimated by 
dividing the sub-sample of college graduates into 
two groups as obtained and not obtained a 
professional degree. 

• As in binary dependent variable models, 
considering that the sum of probabilities equals to 
“1”, the estimation of j-1 number of parameter sets 
is sufficient for a dependent variable with j number 
of response categories. Accordingly, parameter and 
probability estimates for each stage of the 

sequential model can be obtained using one of the 
binary logit or probit model algorithms.  
 
Another study by Cragg and Uhler (1970) and 

discussed by Maddala (1983) is on an automobile 
demand. As can be seen from the architectural structure 
of the data below, binary results sometimes cannot be 
demonstrated on decision tree in an organised manner. 
This is considered as other type of sequential decision-
making method (Fig. 2). 

As mentioned before, an important point regarding 
sequential models is the necessity that choice 
probability in each stage must be independent from the 
choice probability in other stages.  

Some of the other studies in literature are briefly 
mentioned below. 

In the study conducted by Anderson and Stein 
(2011), the relationship between the use of marijuana 
and young female adults was studied using sequential 
logit model. 

In his study, Buis (2011) dealt with the results of 
unobservable heterogeneity in sequential logit model. 

Gürler (2011) analyzed the factors that affect the 
child poverty in Turkey using combined cross-section 
data with sequential logit model.  

Hossain (2009) focused on alternative 
specifications in logit models. 

In their study in Nagakura and Kobayashi (2009) 
tried to determine whether sequential logit model or 
Nested logit model is more appropriate for the data.  

In their study on travel request to areas evacuated 
due to hurricane, Fu and Wilmot (2007) used sequential 
logit model. 

Ophem and Schram (1997) compared sequential 
logit model with multinomial logit model in their study. 

In the applied study conducted by Zhang (1994), 
the factors that affect socio-economical wealth in Hebei 
city of China were determined using sequential logit 
model.  

Weiler (1986) tried to determine the factors that 
might effect getting an attending to college-level 
educational institutions using sequential logit model.  
 

Interpretation of the sequential logit model results: 

The sequential logit model is obtained by determining 
the distribution function represented by F(.) in above 
sub-section specifically as the logistic distribution 
function represented by Λ . As explained,. The model is 
given below in its most general form: 
 

( ) ( ) ( )
1

0

1
j

ij i i j i j r i j
r

P P Y j / x x x
−

=

 ′ ′= = = Λ α + β − Λ α + β ∏ (14)  

  
It is known that the mathematical representation of 

the logistic distribution function is 
1

exp(.)
(.)

exp(.)
Λ =

+
. 

When this expression is written instead of Λ  in Eq. 
(14), the sequential logit model given in Eq. (15) is 
obtained:
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Fig. 2: Branch structure 2 of the dependent variable in sequential modelling 
 

( ) ( )
( )

( )
( )

1

0

1
1 1

j
j i j j i j

ij i j
rj i j j i j

exp x exp x
P P Y j / x

exp x exp x

−

=

 ′ ′α + β α + β
 = = = −

′ ′+ α + β + α + β  
∏                                         (15) 

 
Since sequential logit models are made up of binary logit model sets, interpretation of sequential logit models 

are based on the interpretation of binary logit models (Liao, 1984). 
When interpreting sequential logit model results, interpretation of event probabilities is focused on firstly and 

more noticeable interpretations can be obtained by interpreting odds ratios. In addition, more detailed interpretations 
can be obtained through interpretation of marginal effects, which answers the question of how partial change in 
explanatory variables effects event probabilities. Estimated results are based on estimates calculated from binary 
logit models. Its only difference from binary result models is that in sequential models, estimated probabilities 
include the multiplication of probabilities obtained from the related stage. The interpretation of the conditional 
probabilities and odds ratios are explained in detail in the application section. 

Considering that sequential models are created by sorting binary models sequentially, interpreting the effect of 
any independent variable on event probability or its marginal effect on odds ratios when the effects of other 
variables are constant is a natural result of interpreting the marginal effects in binary models (Liao, 1984).  

In the binary model, the marginal effect of a change of one unit in the value of Xk explanatory variable is 
obtained by taking the first-order partial derivative of 1P(Y )=  probability with respect to Xk variable: 

 

( )
( )

( )
( ) ( )

[ ]

2

1 1

1 11

1 1 1

j i j j i j

k k

k j i j j i jj i j

k

exp x exp xP (Y )

x exp x exp xexp x

P (Y ) P (Y )

′ ′α + β α + β∂ =
= β = β

∂    ′ ′+ α + β + α + β ′+ α + β     
= = − = β

                                                   (16) 

 
In the equation, � indicates the partial derivative or the marginal effect.  

Based on the general probability representations of the sequential logit model given in Eq. (14) and Eq. (15), the 
Marginal Effect (ME) of any explanatory variable on the event probability is usually explained as follows, starting 
from the first category: 
 

( )1 1 1 1i k i kME f x′= α + β β                  (17) 

 
Here, ( ) ( )f z dF z dz= . The obtained value indicates the approximate change in the probability in case of an 

one unit increase in k. element of x. For each of the remaining categories (j = 2, …, J), the marginal effects can be 
calculated in the form of nested marginal effects (Liao, 1984): 
 

( ) ( ) ( )
1 1

11

1
j j

ijk j i j jk r i r j i j irk
rr

ME f x F x F x ME
− −

==

′ ′ ′= α + β β − α + β − α + β   ∑∏                                          (18) 

 
In case that the explanatory variables are continuous, the formulas given in Eq. (16), (17) and (18) can be used 

successfully, however in case that dummy explanatory variables are used, obtained marginal effect values may be 
greater than the actual values due to the fact that the function cannot be differentiated. As a solution to this problem, 
probabilities for each level of the studied variable could be calculated by giving their average values of the non-
studied variables. The difference between these probabilities gives the real marginal effect.  
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In the following section, architectural structure of 
the sequental logit model is shown through a real data 
set on individuals’ indebtedness statuses and detailed 
interpretations are made.  
 

APPLICATION 

 

The data used in the application section of the 
study was complied from “Household Budget Survey” 
published by Turkish Statistical Institute (TSI) in 2013. 
Factors that affect the indebtedness statuses of 
individuals were examined using the Sequential Logit 
Model. The data used in the study, consisting of 21763 
individuals, was modeled using Stata 10 software 
package. With the help of this study, researchers, 
practitioners in particular, who work in this field will be 
able to estimate the most appropriate model and make 
detailed interpretations in case that they encounter with 
a sequential dependent variable structure. In the 
following sub-sections, the branch structure of 
sequential model, codes of dependent variable levels, 
the definitions of explanatory variables, estimation 
results and interpretations are given.  
 

Branch structure of the sequential logit model: In 
our study, the dependent variable Y is defined as 
“Individuals’ Indebtedness Statuses” and coded as 
follows: 
 
• Individual is not in debt 
• Individual is in debt to persons 
• Individual is in debt to banks or cooperative 

institutions 
• Individual is in debt to retail stores 
 
Here,  
Y = 1 : No debt 
Y = 2 : Is in debt to a relative-other persons or in debt 

in another way (Being in debt to persons)  
Y = 3 : Is in debt to a bank or cooperative (Being in 

debt to institutions) 
Y = 4 : Is in debt to a retail store (Being in debt to 

institutions) 
 

Probability definitions and mathematical 
formulations of dependent variable levels used in the 
sequential logit model are as follows. 
 
P1f : Total probability of individual’s having no debt. 
P2f : Total probability of individual’s being in debt to 

persons. 
P3f : Total probability of individual’s being in debt to 

a bank or cooperative. 
P4f : Total probability of individual’s being in debt to 

retail stores. 
 

Mathematical presentations of these probabilities 
are as follows: 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1

2 1 2

3 1 2 3

4 1 2 3

1

1 1

1 1 1

f

f

f

f

P F X

P F X F X

P F X F X F X

P F X F X F X

β

β β

β β β

β β β

′=

′ ′= −  

′ ′ ′= − −      
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Branch structure of the data is given below in Fig. 3. 
F indicates the logistic distribution function, β1, β2 

and β3 indicate the parameter vectors in the model and 
X indicates the explanatory variable vector. Open forms 
of expressions in Eq. (19) are given below: 
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While β1 parameter is calculated using the whole 
sample, β2 parameter is estimated by observing the 
remaining sample after subtracting individuals with no 
debt from the data set. β3 parameter is estimated by 
observing the remaining sample after subtracting 
individuals with no debt and individuals in debt to 
persons from the data set. The explanatory variables 
which are thought to affect individuals’ indebtedness 
probability are; Household Size; Marital Status 
(Married-Single); Education (Literate; Not Literate); 
Gender (Male-Female) and Income. 
 
Estimation results of sequential logit model: Stata 10 
software package was used in order to obtain sequential 
logit model results. Estimation results obtained from the 
combined data are shown in Table 2. 

Examining the results given in Table 2, it can be 
seen that the test used to determine whether the 
estimated model is statistically significant or not is 
based on Likelihood Ratio (LR). LR statistic that has a 
chi square distribution with 15° of freedom is found to 
be 810.99. According to the related probability value, 
the model is statistically significant at the 5% level of 
significance (p = 0.000<p = 0.05).  
 
First stage: Sequential logit model results for 
individuals with no debt: Examining the results of the 
first stage, it is concluded that all explanatory variables 
expect for “Income” are statistically significant at the 
5% level of significance. Accordingly, since the 
estimated coefficient of household size variable 
(0.09455) is a positive number, probability of an 
individual’s having no debt increased as household size 
increased. Similarly, it is observed that married 
individuals (0.54618) have a higher probability of 
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Fig. 3: Branch structure of individuals’ indebtedness statuses 
 
Table 2: Results of the sequential logit model steps 

  Model 
------------------------------------------------------------------------------------------------------------------------------------------------
First Step:(P1)  
Probability of individual’s  having  
 no debt 
------------------------------------------ 

Second Step:(P2) 
Probability of individual’s being in   
debt to persons 
------------------------------------------- 

Third Step:(P3) 
Probability of individual’s being in   
debt to a bank or cooperative 
------------------------------------------------

Explanatory variables ��1 SE(��1)  p ��2 SE(��2)  p ��3 SE(��3) p 

Constant -0.20587 0.396 0.603  0.08734 0.498 0.861  1.70729* 0.636 0.007* 
Size of Household  0.09455 0.009 0.000* -0.16325 0.011 0.000*  0.11751* 0.020 0.000* 
Marital Status          
Married  0.54618 0.074 0.000* -0.05705 0.105 0.586 -0.02300 0.142 0.871 
Education          
Literate -0.41076 0.072 0.000* -0.83108 0.101 0.000* -0.71100* 0.200 0.000* 
Sex          
Male -0.19494 0.076 0.010*  0.37170 0.103 0.000* -0.81212* 0.148 0.000* 
Income  0.00323 0.020 0.868  0.04420 0.024 0.069 -0.04102 0.031 0.185 
Number of obs.  21764         
LR chi2 (15)       810.99 Prob>chi2 : 0.000 Log-likelihood:  -28607,484 
 *Coefficient is statistically significant at a significance level of 5%; *Base Categories: Not married, Đlliterate, Female 

 
having no debt compared to single individuals; literate 
individuals (-0.41076) have a lower probability of 
having no debt compared to illiterate individuals and 
similarly men (-0.19494) have a lower probability of 
having no debt compare to women. 
 

Second stage: Sequential logit model results for 
individuals in debt to persons: In this stage, it is 
found that all explanatory variables expect for “Marital 
Status” and “Income” are statistically significant at the 
5% level of significance. Accordingly, it is observed 
that larger household size (-0.16235) and higher level 
of literacy (-0.83108) decrease the probability of 
individuals’ being in debt to persons. Men (0.37170) 
have a higher probability of being in debt to persons 
compared to women.  

Third stage: Sequential logit model results for 
individuals in debt to a bank or cooperative: In the 
final decision stage, it is seen that “Marital Status” and 
“Income” variables are not statistically significant at the 
5% level of significance. Examining the obtained 
results, it can be seen that the probability of an 
individual’s being in debt to banks or cooperatives 
increases as the household size increase (0.11751). 
Also, men (-0.81212) have a lower probability of being 
in debt to banks or cooperatives compared to women 
and literate individuals (-0.71100) have a lower 
probability of being in debt to banks or cooperatives 
compared to illiterate individuals. 
 

Calculation and ınterpretation of odds ratios: Odds 
ratio is a measure of the size of the effect. It is the ratio 
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Table 3: Odds ratios calculated from significant variables for decision levels 
 Model 

--------------------------------------------------------------------------------------------------------------------------------
First Step Second Step Third Step 

Explanatory variables Odds Ratios   
Size of household 1.099 0.849 1.125 
Marital status    
Married 1.727 Non-significant Non-significant 
Education    
Literate 0.663 0.436 2.036 
Sex    
Male 0.823 1.450 0.444 
Income Non-significant Non-significant Non-significant 

 
of an event’s probability ratio for a group to probability 
ratio for another group or estimation of this ratio based 
on a sample. Odds ratios calculated on each step of the 
model created using sequential logit analysis method 
are given in Table 3. 
 

First step: Interpretation of odds ratios for 
individuals with no debt: Examining the obtained 
results, the odds ratio value calculated for household 
size is 1.099. The fact that this value is close to 1 shows 
that the household size does not have a significant 
effect on an individual’s probability of having no debt. 
On the other hand, a married individual’s probability of 
having no debt is 1.73 times higher compared to a 
single individual; an illiterate individual’s probability of 
having no debt is 1.515 (1/0.66 = 1.515) times higher 
compared to a literate individual and a woman’s 
probability of having no debt is 1.219 (1/0.82 = 1.219) 
times higher compared to a man.  
 

Second step: Interpretation of odds ratios for 
individuals in debt to persons: Examining the results 
of the second step, an increase of one unit in household 
size decreased an individual’s probability of being in 
debt to persons by 1.178 (1/0.849 = 1.178). In addition, 
an illiterate individual’s probability of being in debt to 
persons is approximately 2.33 (1/0.436 = 2.33) times 
higher compared to a literate individual; and a man’ 
probability of being in debt to persons is 1.45 times 
higher compared to a woman.  
 

Third step: Interpretation of odds ratios for 
individuals in debt to a bank or cooperative: 
Examining the results of the last step, an increase of 
one unit in household size increased an individual’s 
probability of being in debt to a bank or cooperative 
approximately 1.125 times. According to this 
conclusion, it can be said that the household size does 
not have an important influence on the probability of 
indebtedness. Examining the literacy level of the 
individuals, a literate individual’s probability of being 
in debt to a bank or cooperative is approximately 2.03 
times higher compared to an illiterate individual; and a 
woman’s probability of being in debt to a bank or 
cooperative is 2.27 (1/0.44 = 2.27) times higher 
compared to a man.  

Calculation of marginal effect values on event 
probability for each step: In sequential modelling, 
interpreting the marginal effect of any of the 
explanatory variable’s on event probabilities is a natural 
result of of interpreting the results of binary models. 
Accordingly, effects of other explanatory variables 
being constant, the marginal effects of a change of one 
unit in xk explanatory variable on event probability are 
obtained by taking the partial derivative of binary 
response model (Liao, 1984). 

Marginal effects in Eq. (21) for each step are 
obtained by taking the first-order partial derivative of 
probability expressions with respect to xk explanatory 
variable where P1, P2 and P3 indicate probabilities 
calculated based on explanatory variable values for 
each step respectively: 
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   (21) 
 

Parameter estimation values and mean of each 
explanatory variable necessary for calculating the 
Marginal Effects (M.E.) of statistically significant 
explanatory variables on event probabilities are given in 
Table 4. 

Calculation of marginal effect values of 
“Education” on probability for each step is explained 
below as an example. 
  
First step: After giving other variables their mean 
values, in order to find the partial effect of individual’s 
literacy on his probability of having no debt, we need to 
calculate P1 probability as probability of being illiterate. 
We add the effect of being literate status to the model 
by including estimated beta coefficient of being literate 
in marginal effect calculation. Accordingly, the related 
probability and marginal effect value are calculated 
using the formula given in Eq. (21): 
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Table 4: Statistics necessary for calculating marginal effects for each step 

Explanatory 
variables 

First Step: P1 

---------------------------------------------- 
Second Step: P2 
---------------------------------------------- 

Third Step: P3 

-------------------------------------------------
��1 ��� M.E.1 ��2 ��� M.E.2 ��3 ��� M.E.3 

Constant -0.206 - -  0.087 - -  1.707* - - 
Size of household  0.094* 3.823  0.023399 -0.163* 4.458 -0.02875  0.118* 3.863 0.029405 
Marital status           
Married  0.546* 0.856  0.136481 -0.057 0.907  Non-significant -0.023 0.939 Non-significant 
Education          
Literate -0.411* 0.049 -0.096088 -0.831* 0.05 -0.193792  0.711* 0.010 0.164411 
Sex          
Male -0.195* 0.873 -0.04379  0.372* 0.901  0.092452 -0.812* 0.949 -0.13354 
Income  0.003 20.181  Non-significant  0.044 20.152  Non-significant -0.04 20.210  Non-significant 
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Second step: 
 

[ ]
( )

( )( ) ( )( )( )

− − − + +
= =

+ − − − + +  
∂

= − − = − − = −
∂

2

2
2 2

2 k

e x p 0 .0 8 7 0 .1 6 3 * 4 .4 5 8 0 .0 5 7 * 0 .9 0 7 0 .8 3 1 * ( 0 ) 0 .3 7 2 * 0 .9 0 1 0 .0 4 4 * 2 0 .1 5 2
P 0 . 6 2 9 6 0 1

1 e x p 0 .0 8 7 0 .1 6 3 * 4 .4 5 8 0 .0 5 7 * 0 .9 0 7 0 . 8 3 1 * ( 0 ) 0 . 3 7 2 * 0 .9 0 1 0 .0 4 4 * 2 0 . 1 5 2

P
P 1 P 0 .8 3 1 0 .6 2 9 6 0 1 1 0 .6 2 9 6 0 1 0 .8 3 1 0

x
.1 9 3 7 9 2

 
 
Third step: 
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Interpretation of marginal effect values on probability for each step: Detailed interpretation of marginal effect 
values of statistically significant variables for each step are given below. After giving other variables their mean 
values. 
 
Size of household: An increase of one unit in household size increases individual’s probability of having no debt by 
approximately 0.024 unit; increases individual’s probability of being in debt to a bank or cooperative by 
approximately 0.029 unit; and decreases individual’s probability of being in debt to persons by approximately 0.029 
unit. 
 
Married: It is observed that being married increased an individual’s probability of having no debt by approximately 
0.136 unit. Coefficients on other steps are not statistically significant, thus their interpretations are not included. 
 
Literate: Being literate decreases individual’s probability of having no debt by approximately 0.096 unit; decreases 
individual’s probability of being in debt to persons by approximately 0.194 unit; and increases individual’s 
probability of being in debt to a bank or cooperative by approximately 0.194 unit. 
 
Male: Being male decreases individual’s probability of having no debt by approximately 0.045 unit; increases 
individual’s probability of being in debt to persons by approximately 0.092 unit; and decreases individual’s 
probability of being in debt to a bank or cooperative by approximately 0.1335 unit. 

One of the most important points to consider when calculating the marginal effects is that when the explanatory 
variable is qualitative, differentiation cannot be performed, thus marginal effects cannot be obtained using this 
method. An alternative approach is explained in detail in Appendix. 

The marginal effects of statistically significant variables on event probabilities and their interpretations for each 
stage are given in above sub-section. The marginal effects on the total probability will be examined in the following 
section. 
  
Calculation of marginal effects on total probability: First of all, let's remember the total probability definitions 
once again: 
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Table 5: Marginal effects on total probability 

Explanatory variables 

First Step 
------------------------------- 

Second Step 
-------------------------------- 

Third Step 
------------------------------- Marginal Effect 

On Final Probability 1P
 1P∂

 
2P

 2P∂
 

3P
 

3P∂
 

Constant - - - - - - - 
Size of Household 0.532839  0.023399 0.77129 -0.02875 0.528351  0.029405  0.013682 
Marital Status        
Married 0.505882  0.136481 0.631965 -0.01326 0.643584 -0.00528  0.047894 
Education        
Literate 0.625052 -0.096088 0.629601 -0.193792 0.636973  0.164411 -0.04601 
Sex        
Male 0.659517 -0.04379 0.538371  0.092452 0.798631 -0.13354 -0.01709 
Income - - - - - - - 

 
P1f : Probability of individual’s having no debt. 
P2f : Probability of individual’s being in debt to persons. 
P3f : Probability of individual’s being in debt to a bank or cooperative. 
P4f : Probability of individual’s being in debt to retail stores. 
 

Mathematical expressions of these probabilities are given in Eq. (20). Accordingly, since the stages are 
independent in sequential modelling, total probability is the product of probabilities on each stage. Calculation of 
marginal effects on total probability was explained by Liao (1984) for two stages. Since the data set used in our 
study consists of three sequential stages, we extended the formulations as follows: 
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In order to make the calculations, first we need to find the probabilities related to Eq. (20) for each statistically 

significant variable and partial derivatives of
1P∂ , 2P∂  and 

3P∂ . 

For example, the marginal effect of being literate on the total probability must be calculated as follows: 
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The marginal effect of being literate on the total probability is found to be: 
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Marginal effects of other variables on total probability are given in Table 5.  
 
Interpretation of marginal effects on total probability: All other variables being constant, the interpretation of 
the marginal effect of concerned explanatory variables on probability is important. Accordingly. 
 
Size of household: The marginal effect of an increase of one unit in household size on the final probability is 
approximately 0.013682 unit. This value indicates that probability of indebtedness will usually increase by 0.013682 
unit in case of an increase of one unit in household size.  
 
Married: The marginal effect of being married on the final probability is approximately 0.047894 unit. This value 
indicates that probability of indebtedness will usually increase by 0.013682 unit if the individual is married.  
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Literate: The marginal effect of being literate on the 
final probability is found to be -0.04601. This result 
indicates that there is a decrease in the probability of 
indebtedness of literate individuals by 0.04601 unit, 
compared to illiterate individuals. In other words, it can 
be said that literate individuals have a lower tendency 
to be indebted.  
 
Male: The marginal effect of being male on the final 
probability is found to be-0.01709 unit. This indicates 
that there is a decrease in the probability of 
indebtedness of men by 0.04601 unit, compared to 
women.  
 

RESULTS AND DISCUSSION 
 

The  main  purpose  of  this  study  was  to  provide  
information  about  the  sequential  logit  model  
structure, which is thought to be the best alternative in 
case that the dependent variable is a nested and 
sequential categorical variable and explain its 
interpretations in detail. For this purpose, a real data set 
reflecting individuals’ indebtedness statuses was used. 
In this way, both the structure of the sequential logit 
model was introduced and by using a real data set, 
variables that could affect the individuals’ indebtedness 
statuses were identified. Individual’s indebtedness 
status was taken as the dependent variable and the data 
set was modelled using the sequential logit model 
taking into account of the sequential branch of the 
variable. Household size, marital status, education, sex 
and income were taken as explanatory variables. Odds 
ratios related to model were interpreted by calculating 
the marginal effect values for each stage and the final 
probability. 

The following findings were obtained by 
interpreting the marginal effects on probability for each 
stage in the sequential logit model. 

In the first stage, it was observed that larger 
households and married individuals had a higher 
possibility of having no debt compared to single 
individuals; literate individuals had a lower possibility 
of having no debt compared to illiterate individuals and 
men had a lower possibility of having no debt compare 
to women.  

Examining individuals in debt to persons, it was 
seen that an increase in household size resulted in a 
decrease in the probability of being in debt to persons. 
Additionally, literate individuals had a lower 
probability of being in debt to persons compared to 
illiterate individuals and men had a higher probability  
of  being  in  debt  to  persons  compared  to women. 

Examining individuals in debt to a bank or 
cooperative, it was seen that an increase in household 
size resulted in an increase in the probability of being in 
debt to a bank or cooperative. Also, men had a lower 
possibility of being in debt to banks or cooperatives 
compared to women and literate individuals had a lower 
possibility of being in debt to banks or cooperatives 
compared to illiterate individuals.  

The results obtained here are similar to research 
findings in Avery et al. (2004) and Sharma and Zeller 
(1997). 

The marginal effect results on the final probability 
in sequential logit model allowed for the following 
interpretations. 

An increase of one unit in household size usually 
resulted in an increase of 0.013682 unit in the 
probability of being in debt, being married led to an 
increase of 0.047894 unit in the probability of being in 
debt, being male led to a decrease of 0.01709 unit in the 
probability of being in debt and being literate led to a 
decrease of 0.04601 unit in the probability of being in 
debt. 
 

Appendix: As noted earlier, in case that the variable, whose partial 
effect is researched, is not a continuous variable, the partial 
derivatives cannot be taken and the marginal values cannot be 
obtained by using the formula given in Eq. (21). In this case, the real 
marginal effects are obtained by giving other explanatory variables 
their mean values and finding the differences between calculated 
probabilities. Since “Education” is a two-level categorical variable, 
all explanatory variables except for “Education” will be given the x  
values shown in Table 4 and probabilities coded as “1” for “literate” 
level and “0” for “illiterate” level will be calculated. The difference 
between these probabilities gives the real marginal effect.  

Accordingly; other variables are given their mean values that 
are shown in the second column of Table 4 in order to find the 
marginal effect of being literate on individual’s indebtedness status 
on the first stage.  
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P Y Đlliterate P Y 0 0.625052

0.206 0.094 * (3.823) 0.546 * (0.856)
1 exp

0.411* (0) 0.195 * (0.873) 0.003 * (20.181)

− + + 
 − − + = = = = =
− + + 

+  − − +   
 

According to these results, the marginal effect of being literate 
on individual’s probability of having no debt is obtained by finding 
the difference between two probabilities. That is: 
 

ME = P(Literate)- P(Đlliterate) = (0.524991)-(0.625052)  
= -0.10006 

 
Real marginal effects can be found when similar calculations 

are done for other stages.  
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