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Abstract: This study aims at comparing the performance of logistic Liu estimators with Maximum Likelihood 
(ML), Stien and ridge regression estimators using a Monte Carlo simulation, where the mean squared/absolute 
errors, ������/ ������ mean squared/absolute error between the actual probability 	�
� and the estimated 
probability 	��
�, ����	�
�/ ����	�
� are used as performance criteria. An algorithm for simulation steps is 
included. An application of the effect of quantities of household wastes and its components on the probability of 
getting a running waste recycling factory is analyzed. Results from both the simulation and the application show that 
logistic Liu estimators are mostly preferred for correcting mutilcollinearity in logistic regression. 
 
Keywords: Biased estimators, Liu estimators, logistic regression, multicollinearity, ridge regression estimators, 

stien estimators 
 

INTRODUCTION 
 

Logistic regression, which is considered a member 
of the generalized linear models family, allows one to 
predict a discrete outcome. Generally, the dependent or 
response variable � is dichotomous, such as 
presence/absence, success/failure,…, etc. whereas the 
independent or explanatory variables 
�, 
�, . . . , 
� may 
be continuous, discrete, dichotomous, or a mix of these 
variables. The relationship between � and 
�, 
�, . . . , 
� 
is estimated using maximum likelihood method. 
Maximum likelihood estimates (MLE) have minimum 
variances, but in the presence of multicollinearity they 
were inflated and have large variances.  

Consequently, confidence intervals for regression 
parameters become wider and in testing hypothesis 
insignificant parameters are obtained (Schaefer et al., 
1984; Schaefer, 1986; Agresti, 2002; Hosmer and 
Lemeshow, 2002) among others.  

Biased estimators such as: Stien, ridge regression 
and Liu estimators were introduced for correcting 
multicollinearity. These biased estimators have a 
common advantage that is; all the explanatory variables 
are considered simultaneously without any reduction to 
improve the accuracy (Belsley et al., 1980; Belsley, 
1991).  

These biased estimators were first used for 
correcting multicollinearity in linear regression (Hoerl 
and Kennard, 1970 a, b; Dielman, 2005; Farag et al., 
2012; Hamed et al., 2013; Rong, 2010). They aimed at 
achieving two goals: 

 
• Reducing the Mean Squared Errors (MSEs) for the 

estimates of the parameters and 
• Improving the conditioning of the information 

matrix, so that the obtained parameter estimates 
and their standard errors are smaller than ML 
estimates.  

 
Stien estimators achieved the first goal but, it has a 

disadvantage which is, the shrinkage parameter dst 
(James and Stien, 1961), was calculated using MLE, 
which is already inflated as a result of multicollinearity, 
so that Stien estimators and their standard errors are 
inflated. Ridge regression estimates have achieved the 
second goal but, they have a disadvantage that there is 
still no consensus regarding how to select the ridge 
parameter dridge (Le Cessie and Van Houwelingen, 
1992; Kibria et al., 2012; Farag et al., 2012; Kan et al., 
2013). Liu estimators were introduced to combine two 
different methods (Stien estimators and ridge regression 
estimators) to obtain the advantages of both estimators 
and avoid their disadvantages (Liu, 1993; Liu, 2003, 
2004; Akdeniz and Erol, 2003; Rong, 2010).  

The pervious estimators were extended to correct 
multicollinearity in binomial logistic regression and 
multinomial logistic regression but their performance in 
comparison  to each other was not studied (Steyerberg 
et al., 2001; Aguilera et al., 2006; Camminatiello and 

Lucadamo, 2010; Farghali, 2012, 2014; Asar and Genc, 
2016). 
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This study aims to evaluate the performance of 
logistic Liu estimators in comparison with MLE, Stien 
and ridge regression estimators using a Monte Carlo 
simulation, where the mean squared errors of 
parameters ������, mean absolute errors of 
parameters ������, mean squared error between the 
actual probability 	�
� and the estimated probability 	��
�, ����	�
�; mean absolute error between the 
actual probability 	�
� and the estimated probability 	��
�, ����	�
� are used as performance criteria and 
also in the simulation study, factors including the 
degree of correlation, the sample size and the number of 
explanatory variables are varied. The estimator with the 
lowest standard errors and with the minimum 
(������, ������, ����	�
�, ����	�
�) is 
considered the best option for correcting 
multicollinearity in logistic regression. 

Finally, the benefits of using logistic Liu estimator 
are shown using the data of municipal solid waste 
management in Egypt, where the effect of quantities of 
household wastes and its components (paper packing, 
plastic, glass and metal) on the probability of getting a 
running waste recycling factory is investigated.  
 

METHODOLOGY 
 

This section describes the binomial logistic 
regression model and the effect of multicollinearity on 
the parameters estimates and on its standard errors. 
Furthermore, different biased estimators are presented 
to correct multicollinearity in logistic regression. 
 
The binomial logistic regression model: Let the real 
relationship between the response variable � and the 
explanatory variables 
�, 
�, . . . , 
� be as follows 
(Hosmer and Lemeshow, 2002; Agresti, 2002): 
 

�� = ����∑ �� ������ 
�!����∑ �� ������ + #�                               (1) 

 
where, 
i  = 1, 2 …, n $  = Sample size %  = Number of the explanatory variables 
�&   = The measurement of the jth explanatory variable 

for the ith observation, ' = 1,2, . . . , $, * = 1,2, . . . , %. �&  = the jth regression parameters, * = 1,2, … , % #�  = random error for the ith observation, ' =1,2, . . . , $: 
 

�� = ,1 the i12 observation has the property under consideration i = 1, 2, . . . , n 0         otherwise A     
                                                                                     (2) 
The fitted logistic regression model is as follows:  
 B$ CDE �F�DE��F�G = �HI + ∑ �H&  
�&�&J�  ' = 1,2, . . . , $        (3) 

It is well known that the Maximum Likelihood 
Estimates (MLE) �HKLM  for the logistic regression model 
are obtained by solving the following nonlinear system 
of equations using numerical methods as presented in 
Hosmer and Lemeshow (2002) and Agresti (2002): 

 

∑ ��N�J� = ∑ O ��P��∑ �P� ������ 
�!��P��∑ �P� ������ QN�J�                               (4) 

 

∑ ��
�&N�J� = ∑ O ��P��∑ �P� ������ 
�!��P��∑ �P� ������ QN�J� ∙ 
�&                                   (5) 

 
where, 
i  = 1, 2 …, n 
j       = 1, 2, … , % 
 
And the covariance matrix is calculated as follows: 
 STU��HKLM ≈ �WX YP WZ�               (6) 
 
where, �WX YP W is the estimated weighted information 
matrix of order �% + 1� × �% + 1�. W is a matrix of 
order �$ × �% + 1� that consists of the measurements 
of explanatory variables for each observation at each 
level of the response variable. YP  is a diagonal matrix of 
order �$ × $� its general element ))(ˆ-(1 )(ˆ 11 ii xx ππ , 

ni ,...,2,1= .  

 �HKLM are unbiased estimators with minimum 
variances when the explanatory variables 
�, 
�, . . . , 
� 
are uncorrelated, but often produce poor results because 
of the multicollinearity problem among the explanatory 
variables (Lesaffre and Marx, 1993; Tutz and 
Lieitenstorfer, 2006). Multicollinearity may produce 
signs opposite to the true signs of paired correlations 
and yields theoretically important variables with 
insignificant coefficients. Also, it affects the ability of 
prediction, wider confidence intervals and incorrect 
decisions for testing hypotheses for the regression 
parameters (Agresti, 2002; Hosmer and Lemeshow, 
2002; Månsson et al., 2012, 2015).  
 
Multicollinearity in binomial logistic regression: 
Many studies have been introduced for correcting 
multicollinearity in logistic regression models (Schaefer 
et al., 1984; Schaefer, 1986; Steyerberg et al., 2001; 
Aguilera et al., 2006; Camminatiello and Lucadamo, 
2010; Farghali, 2012, 2014; Asar and Genc, 2016). 
They developed the methods that were used for 
correcting multicollinearity in linear regression (such 
as: Stien estimators, ridge regression estimators, 
principal components regression, Liu estimators and 
mathematical programming). Most of these studies 
evaluated the performance of a single method by 
comparing it with the MLE but not in comparison with 
other methods (Månsson  and Shukur, 2011; Månsson 
et al., 2012, 2015).  

In this study, we are concerned about evaluating 
the performance of logistic Liu estimators (with two 
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different shrinkage parameters) in comparison with: 
MLE, logistic Stien estimators and logistic ridge 
regression estimators.  

In Farghali (2012), the logistic Stien and logistic 
ridge regression estimators were introduced as follows:  
 

MLEStSt d ββ ˆˆ =                 (7) 

 
where, 0< dSt <1   

 
And the estimated standard errors ����H&\] were 

calculated as follows:  
 ����H&\] = ^\]  ����H&KLM                 (8) 

 
The shrinkage parameter for logistic Stien 

estimators was calculated as follows: 
 ^\] = _P ′`ab _P`ab_P ′`ab _P`ab!]c�dX eP d�f                 (9) 

 
The logistic ridge regression estimators were as 

follows:  
 

MLEridgeR XWXIdXWX ββ ˆ)ˆ'()ˆˆ'(ˆ 1−+=                 (10) 

 
where, 1ˆ0 <≤ ridged   

 
The estimated covariance matrix was as follows: 
 

        (11) 
 

And the ridge parameter Ĥc�gh�  for logistic ridge 
regression was calculated as follows: 
 Ĥc�gh� = �_P ′`ab _P`ab                            (12) 

 
Logistic Stien estimators have a disadvantage that 

the shrinkage parameter ^\] is calculated using MLE, 
which is already inflated as a result of multicollinearity, 
so that Stien estimators and its standard errors are 
inflated. Also, Logistic ridge regression estimators have 
a disadvantage: there is still no consensus regarding 
how to select the ridge parameter ^c�gh� (El-Dash et al., 
2011; Hamed et al., 2013; Farghali, 2012). 
 
Logistic Liu estimator: The hope that the combination 
of two different methods (Stien estimators and ridge 
regression estimators) might inherit the advantages of 
both estimators and avoid their disadvantages motivated 
Liu (2003, 2004) and Liu (1993), to suggest another 
biased estimator for correcting multicollinearity in 
linear regression.  

Månsson et al. (2012) suggested logistic Liu 
estimators to correct multicollinearity in binomial 

logistic regression. The logistic Liu estimators were as 
follows: 
 

MLELiuLiu IdXWXIXWX ββ ˆ)ˆˆ'()ˆ'(ˆ 1 ++= −             (13) 

 
where, 1ˆ0 ≤≤ Liud  

 
Also, they suggested different methods for 

estimating the shrinkage parameter ^L�i, one of these 
methods was as follows: 
 

ĤL�i = �T
 j0, �'$ k lE�mZ� n�!lE�mop               (14) 

 
where, 
 

∑
=

=
p

t

MLEjjtv
j

1

)ˆ(ˆ βγ                             (15) 

  q& is the jth eigenvalue of the standardized weighted 

information matrix �W∗′YP W∗′, * = 1,2, . . . , %. s& is the 

jth eigenvector corresponding to the jth eigenvalue of the 
standardized estimated weighted information matrix, �W∗′YP W∗′, * = 1,2, . . . , %.  

The shrinkage parameter ĤL�i in Eq. (14) was 
estimated in two steps: first, they calculated the value of 

each individual parameter Ĥ& as follows:  

 

2

2

ˆ
1

1ˆ
ˆ

j

j

j

j

q

d

γ

γ

+

−
=

                          (16) 

 
Second, based on a simulation study, they reduced 

the p values obtained in (16) to a single value ĤL�i as 
shown in (14).  
The disadvantages of Månsson et al. (2012) were: 
  
• They did not introduce an exact method for 

determining a single value ĤL�i and  
• They did not study the performance of the 

suggested estimator in comparison to other biased 
estimators. 

 
Farghali (2014) suggested multinomial logistic Liu 

estimators to correct multicollinearity in multinomial 
logistic regression. Following Liu (1993), the estimated 
shrinkage parameter ĤL�i was chosen to minimize the 
mean squared error of the parameters: 
 ���L�i = � C��HL�i − �′��HL�i − �G             (17) 
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So that, the estimated shrinkage parameter for Liu 
biased estimators was as follows:  

 

� ĤL�iu = ∑ ∑ C�lEv�m Z� �wv�!�mx G��� yf v��∑ ∑ Czwv�lEv�m !�{ wv��wv�!�mx G��� yf v��              (18) 

 
And the estimated covariance matrix was as follows:  
 

     (19)                                         
 

Thus, in Farghali (2014) a single value of � ĤL�iu 
was obtained and STU��HL�i was introduced. Also, she 
extended Månsson et al. (2012) to correct 
multicollinearity in multinomial logistic regression. 

The disadvantage of Farghali (2014) was that the 
performance of the suggested biased estimator was 
studied only by a set of hypothetical data.  

In this study, logistic Liu estimator with � ĤL�iu is 

introduced as a special case of the multinomial logistic 
Liu estimators by putting | = 2 in Eq. (18) and (19), 
we obtained the estimated shrinkage parameter � ĤL�iu 
and the estimated covariance matrix STU��HL�i for 
binomial logistic regression. Simulation studies were 
conducted that evaluated the performance of logistic 
Liu estimator with both ( ĤL�i 

and � ĤL�iu) in 

comparison with MLE, logistic Stien estimators and 
logistic ridge regression estimators. Furthermore, the 
logistic Liu estimators were applied to a real-life 
dataset.  
 
Judging the performance of the estimators: To 
investigate the performance of logistic Liu estimators in 
comparison with MLE, logistic Stien estimators and 
logistic ridge regression estimators we calculate 
(������, ������, ����	�
�, ����	�
�) using 
the following equations: 
 

������ = ∑ �_PZ_�′ �_PZ_}�� ~                            (20) 

 ������ = ∑ �_PZ_��}�� ~                (21) 

 

����	�
� = ∑ �DE�F�ZD�F��′ �DE�F�ZD�F�}�� ~              (22) 

 ����	�
� = ∑ |DE�F�ZD�F�|�′}�� ~               (23) 

 
where, �H   is the estimator of � obtained from MLE, 
logistic Stien estimators and logistic ridge regression 
estimators and logistic Liu estimators with both 
( ĤL�i and � ĤL�iu) and R equals 2000 which 

corresponds to the number of replicates used in the 
Monte Carlo simulation. 
Monte carlo simulation: This section consists of a 
brief description of how the data are generated together 
with a result discussion. 
 
The design of the experiment: The response variable 
of the logistic regression model is generated using 
pseudo-random numbers from the ���	�
�� 
distribution where: 
 

)exp(1

)exp(
)(

β

β
π

i

i
i

x

x
x

′+

′
=

                                         (24) 

 
The parameter values of � are chosen so that �′� = 1 and �� = �� = ⋯ = �� (Månsson and Shukur, 

2011). To be able to generate data with different 
degrees of correlation, we use the following formula:  
 

ipijij zzx ρρ +−= 2/12)1(                           (25) 

 
where, ��&  are pseudo-random numbers generated using 
the standard normal distribution and �� represents the 
degree of correlation. In the design of the experiment, 
three different values of � are considered � =0.75, 0.85 and 0.95. 

The other factors that varied in the simulation 
study are the values of n and p. we use sample sizes 
corresponding to 50, 70, 100, 150 and 200 observations 
and regression models including 2 and 3 explanatory 
variables.  
 
The proposed algorithm: 
Step 1: Set sample size $; the total number of 

experiments �; number of the explanatory 
variables p; and the parameters � .  

Step 2 : Let U = 1. 
Step 3 : Generate data with different degrees of 

correlation according to formula (25). 
Step 4 : The maximum likelihood estimates (MLE) �HKLM 

for the logistic regression model are 
obtained through solving nonlinear system of 
Eq. (4) and (5). 

Step 5 : The shrinkage parameter for logistic Stein 
estimators is estimated using Eq. (9). 

Step 6 : Logistic Stein estimators were obtained using 
formula (7). 

Step 7 : Ridge parameter Ĥc�gh� for logistic ridge 
regression was calculated according to (12). 

Step 8 : Logistic ridge regression estimators were 
calculated using formula (10). 

Step 9 : The logistic Liu shrinkage parameters were 
estimated as in Eq. (14 and 18). 

Step 10 : The logistic Liu estimators were obtained 
using formula (13). 

Step 11 : Calculate mean squared errors of parameters ������, mean absolute errors of parameters 
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������, mean squared error between the 
actual probability and the estimated 
probability ����	�
�; mean absolute error 
between the actual probability  and the 
estimated probability ����	�
� as in Eq. 
(20)-(23). 

Step 12: Set U = U + 1, if U = �, stop.   
 

RESULTS AND DISCUSSION 
 

The simulated ������, ������, ����	�
� 
and ����	�
� for all of the estimators for different �, $  and % are presented in Table 1 and 2.  

From Table 1, in the case of high correlation 
coefficients (� = 0.75 and 0.85) with small and

Table 1: Simulation results when % = 2 �  $  Estimator ������  ������  ����	�  ����	�  
0.75 50 MLE 0.2498 0.3803 0.0079 0.0659 

  Stein 0.1945 0.3514 0.0104 0.0777 
  Ridge 0.1565 0.3106 0.0063 0.0591 

  Liu ( ĤL�i) 0.1244 0.2783 0.0048 0.0506 
  Liu � ĤL�iu 0.1632 0.3130 0.0057 0.0568 

 70 MLE 0.1488 0.3004 0.0052 0.0537 
  Stein 0.1269 0.2872 0.0073 0.0649 
  Ridge 0.1041 0.2562 0.0043 0.0491 
  Liu ( ĤL�i) 0.0936 0.2433 0.0035 0.0439 
  Liu � ĤL�iu 0.1088 0.2600 0.0041 0.0479 

 100 MLE 0.1057 0.2525 0.0039 0.046 
  Stein 0.0938 0.2459 0.0051 0.0539 
  Ridge 0.0801 0.2242 0.0032 0.0422 
  Liu ( ĤL�i) 0.0758 0.2185 0.0028 0.0393 
  Liu � ĤL�iu 0.0847 0.2283 0.0032 0.0419 

 150 MLE 0.0636 0.1985 0.0024 0.0362 
  Stein 0.0582 0.1928 0.0032 0.0425 
  Ridge 0.0514 0.1799 0.0021 0.034 
  Liu ( ĤL�i) 0.0515 0.1801 0.0019 0.0326 
  Liu � ĤL�iu 0.0542 0.1839 0.0021 0.0339 

 200 MLE 0.0464 0.1702 0.0018 0.0318 
  Stein 0.0442 0.1682 0.0023 0.0362 
  Ridge 0.0398 0.1589 0.0016 0.0302 
  Liu ( ĤL�i) 0.0401 0.1591 0.0016 0.0293 
  Liu � ĤL�iu 0.0414 0.1613 0.0016 0.0300 

0.85 50 MLE 0.3211 0.4437 0.0074 0.064 
  Stein 0.2390 0.3961 0.0133 0.0897 
  Ridge 0.1748 0.3286 0.0052 0.0533 
  Liu ( ĤL�i) 0.1429 0.2991 0.0037 0.0452 
  Liu � ĤL�iu 0.1852 0.3363 0.0041 0.0486 

 70 MLE 0.2201 0.3655 0.0053 0.0534 
  Stein 0.1753 0.3368 0.0106 0.0800 
  Ridge 0.1331 0.2848 0.0038 0.0455 
  Liu ( ĤL�i) 0.1209 0.2740 0.0030 0.0402 
  Liu � ĤL�iu 0.1434 0.2946 0.0032 0.0423 

 100 MLE 0.1347 0.2883 0.0036 0.0441 
  Stein 0.1159 0.2747 0.0076 0.0674 
  Ridge 0.0908 0.2378 0.0027 0.0379 
  Liu ( ĤL�i) 0.0891 0.2368 0.0022 0.0348 
  Liu � ĤL�iu 0.0986 0.2474 0.0024 0.0365 

 150 MLE 0.0895 0.2388 0.0023 0.0355 
  Stein 0.0806 0.2308 0.0049 0.0541 
  Ridge 0.0657 0.2051 0.0018 0.0311 
  Liu ( ĤL�i) 0.0679 0.2093 0.0016 0.0296 
  Liu � ĤL�iu 0.0716 0.2138 0.0017 0.0306 

 200 MLE 0.0671 0.2049 0.0017 0.0304 
  Stein 0.0617 0.1994 0.0036 0.0466 
  Ridge 0.0523 0.1812 0.0013 0.0272 
  Liu ( ĤL�i) 0.0545 0.1857 0.0013 0.0264 
  Liu � ĤL�iu 0.0565 0.1884 0.0013 0.0271 

0.95 50 MLE 0.8177 0.6932 0.0072 0.0623 

  Stein 0.5254 0.5752 0.0254 0.1287 
  Ridge 0.3385 0.4184 0.0043 0.0475 
  Liu ( ĤL�i) 0.2488 0.3622 0.0026 0.0366 
  Liu � ĤL�iu 0.2748 0.3839 0.0027 0.0374 

 70 MLE 0.5027 0.5494 0.0053 0.0533 
  Stein 0.3536 0.4772 0.0229 0.1222 
  Ridge 0.2211 0.3437 0.0032 0.0409 
  Liu ( ĤL�i) 0.1815 0.3204 0.0019 0.0317 
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Table 1: Continue      �  $  Estimator ������  ������  ����	�  ����	�  
  Liu � ĤL�iu 0.1922 0.3318 0.0020 0.0322 

 100 MLE 0.3444 0.4610 0.0036 0.0435 
  Stein 0.2622 0.4162 0.0210 0.1174 
  Ridge 0.1666 0.3046 0.0022 0.0339 
  Liu ( ĤL�i) 0.1538 0.3019 0.0014 0.0277 
  Liu � ĤL�iu 0.1596 0.3080 0.0014 0.0280 

 150 MLE 0.2180 0.3679 0.0022 0.0345 
  Stein 0.1781 0.3416 0.0179 0.1088 
  Ridge 0.1196 0.2629 0.0014 0.0270 
  Liu ( ĤL�i) 0.1208 0.2711 0.0009 0.0227 
  Liu � ĤL�iu 0.1264 0.2772 0.0009 0.0228 

 200 MLE 0.1609 0.3196 0.0018 0.0308 
  Stein 0.1350 0.2989 0.0150 0.0997 
  Ridge 0.0935 0.2381 0.0011 0.0240 
  Liu ( ĤL�i) 0.0986 0.2501 0.0008 0.0206 
  Liu � ĤL�iu 0.1021 0.2537 0.0008 0.0207 

 
Table 2: Simulation results when % = 3 �  $  Estimator ������  ������  ����	�  ����	�  
0.75 50 MLE 0.6485 0.6045 0.0116 0.0803 
  Stein 0.3790 0.4694 0.0149 0.0959 
  Ridge 0.2546 0.3647 0.0073 0.0634 
  Liu ( ĤL�i) 0.1716 0.3259 0.0055 0.0552 
  Liu � ĤL�iu 0.2763 0.3646 0.0069 0.0607 

 70 MLE 0.3887 0.4883 0.0082 0.0673 
  Stein 0.2442 0.3952 0.0108 0.0815 
  Ridge 0.1675 0.3111 0.0052 0.0537 
  Liu ( ĤL�i) 0.1543 0.3141 0.0046 0.0504 
  Liu � ĤL�iu 0.1671 0.3045 0.0049 0.0514 

 100 MLE 0.2455 0.3902 0.0056 0.0553 
  Stein 0.1709 0.3318 0.0079 0.0696 
  Ridge 0.1199 0.2661 0.0037 0.0458 
  Liu ( ĤL�i) 0.1284 0.2871 0.0036 0.0450 
  Liu � ĤL�iu 0.1172 0.2597 0.0035 0.0442 

 150 MLE 0.1511 0.3064 0.0037 0.0448 
  Stein 0.1153 0.2740 0.0052 0.0560 
  Ridge 0.0843 0.2259 0.0026 0.0384 
  Liu ( ĤL�i) 0.0998 0.2510 0.0027 0.0390 
  Liu � ĤL�iu 0.0822 0.2210 0.0025 0.0375 

 200 MLE 0.1130 0.2647 0.0028 0.0387 
  Stein 0.0916 0.2422 0.0039 0.0484 
  Ridge 0.0691 0.2047 0.0021 0.0340 
  Liu ( Ĥ

Liu) 0.0829 0.2281 0.0022 0.0349 
  Liu( Ĥ

Liu)I  0.0670 0.1997 0.0020 0.0334 
0.85 50 MLE 1.4723 0.9316 0.0109 0.0771 
  Stein 0.7304 0.6449 0.0187 0.1094 
  Ridge 0.4663 0.4739 0.0057 0.0557 

  Liu ( ĤL�i) 0.1911 0.3286 0.0036 0.0443 
  Liu � ĤL�iu 0.4957 0.4721 0.0054 0.0532 

 70 MLE 0.9335 0.7487 0.0078 0.0651 
  Stein 0.5056 0.5481 0.0156 0.1012 
  Ridge 0.3274 0.4007 0.0043 0.0484 
  Liu ( ĤL�i) 0.1819 0.3302 0.0031 0.0415 
  Liu � ĤL�iu 0.3309 0.3903 0.0040 0.0461 

 100 MLE 0.5756 0.5941 0.0053 0.0533 
  Stein 0.3384 0.4627 0.0123 0.0899 
  Ridge 0.2151 0.3358 0.0030 0.0407 
  Liu ( ĤL�i) 0.1653 0.3220 0.0025 0.0373 
  Liu � ĤL�iu 0.2120 0.3258 0.0028 0.0388 

 150 MLE 0.3712 0.4787 0.0035 0.0436 
  Stein 0.2401 0.3893 0.0085 0.0753 
  Ridge 0.1556 0.2894 0.0021 0.0337 
  Liu ( ĤL�i) 0.1515 0.3085 0.0020 0.0332 
  Liu � ĤL�iu 0.1485 0.2781 0.0020 0.0323 

 200 MLE 0.2768 0.4173 0.0028 0.0384 
  Stein 0.1905 0.3523 0.0066 0.0665 
  Ridge 0.1260 0.2676 0.0017 0.0307 
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Table 2: Continue      �  $  Estimator ������  ������  ����	�  ����	�  
  Liu ( ĤL�i) 0.1393 0.2977 0.0017 0.0311 
  Liu � ĤL�iu 0.1207 0.2569 0.0016 0.0295 

0.95 50 MLE 13.1243 2.7574 0.0110 0.0762 
  Stein 5.6883 1.5957 0.0269 0.1333 
  Ridge 3.7743 1.2215 0.0052 0.0515 
  Liu ( ĤL�i) 0.8743 0.4629 0.0028 0.0378 
  Liu � ĤL�iu 3.8994 1.1837 0.0049 0.0490 

 70 MLE 8.3497 2.2426 0.0079 0.0647 
  Stein 3.6582 1.3250 0.0246 0.1274 
  Ridge 2.5085 1.0176 0.0037 0.0442 
  Liu ( ĤL�i) 0.6333 0.4187 0.0021 0.0335 
  Liu � ĤL�iu 2.5484 0.9826 0.0036 0.0424 

 100 MLE 5.0464 1.7618 0.0053 0.0532 
  Stein 2.1919 1.0626 0.0236 0.1256 
  Ridge 1.4948 0.7978 0.0026 0.0365 
  Liu ( ĤL�i) 0.3391 0.3472 0.0015 0.0285 
  Liu � ĤL�iu 1.4688 0.3472 0.0024 0.0352 

 150 MLE 3.0670 1.3780 0.0035 0.0429 
  Stein 1.3718 0.8670 0.0216 0.1206 
  Ridge 0.9271 0.6333 0.0017 0.0296 
  Liu ( ĤL�i) 0.2434 0.3238 0.0010 0.0238 
  Liu � ĤL�iu 0.8742 0.5923 0.0016 0.0285 

 200 MLE 2.3486 1.2100 0.0027 0.0372 
  Stein 1.1001 0.7918 0.0194 0.1144 
  Ridge 0.7421 0.5752 0.0013 0.0257 
  Liu ( ĤL�i) 0.2149 0.3255 0.0008 0.0208 
  Liu � ĤL�iu 0.6713 0.5279 0.0012 0.0246 

 
moderate samples sizes ($ = 50, 70 and 100), the best 
options are Liu estimators with ĤL�i followed by ridge 
regression estimators and Liu estimators with � ĤL�iu 
respectively according to ������ and ������, while 
according to ����	�
� and ����	�
�, Liu 

estimators with both ( ĤL�i and � ĤL�iu) are the best 

option. 
In the case of high multicollinearity (� = 0.95) with 

small and moderate samples sizes ($ = 50, 70 and 100), 
Liu estimators with both ( ĤL�iand � ĤL�iu) showed their 

best performance by means of the reduction of ������, ������, ����	�
� and ����	�
�, 
while for large samples sizes ($ = 150 and 200) the best 
options are ridge regression estimators followed by Liu 
estimators with both ( ĤL�i and � ĤL�iu) respectively for 

all correlation coefficient according to ������ 
and ������, while due to ����	�
� and ����	�
� the best option is Liu estimators with both 

( ĤL�iand � ĤL�iu). 
As observed from Table 2, at � = 0.75 and small 

samples sizes ($ = 50 and 70) the best options are Liu 
estimators with ĤL�i followed by ridge regression 
estimators and Liu estimators with � ĤL�iu, respectively 

according to the  ������, While according to  ������, ����	�
� and ����	�
�, Liu 

estimators with both ( ĤL�iand � ĤL�iu) are the best 

option. While for moderate and large samples sizes ($ = 
100, 150 and 200) the best option is Liu estimators with � ĤL�iu according to the four criteria. In the case of 

high multicollinearity (� = 0.85 and 0.95) with all 
samples sizes Liu estimators with ĤL�i showed its best 
performance by means of the reduction of the four 
criteria. 

Thus it can be seen that, Liu estimators with both 
( ĤL�i and � ĤL�iu) are mostly preferred for correcting 

multicollinearity problem in binomial logistic 
regression. 
 
Real data application: In this section, a real data set 
taken from the annual statistical book for environment 
in Egypt (September 2014) is used for comparing the 
different methods for correcting multicollinearity in 
logistic regression. A logistic regression model is 
estimated, where the response variable is defined as 
follows: 
 

�� = �1 the ith governorate has a running waste 
recycling factory i = 1,2, . . . ,25 0         otherwise A  

 
The data was collected from the entire Egyptian 

governorate (25 governorates) during the year (2011). 
This response variable will be explained by the 

following explanatory variables: the quantity of home 
wastes by tons/year �W��, the quantity of packing paper 
wastes by tons/year�W��, the quantity of plastic wastes 
by tons/year �W��, the quantity of glass wastes by 
tons/year

 
�W�� and the quantity of metal wastes by 

tons/year
 

�W��, respectively. Hence, in this real data 
application, the  effect   of   changing   the  type and the  
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Table 3: The estimated parameters and the standard errors of the different estimators 

 Variables MLE estimators Stein estimators 
Ridge regression 
estimators 

Liu estimators 
---------------------------------------------------------ĤL�i  � ĤL�iu  

x1 0.698 (1.954) 0.314 (0.879) 0.232 (1.189) 0.111(0.372) 0.316 (0.899) 
x2 -4.371 (3.956) -1.965 (1.779)   -0.931(1.162)  -0.075 (0.268) -1.573 (1.504) 
x3 4.783 (4.358) 2.150 (1.959) 1.135 (1.127) 0.227 (0.250) 1.816 (1.634) 
x4 -0.427 (3.290) -0.192 (1.479) 0.255 (1.264) 0.071 (0.269)  -0.103 (1.295) 
x5 -0.549 (1.815) -0.247 (0.816)   -0.536 (1.050)  -0.170 (0.409)  -0.302 (0.853) 
Estimated  bias 
parameter 

________ Ĥ\]= 0.450 Ĥ~= 0.116 ĤL�i= 0.001 � ĤL�iu= 0.349 

 
quantity of wastes on the number of running waste 
recycling       factories     is   explored.     The   bivariate 
correlations between the explanatory variables are as 
follows: 
 

��
��
� 1 0.965 0.965  0.950  0.880 0.965   1   0.990  0.969 0.924 0.965  0.990 1    0.979 0.924  0.950  0.969 0.979     1 0.959 0.880  0.924 0.924    0.959  1 ��

��
�
  

 
The above correlation matrix; showed that all the 

bivariate correlations are greater than 0.88 which means 
that there is a problem of multicollinearity. The logistic 
regression model is estimated using the computer 
software R by applying the IWLS algorithm.  

For correcting multicollinearity, logistic Stien 
estimators, logistic ridge regression estimators and 
logistic Liu estimators (with both ĤL�i in Eq. (14) and � ĤL�iu in Eq. (18)) were applied. The results are shown 

in Table 3. 
It can be noticed that the quantity of household 

wastes �W�� and the quantity of plastic wastes �W�� 
have a positive impact on the running waste recycling 
factory, where, the quantity of packing paper wastes �W�� and the quantity of metal wastes �W�� have 
negative impact. For the quantity of glass wastes �W�� it 
has negative impact on the running waste recycling 
factory for all estimators except the Liu estimators 
(with ĤL�i), these means that one can increase the 
probability of having a running waste recycling factory 
by increasing the quantities of household wastes and 
plastic wastes and decreasing the quantities of packing 
paper wastes, metal wastes and glass wastes.  

Table 3 indicates, that the lowest parameter 
estimates and its standard errors are obtained by logistic 
Liu estimators with both ( ĤL�i and � ĤL�iu), while the 

largest are obtained by the MLE estimates which suffer 
from multicollinearity. It means that logistic Liu 
estimators with both ( ĤL�i and � ĤL�iu) are mostly 

preferred than other estimators to correct 
mutilcollinearity in logistic regression which ensure the 
simulation results.  
 

CONCLUSION 
 

In this study, a new shrinkage parameter for 
logistic Liu estimator, named � ĤL�iu, which provides 

an alternative method for dealing with multicollinearity 
in logistic regression, was introduced. We have 
designed an algorithm for a Monte Carlo experiment by 
generating random numbers for explanatory variables 
and the response variable. We have considered several 
sample sizes, degrees of correlation and number of the 
explanatory variables. We have compared the logistic 
Liu estimators with both ( ĤL�iand� ĤL�iu) MLE and 

other estimators (Stien and ridge regression) that were 
used to correct multicollinearity in binomial logistic 
regression. The MSE(β), MAE(β), ����	�
� T$^ ����	�
�are used as performance criterion. The 
results showed that logistic Liu estimators with both 
( ĤL�iand� ĤL�iu) are much more robust to the 

correlation than other estimators to correct 
mutilcollinearity in logistic regression. Therefore, the 
MLE should not be used in the presence of severe 
multicollinearity, as it becomes unstable with large 
variances and it has large MSE�β�.Logistic Liu 
estimators with both ( ĤL�iand� ĤL�iu) has the best 

performance in the simulation than other estimators. 
Thus, these results agreed with Kibria et al. (2012) and 
Farghali (2014).  

Finally, the estimators are applied to a real dataset, 
where the effect of changing the type and the quantity 
of wastes on the number of running waste recycling 
factories is explored, to show that the logistic Liu 
estimators with both ( ĤL�iand� ĤL�iu) are practical.  
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