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Abstract: In this study, a five-parameter distribution so-called the kumaraswamy Generalized power Lindley is 
defined and studied. The new distribution contains, as special sub models, several important distributions, such as 
the kumaraswamy generalized Lindley, kumaraswamy Lindley, generalized Lindley. We derive the moments 
moment generating function, conditional moment and mean residual lifetime are derived. We propose the method of 
maximum likelihood for estimating the model parameters. Finally, real data examples are discussed to illustrate the 
usefulness and applicability of the proposed distribution. 
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INTRODUCTION 

 
The Lindley distribution was introduced by 

Lindley (1958) as a new distribution useful to analyze 
lifetime data especially in applications modeling stress-
strength reliability. Ghitany et al. (2008) studied the 
properties of the Lindley distribution under a carefully 
mathematical treatment. They also showed in a 
numerical example that the Lindley distribution gives 
better modeling for waiting times and survival times 
data than the exponential distribution. The use of the 
Lindley distribution could be a good alternative to 
analyze lifetime data within the competing risks 
approach as compared with the use of standard 
Exponential or even the Weibull distribution commonly 
used in this area.  

Lindley (1958) introduced a one- parameter 
distribution, known as Lindley distribution, given by its 
probability density function: 
 ���, �� = ���, �� = 	 
�
�� �1 + �����
��;  � >0, � > 0,                  (1) 
 

The cumulative distribution function (cdf) of 
Lindley distribution is obtained as: 
 ���, �� = 1 − ���
����	 ���� �!, � > 0, � > 0        (2) 
 

In the context of reliability studies, Ghitany et al. 
(2013) proposed the power Lindley distribution which 
is extension of Lindley distribution which offers a more 
flexible distribution for modeling lifetime data, namely 
in reliability, in terms of its failure rate shapes. It can 

accommodate both decreasing and increasing failure 
rates as its antecessors, as well as unimodal and bathtub 
shaped failure rates. The cumulative distribution 
function (cdf) of power Lindley distribution is given by: 
 ���, ", �� = 1 − #1 + $%����%� &' �(�%����)            (3) 

 
And the probability density function as follows: 
 ���, ", �� = 	%�
�%� *1 + ��
�+��
��,-./����0

       (4) 

 
Pararai et al. (2015) introduced a generalization of 

Power Lindley called generalized (or exponentiated) 
power Lindley (GPL). This distribution represents a 
more flexible model for the lifetime data.  

A random variable 1 is said to have the generalized 
power Lindley (234) distribution with three parameters ", � and 8, if it has the cumulative distribution 
function: 
 

2��, ", �, 8� = 91 − #1 + 	%��%��' �(�%��):; , � > 0  (5) 

 
The corresponding probability density function 

(pdf) is given by: 
 ���, ", �, 8� = 	
%�;�% � *1 + ��
�+��
���(�%����) ×

91 − #1 + $%����%� &' �(�%����):�;�� , � > 0, ", �, 8 > 0. 
                  (6) 
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The distribution introduced by Kumaraswamy 

(1980), also referred to as the "minimax" distribution, is 

not very common among statisticians and has been little 

explored in the literature, nor its relative 

interchangeability with the beta distribution has been 

widely appreciated. We use the term >? distribution to 

denote the Kumaraswamy distribution. The 

Kumaraswamy >? distribution is not very common 

among statisticians and has been little explored in the 

literature. Its cumulative distribution function (cdf) is 

given by: 

 �� @∣�B,C� ���� = 1 − *1 − ��B�+�C�, 0 < � < 1      (7) 

 

where, E > 0 and F > 0 are shape parameters. Equation 

(7) compares extremely favorably in terms of simplicity 

with the beta cdf which is given by the incomplete beta 

function ratio. The corresponding probability density 

function (pdf) is: 

 �� @∣�B,C� ���� = EF��B��*1 − ��B�+�C��
             (8)  

 

The >? pdf has the same basic shape properties of 

the beta distribution: E > 1 and F > 1 (unimodal); E < 1 and F < 1(uniantimodel); E > 1 and F ≤ 1 

(increasing); E ≤ 1 and F > 1(decreasing); a = 1 and b 

= 1 (constant). It does not seem to be very familiar to 

statisticians and has not been investigated 

systematically in much detail before, nor has its relative 

interchangeability with the beta distribution been 

widely appreciated. However, in a very recent paper, 

Jones (2009) explored the background and genesis of 

this distribution and, more importantly, made clear 

some similarities and differences between the beta and >? distributions. However, the beta distribution has the 

following advantages over the>? distribution: simpler 

formulae for moments and moment generating function 

(mgf), a one-parameter sub-family of symmetric 

distributions, simpler moment estimation and more 

ways of generating the distribution by means of 

physical processes.  

In this note, we combine the works of 

Kumaraswamy (1980) and Cordeiro and de Castro 

(2011) to derive some mathematical properties of a new 

model, called the >? −G distribution, which stems 

from the following general construction: if G denotes 

the baseline cumulative function of a random variable, 

then a generalized class of distributions can be defined 

by: 

 �� @∣�B,C� ���� = 1 − H1 − 2����B�I�C�
               (9) 

 

where E > 0 and F > 0 are two additional shape 

parameters which aim to govern skewness and tail 

weight    of   the  generated  distribution.  An   attractive  

feature of this distribution is that the two parameters a 

and b can afford greater control over the weights in 

both tails and in its Centre. The >? − 2 distribution can 

be used quite effectively even if the data are censored. 

The corresponding probability density function (pdf) is: 

 �� @∣�B,C� ���� = EF����2����B��H�J����K�I�L. �
       (10) 

 

The density family (10) has many of the same 

properties of the class of beta-G distributions (Eugene 

et al., 2002), but has some advantages in terms of 

tractability, since it does not involve any special 

function such as the beta function. Equivalently, as 

occurs with the beta-G family of distributions, special >?-G distributions can be generated as follows: >? −Weibull (Cordeiro et al., 2010), General results 

for the Kumaraswamy-G distribution (Nadarajah et al., 

2012). >?- generalized gamma (de Pascoa et al., 2011), >?- Birnbaum-Saunders (Saulo et al., 2012) and >?- 

Gumbel (Cordeiro et al., 2012) distributions are 

obtained by taking G(x) to be the cdf of the Weibull, 

generalized gamma, Birnbaum-Saunders and Gumbel 

distributions. >? exponentiated Pareto distribution 

(Elbatal, 2013). >?-Quasi Lindley Distribution (Elbatal 

and Elgarhy, 2014). Recently, >?- modified inverse 

Weibull distribution and its application, among several 

others. Hence, each new >? − 2distribution can be 

generated from a specified G distribution. 

This study seeks to providea new five-parameter 

distribution so-called the kumaraswamy Generalized 

power Lindley is defined and studied. The new 

distribution contains, as special sub models, several 

important distributions, such as the kumaraswamy 

generalized Lindley, kumaraswamy Lindley, 

generalized Lindley. We derive the moments moment 

generating function, conditional moment and mean 

residual lifetime are derived. We propose the method of 

maximum likelihood for estimating the model 

parameters. 

 

KUMARASWAMY GENERALIZED POWER 

LINDLEY DISTRIBUTION 

 

In this section, we introduce the five-parameter 

Kumaraswamy generalized Power Lindley (KGPL) 

distribution. Using (5) in (9), the cdf of the (KGPL) 

distribution can be written as 

 ��, ", �, 8, E, F� = 1-  

M1 − 91 − #1 + $%����%� &' �(�%����):�B;�N�C�
       (11) 

 

The corresponding probability density function 

given by: 
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�OJPQ��, ", �, 8, E, F� = EF����2����B��H�J����K�I�L. �
 = #EF�"R81 + " ' *1 + ��
�+��
���(�%����) × 

S1 − T1 + #"��
�" + 1'U �(�%����)V�;B��
 

× M1 − 91 − #1 + $%����%� &' �(�%����):�B;�N�C��
        (12) 

 
Here and henceforth, let 1 ∼  >234�", �, 8, E, F� 

be a random variable with density function (12). The 
failure (hazard) rate function is given by: 

 

 (13) 
 

Also, using (11) and (12) we get the reversed 

failure (or reversed hazard) rate function which is given 

by X��� = 	Y���Z���� as: 

 X��� = 	BC
%�;�% � *1 + ��
�+��
���(�%����) ×
91 − #1 + $%����%� &' �(�%����):�;B�� ×
[�\�]�#/����/� '^,-./����0_�K`�a�L. �

�[�\�]�#/����/� '^,-./����0_�K`�a�L�            (14) 

 

Figure 1 depicts the plots of the probability density 

and hazard function of KGPL distribution for some 

different values of the parameters. 
 
Special cases of the KGPL distribution: The 

kumasraswamy generalized power Lindley is very 

flexible model that approaches to different distributions 

when its parameters are changed. The KGPL 

distribution contains as special-models the following 

well known distributions. If X is a random variable with 

pdf (12), we use the notation 1~>234�", �, 8, E, F� 

then we have the following cases.  

 

• If = F = 1 , then (12) reduces to the generalized 
power Lindley which introduced by Pararai et al. 
(2015).  

• If 8 = 1, we get kumaraswamy power Lindley 
distrribution.  

• For � = 1 we get the kumaraswamy generalized 
Lindley distrribution which introduced by Oluyede 
et al. (2015).  

• kumaraswamy Lindley distribution arises as a 
special case of KGPL by taking � = 8 = 1. 

• Applying E = F = � = 1 we can obtain the 
generalized Lindley distrribution which introduced 
by Nadarajah et al. (2011).  

• If E = F = � = 8 = 1we get Lindley distribution 
which introduced by Lindley (1958). 

 
Expansion for the density function: In this 
subsection, we present some representations of pdf of 
Kumaraswamy generalized power Lindley distribution. 
The mathematical relation given below will be useful in 
this subsection. By using the generalized binomial 
theorem if β is a positive and |z|<1, then: 
 

 
 

Fig. 1a: The pdf function of KGPL for  some parameter 
values 

 

 
 

Fig. 1b: The pdf function of KGPL for some parameter values 
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Fig. 1c: The hazard function of KGPL for some parameter 

values 

 

 
 
Fig. 1d: The hazard function of KGPL for some parameter 

values 

 �1 − c��;�� = ∑ �−1��e�	`. f �g�f��∞��ehi� .             (15) 

 
Using (15), the Eq. (16) becomes: 
 

    (16) 
            
where, 
 jekl
= m m $no& �−1��e�k� $F − 1p & #E8�p + 1� − 1n '�k�

�lhi�
�∞�

�e,khi�  

 
STATISTICAL PROPERTIES 

 
In this section we studied the statistical properties 

of the (>234) distribution, specifically moments, 

moment generating function and mean residual life 
function.  
 
Theorem (1): If X has KGPL �q, ��, q = �", �, 8, E, F� 
then the rst moment of X is given by the following: 
 uv′ ��� = jekl 	BC%�;�% � # w$	x���l�&

*%�k��+-	x���y� 0' ×
91 + #	x���l�%�k�� ':.               (17) 

 
Proof:  Let X be a random variable following the 
KGPL distribution. The rstordinary moment can 
obtained using the well known formula: 
 úv��� = {�1v� = | �v∞i �OJPQ��, ", �, 8, E, F� }� =jekl 	BC%�;�% � | *1 + �
+�v�
�l����(�%�k����)∞i }� =
jekl 	BC%�;�% � # w$	x���l�&

*%�k��+-	x���y� 0' × 91 + #	x���l�%�k�� ':.  
                             (18) 
 
Which completes the proof. 

The central moments uv and cumulants ~v of the �j2 distribution can be determined from expression 

(12) as uv = ∑ �−1��úv�hi úv�� and ~v =úv� ∑ 	 r − 1� − 1� o�v��h úv��, respectively, 

Additionally, the skewness and kurtosis can be 

calculated from the third and fourth standardized 

cumulants in the forms �> = ��~₃�/�√�~₂³��� and >� = ��~₄�/�~₂²��, respectively. 
 
Theorem (2): If X has (KGPL) distribution, then the 

moment generating function �@��� has the following 
form: 
 �@��� = ∑ sxv!∞vhi jekl 	BC%�;�% � # w$	x���l�&

*%�k��+-	x���y� 0' ×
91 + #	x���l�%�k�� ':.               (19) 

 
Proof: We start with the well-known definition of the 
moment generating function given by: 
 �@��� = {��s�� = | �s����J��, ��∞i ,  

 
Since: 
 

m �vr! �v����∞

vhi  

 
Converges and each term is integral for all t close 

to 0, then we can rewrite the moment generating 
function as: 
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�@��� = ∑ sxv! {��v�∞vhi                                                                                                                (20) 

 
By replacing {��v�. Hence using (20) the �2� of (KGPL) distribution is given by: 

 

�@��� = m �vr!
∞

vhi jekl #EF"R81 + " ' � � $	r�� + o + 1&
*"�n + 1�+-	v
��l�0� × S1 + T	r�� + o + 1"�n + 1� UV. 

 
Which completes the proof.  

Similarly, the characteristic function of the KGPL distribution becomes: 
 q@��� = �@�p�� 
 

where, p = √�−1� is the unit imaginary number. 
 
Conditional moments: For lifetime models, it is also of interest to obtain the conditional moments and the Mean 
Residual Lifetime Function (MRLF). The �st conditional moment of X is given by: 
 

�� = � ���OJPQ��, ", �, 8, E, F�}�∞

s = jekl #EF"R81 + " ' �*1 + �
+���
�l����(�%�k����)∞

s }� 

 

Setting "�n + 1��
 = �,  then we have: 
 

�� = jekl #EF"R81 + " ' × �� $	��� + o + 1, "�n + 1��
&
*"�n + 1�+-	�
��l�0 +� �� $	��� + o + 2, "�n + 1��
&

*"�n + 1�+-	�
��l�R0 � 

 

where, ��E, �� = | c�B�����g�}c∞s  denotes the complementary incomplete gamma function. The mean residual 

lifetime function is given by: 
 u��� = �₁��� − � = {�1 ∣ 1 > �� − �

= jekl #EF"R81 + " ' ×
���
� � #	1�� + o + 1, "�n + 1��
'

*"�n + 1�+-	
��l�0 + �� #	1�� + o + 2, "�n + 1��
'
*"�n + 1�+-	
��l�R0 ¡¢¢

¢£ − �� 
 

The importance of the MRL function is due to its uniquely determination of the lifetime distribution as well as 
the failure rate FR function. Lifetimes can exhibit IMRL (increasing MRL) or DMRL (decreasing MRL). MRL 
functions that first decreases (increases) and then increases (decreases) are usually called bathtub (upside-down 
bathtub) shaped, BMRL (UMRL). Many authors such as Ghitany (1998), Mi (1995), Park (1985) and Tang et al. 
(1999) have been studied the relationship between the behaviors of the MRL and FR functions of a distribution. 
 

RESIDUAL LIFE AND REVERSED FAILURE RATE FUNCTION 
 

Given that a component survives up to time � ≥ 0, the residual life is the period beyond t until the time of 
failure and defined by the conditional random variable 1 − �|1 > �. In reliability, it is well known that the mean 
residual life function and ratio of two consecutive moments of residual life determine the distribution uniquely 

(Gupta and Kundu, 1999). Therefore, we obtain the rst order moment of the residual life via the general formula: 
 uv��� = {� �1 − ��v ∣ 1 > � � = 	 Z�s�� | �� − ��v���, ��}�∞v , r ≥ 1.                          (21) 

 
Applying the binomial expansion of �� − ��v and substituting ���, �� given by (16) into the above formula 

gives: 
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uv��� = �f¦yBC
%�;Z§�s� ∑ �−1�e*ve+vehi × | *1 + �
+�v�
�l����(�%�k����)∞s }�uv��� =
�f¦yBC
%�;Z§�s� ∑ �−1�e*ve+vehi × Sw#	x.f� ��l�,%�k��s�'

*%�k��+-	 ���y� 0 +� �w#	x.f� ��l�R,%�k��s�'
*%�k��+-	�̈��y��0 V                                                       (22) 

 

where, ���, �� = | ����������}�∞s  is the upper incomplete gamma function.  

On the other hand, we analogously discuss the reversed residual life and some of its properties. The reversed 
residual life can be defined as the conditional random variable � − 1|1 ≤ � which denotes the time elapsed from the 
failure of a component given that its life is less than or equal to t. This random variable may also be called the 
inactivity time (or time since failure. Also, in reliability, the mean reversed residual life and ratio of two consecutive 

moments of reversed residual life characterize the distribution uniquely. The rstorder moment of the reversed 
residual life can be obtained by the well known formula: 
 �v��� = {� �� − 1�v ∣ 1 ≤ � � = 	 Z�s�� | �� − ��vsi ���, ��}�, r ≥ 1.                          (23) 

 
Applying the binomial expansion of �� − ��v and substituting ���, �� given by (16) into the above formula 

gives: 
 

�v��� = jeklEF�"R8���� m�−1�e 	rp�v
ehi × �*1 + �
+�v�
�l����(�%�k����)∞

s }��v���    
= jeklEF�"R8�§��� m�−1�e 	rp�v

ehi
×

���
� © #	r − p� � + o + 1, "�n + 1��
'

*"�n + 1�+-	
��l�0 + �© #	r − p� � + o + 2, "�n + 1��
'
*"�n + 1�+-	�
��l�R0 ¡¢¢

¢£� 
 

where ©��, �� = | ������}�∞s is the lower incomplete gamma function. 

 
ESTIMATION: Estimation of the model parameters of the kumaraswamy generalized power Lindley distribution 
can be accomplished by the maximum likelihood method. Let �, �R, … , �« be a random sample of size n from 

KGPL �q, ��, q = �", �, 8, E, F�. Let q = �", �, 8, E, F��¬� be the parameter vector. The log likelihood function for 
the vector of parameters q = �", �, 8, E, F� can be written as: 
 log 4 = °±²� E + °±²� F + °±²�� + 2°±²�" − °±²��1 + "� + ∑ log*1 + �e
+«eh + �� − 1� ∑ log��e�«eh +" ∑ ��e�
«eh + �8E − 1� ∑ log 91 − #1 + $%�f�%�&' �-�%�f�0:«eh + �F −
1� ∑ log \1 − 91 − #1 + $%�f�%�&' �-�%�f�0:�B;�_«eh                                                                                                     (24) 

 
The associated score function is given by: 
 �«�q� = ³$´4´"& , $´4´�& , $´4´8& , $´4´E& , $´4´F&µ¬

 

 
The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations obtained 

by differentiating (24). The components of the score vector are given by: 
 ¶·¸¹Q¶% =
	R«% � − 	 «�%� − ∑ ��e�
 + �8E − 1� ×«eh ∑ º-./�f�0�/� �� ��f�»��f�¼�»��f�½«eh + E8�F − 1� × ∑ ¼�»��f�½K`. Sº-./�f�0�/� �� ��f�»��f�V

�¼�»��f�½K`«eh  (25) 



 

 

Res. J. Math. Stat., 9(1): 1-10, 2017 

 

7 

¶·¸¹Q¶
   =
«
 − ∑ �f�¾¿À ��f�	��f�� + ∑ ±² ���e� −«eh«eh " ∑ ��e�
«eh ±² ���e� + �8E − 1� × ∑ %»��f��f�·¸ ¹��f��/�f�/� ,-./�f�0·¸ ¹��f��»��f�«eh     (26) 

 ¶·¸¹Q¶; = E ∑ ±² ��1 − Á��e�� − E�F − 1� × ∑ ¼�»��f�½K`·¸¹¼�»��f�½�¼�»��f�½K`«eh«eh                           (27) 

 ¶·¸¹Q¶B = «B − 8 ∑ ±² ��1 − Á��e�� − 8�F − 1� ×«eh ∑ ¼�»��f�½K`·¸¹¼�»��f�½�¼�»��f�½K`«eh                                       (28) 

 
And 
 ¶·¸¹Q¶C = «C + ∑ ±²�H1 − ¼1 − Á��e�½B;I.«eh                                                                                                          (29) 

 
where, 
 Á��e� = #1 + "�e
" + 1' �-�%�f�0

 

 

And The Maximum Likelihood Estimation (MLE) of �, say �Â,  is obtained by solving the nonlinear system �«��� = 0. These equations cannot be solved analytically and statistical software can be used to solve them 
numerically via iterative methods. We can use iterative techniques such as a Newton--Raphson type algorithm to 

obtain the estimate�Â. For interval estimation and hypothesis tests on the model parameters, we require the 
information matrix. The 5 × 5 observed information matrix is given by: 
 

�q� = −
Ä
ÅÅÆ

Ç%% Ç%
 Ç%; Ç%B Ç%CÇ
% Ç

 Ç
; Ç
B Ç
CÇ;% Ç;
 Ç;; Ç;B Ç;CÇB% ÇB
 ÇB; ÇBB ÇBCÇC% ÇC
 ÇC; ÇCB ÇCC È
ÉÉÊ 

 

Whose elements are given in Appendix. Applying the usual large sample approximation, �4{ of �, i.e., �Â can 
be treated as being approximately Ë₅��, Í«���⁻¹�, where Í«��� = {¼Ç«���½. Under conditions that are fulfilled for 

parameters in the interior of the parameter space but not on the boundary, the asymptotic distribution of √°��Â − �� 
is Ë₅�0, Í���⁻¹�,  where Í���  =  ±p�_�° → ∞�°⁻¹Ç«��� is the unit information matrix. This asymptotic behavior 

remains valid if Í��� is replaced by the average sample information matrix evaluated at �Â, say °⁻¹Ç«��Â� . The 

estimated asymptotic multivariate normal Ë₅��, Ç«��Â�⁻¹� distribution of ϕ can be used to construct approximate 
confidence intervals for the parameters and for the hazard rate and survival functions. An 100�1 − ©� asymptotic 
confidence interval for each parameter �v is given by: 
 �ÒÇv = ��v  − cÓRÔÇÕvv�Âv + cÓRÔÇÕvv� 

 
where, cÓ is the upper 100© the percentile of the standard normal distribution. 

 
APPLICATIONS 

 
In this section, we present examples that illustrate the flexibility and the applicability of the KGPL distribution 

in modelling real world data. We t the density functions of the KGPL distribution and the GPL. We also compare 
the KGPL to other comparable distributions. For each data set, the estimates of the parameters of the distributions 
and information criterion statistics are calculated. 
 
Cancer patients data set: The first data set consists of data of cancer patients. The data represents the remission 
times (in months) of a random sample of 128 bladder cancer patients from Lee and Wang (2013). Estimates of the 
parameters of the KGPL distribution, Akaike information criterion (AIC), consistent Akaike information criterion 
(AICC), Bayesian information criterion (BIC) are given in Table 1 for cancer patients data. 
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Table 1: MLEs, LSE, the measures AIC, AICC and BIC and KS test to Cancer Patients data 

Model Estimates -logL AIC AICC BIC KS 

KGPL EÖ = 56.12 411.5 833.0 833.5 847.3 0.042 

 FÂ = 240.2      

 "Ö = 6.309      

 8Õ = 43.11      

 �Â = 0.030      

TEMW "Ö = 0.254 463.2 936.4 936.9 950.7 0.735 

 8Õ = 0.073      

 ©Ö = 0.0006      

 �Â = 0.009      

 ÜÕ = 0.033      

KPL EÖ = 1.313 416.8 841.7 842.0 848.0 0.090 

 FÂ = 0.001      

 8Õ = .0244      

 �Â = 0.051      

L �Â = 0.196 419.5 841.0 841.0 843.9 0.11 

 
Table 2: MLEs, LSE, the measures AIC, AICC and BIC and KS test to Guinea Pigs data 

Model Estimates -logL AIC AICC BIC KS 

KGPL EÖ = 70.59 94.80 199.6 200.5 210.9 0.08 

 FÂ = 281.4      

 "Ö = 6.753      

 8Õ = 43.11      

 �Â = 43.11      

TEMW "Ö = 0.201 115.2 240.5 241.4 251.9 0.79 

 8Õ = 0.193      

 ©Ö = 0.256      

 �Â = 1.64      

 ÜÕ = 0.343      

E EÖ = 0.565 113.0 228.0 228.1 230.3 0.28 

L �Â = 0.86 106.9 215.8 215.9 218.1 0.23 

 

Guinea pigs data set: The second data set represents 

the survival times (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli, observed and reported by 

Bjerkedal (1960). The starting point of the iterative 

processes for the guinea pigs data set is (1:0; 0:009; 

10:0; 0:1; 0:1). 

The values in Table 2 indicate that the KGPL 

distribution leads to a better fit over all the other models 

(Fig. 2 and 3). 

 

 
 
Fig. 2a: Estimated densities of the KGPL, TEMW, KPL and 

L distributions for the data 

 
 
Fig. 2b: Estimated cdf function from the fitted the KGPL, 

TEMW, KPL and L distributions and the empirical 

cdf of the data set 1 

 

CONCLUSION 

 

There has been an extraordinary enthusiasm among 

statisticians and connected specialists in developing 

adaptable lifetime models to encourage better 

demonstrating of survival information. Hence, a huge 

advancement has been made towards the speculation of 

some surely understood lifetime models and their 

fruitful   application  to   issues   in a few ranges. In this 
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Fig. 3a: Estimated densities of the KGPL, TEMW, E and L 

distributions for the data 

 

 
 

Fig. 3b: Estimated cdf function from the fitted the KGPL, 

TEMW, E and L distributions and the empirical cdf 

of the data set 1 

 

model study,   we    present   another four-parameter got 

utilizing the Kumaraswamy generalization technique. 

We refer to the new model as the KGPL distribution 

and study some of its mathematical and statistical 

properties. We hope that the proposed distribution will 

serve as an alternative model to other models available 

in the literature.  
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