Comparison of Extraction Techniques for the Determination of Ni, Cu, Zn and Pb in Maize grown soils of Kaduna Metropolis, Nigeria

1S.S. Mohammed and 2J.T. Ayodele
1Department of Applied Science, College of Science and Technology, Kaduna Polytechnic, Kaduna, Nigeria
2Department of Pure and Industrial Chemistry, Bayero University, Kano, Nigeria

Abstract: To assess the availability of metals in soil for absorption, the chemical forms must be determined. Sequential extraction procedures are useful to determine the geochemical partitioning of heavy metals in the soil. In this study, the Ni, Cu, Zn and Pb concentrations of soil samples from maize grown soils in Kaduna metropolis were determined using Flame Atomic Absorption Spectrometry (FAAS). Hot and cold extraction techniques were employed for the digestion and extraction of the soil samples using 0.05 mol/L EDTA, 1.0 mol/L oxalic acid and 1.0 mol/L acetic acid. The results indicated that there is no significant difference between hot and cold techniques for these metals in the reagents except for Zn in 0.05 mol/L EDTA and 1.0 mol/L oxalic acid where there is significant difference between hot and cold extraction and that the hot extraction is superior to the cold extraction with mean values of 25.63 for 0.05 mol/L EDTA and 26.37 for 1.0 mol/L oxalic acid.

Key words: Chemical extraction, flame absorption spectrometry, heavy metals, kaduna metropolis, maize grown soils

INTRODUCTION

Soils are receptacles for heavy metals released from industrial activities, municipal wastes, water sludge, urban composts, road traffic, atmospheric deposits and chemicals used in agriculture (phosphate fertilizers, pesticides) and spread out into the environment (Adriano, 1986). Heavy metals are persistent in the environment; they are non-thermo degradable and thus readily accumulate to toxic levels (Sharma et al., 2007). Many soils especially those in hazardous waste sites are contaminated heavy metals Ni, Cu, Zn, Pb etc. Heavy metal contamination as arable soils through industrial and anthropogenic activities is a serious problem in Nigeria. Metals uptake by plants may pose risks to human health when such plants are grown on or near contaminated areas. Metals accumulation in plant depends on plant species, growth stages, types of soil and metals, soil conditions, weather and environment (Chang et al., 1984; Petruzelli, 1989). Determination of metals in soil can be accomplished via single reagent leaching, ion-exchange resins and sequential extraction procedures. The number of available extraction techniques developed over the last three decades begs inquiry as to which technique is preferable over another. A large number of extracting solutions have been used to assess plant available trace elements (Gupta and Aten, 1993; He and Singh, 1993; Ayodele and Mohammed, 2011). In this research, the extractable Ni, Cu, Zn and Pb in soil samples were determined by Flame Atomic Absorption Spectrometry (FAAS). The soil samples were extracted using the chemical reagents, 0.05 M EDTA, 1.0 M acetic acid and 1.0 M oxalic acid. The two extraction techniques employed were compared.

MATERIALS AND METHODS

A flame atomic absorption spectrophotometer model 8010 Young Lin was used for the Ni, Cu, Zn and Pb determinations. In the extraction procedures, 1.0 M oxalic acid, 0.05 M Na2EDTA and 1.0 M acetic acid were used.

Preparation of samples: The research covered seven agricultural sites in Kaduna, Nigeria. The sites are: Nasarawa, Sabon Tasha, Ungwan Mu’azu, Tudun Wada, Kakuri, Mado, Kabala West and Kachia. To evaluate the variability between the different agricultural soils, 63 soil samples were collected between October - November, 2008, 2009 and 2010 from the following agricultural locations; Nasarawa, Sabon Tasha, Ungwan Mu’azu, Tudun Wada, Kakuri, Mado, Kabala West within Kaduna Metropolis, and Kachia as control. The soil samples were collected from the different areas enumerated at a depth of about 10 cm below the surface (Yaman et al., 2005). Kachia, a town situated about 130 km away from Kaduna was taken as control, Fig. 1 (A, B).
Fig. 1: (A) Map of Kaduna State showing Kaduna Metropolis, (B) Map of Kaduna Metropolis
The soil samples were crushed, sieved and dried at 85°C. All the analyses were carried out in the analytical laboratory of the Department of Applied Science, College of Science and Technology, Kaduna Polytechnic, Kaduna-Nigeria.

Extraction of soil: A modified Tessier et al. (1979) extraction method developed by Yaman et al. (2005) was used. Soil extracts were obtained by shaking separately 5 g of soil samples with 10 cm³ of 0.05 mol/L Na₂EDTA (for carbonate phases) and 1.0 mol/L oxalic acid (for oxide phases). The mixture was evaporated with nitric acid and 1.0 mol/L acetic acid were added to the remainder and centrifuged after stirring for 5 min. This procedure is referred to as hot extraction. The digest was diluted to 60 cm³ water and filtered. The trace metal concentrations were determined using atomic absorption method. The independent sample-test was employed to compare the hot and cold extraction techniques for each metal in the maize grown soils. This is represented in Table 1-6.

For 0.05 mol/L EDTA, p = 0.586>0.05 and p = 0.580>0.05 for Ni, Cu and Pb respectively. Hence it was concluded that there is no significant difference between hot and cold extraction techniques for these metals in maize grown soils considered. On the other hand, p = 0.001<0.05 for Zn and therefore, it was concluded that there is significant difference between hot and cold extraction techniques for this metal in the maize grown soils studied in 0.05 mol/L EDTA. From the group statistics in Table 1, it is evident that the hot extraction is superior to cold extraction with a mean of 25.63. Similarly, for 1.0 mol/L oxalic acid, p = 0.118>0.05, p = 0.906>0.05, and p = 0.433>0.05 for Ni, Cu and Pb respectively and thus concluded that there is no significant difference between hot and cold extraction for these metals in maize grown soils.

RESULTS AND DISCUSSION

The concentration of the metals in soils varies from one agricultural location to another, thus large number of samples was analyzed and the results treated statistically for meaningful correlation. The trace metal concentrations in soils were determined using atomic absorption method. The mean concentrations of the elements in soils and soils were determined using atomic absorption method. The independent sample-test was employed to compare the hot and cold extraction techniques for each metal in the maize grown soils. This is represented in Table 1-6.
techniques for the metals in the maize grown soils studied. On the other hand, p = 0.027 < 0.05 for Zn, and hence concluded that there is significant difference between hot and cold extraction techniques for the metal in the maize grown soils in 1.0 mol/L oxalic acid. From the group statistics in Table 2, it can be deduced that the hot extraction is superior to the cold extraction with a mean of 26.37. Lastly, for 1.0 mol/L acetic acid, p = 0.858 > 0.05, p = 0.906 > 0.05, p = 0.201 > 0.05 and p = 0.295 > 0.05 for Ni, Cu, Zn and Pb respectively and thus concluded that there no significant difference between hot and cold extraction techniques in maize grown soils for these metals in 0.1 mol/L acetic acid.

CONCLUSION

The comparison of single and sequential extractions techniques provided an interesting insight in extracting mobile/bioavailable fraction of heavy metals in the maize grown soils in this study.

ACKNOWLEDGMENT

The authors show great appreciation to Kaduna Polytechnic, Nigeria for providing facilities to analyze the samples and to Nasiru Musa and Yusuf Abdul-raheem for the help in sample collection and analysis.

REFERENCES

