Advance Journal of Food Science and Technology 2(2): 84-90, 2010

ISSN: 2042-4876

© Maxwell Scientific Organization, 2010

Submitted Date: September 11, 2009 Accepted Date: October 30, 2009 Published Date: March 10, 2010

Some Population Parameters of *Distichodus rostratus* (Gunther, 1864) from the Fresh Water Reaches of Lower Nun River, Niger Delta, Nigeria

J.F.N. Abowei

Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Amassoma, Bayelsa State, Nigeria

Abstract: Some population parameters of Distichodus rostratus from the fresh Water reaches of lower Nun River in the Niger Delta area of Nigeria, was studied for a period of one year (January, 2008-December 2008), using five hundred specimens. The regression equation for the length weight relationship was Log W = 0.0136+2.76 logL and correlation coefficient was 0.976 at p<0.05. The regression equation for length breadth relationship was Log M = 1.60 Log T_L and correlation coefficient was 0.968 at p<0.05. The largest specimen measured 54.0 cm and weighed 442.8 g at age 5+. Growth increment in length (22.0 cm) was highest in 1-2 years; while growth in weight was highest (141.5 g) in 2-3 years. The Maximum length at age attained L_{max} was 54.0 cm weighing 420.8 g. The length attained at infinity (L ∞) was 55.0 cm. Growth exponent (b) was 2.76. Length performance index (θ^1) value was 2.87. Weight performance index value (\emptyset) was 1.48. Growth coefficient (K) value was 0.27. The hypothetical age at which length is zero (T_a) was -0.46 and the maximum age estimated was 6 years. There was no temporal variation in the condition of the fish through out the year with condition index value ranging from 0.96-1.00 and condition factor value of 0.98. Total mortality (Z) value was 1.5 yr⁻¹. Natural Mortality (M) value was 0.97; fishing mortality (F) value was 0.52. Value for the rate of exploitation was 0.35 with corresponding percentage value of 30. Distichodus rostratus populations from the fresh water reaches of the lower nun river was Lower than the optimal value for sustainable yield, for the exploitation of the fishery; therefore stands the risk of under exploitation if urgent measures are not taken to develop the fishery.

Key words: Age and growth, condition factor, Distichodus rostratus, mortality, Nun River, Nigeria

INTRODUCTION

The grass eater, *Distichodus rostratus* belongs to the family Distichontinae. It is a demersal potamodrous fresh water fish distributed from Senegal to the chad basin and the Nile but absent in coastal basins between Gambia and Sassandra(Cote'dIvore). Its optimum pH and temperature range is 6.5-7.5 and 22.0-25.0°C respectively. In nature the fish are macro-herbivores, feeds on submerged plants, Eichornia roots and periphyton. The dorsal soft rays (total): 21-26; Anal soft rays: 13-16. The body depth is 2.7-3.6x, head length: 3.3-5.5x SL; Caudal Peduncle: 0.7-1.1x longer than wide; rounded snout; eye diameter 3.3(juveniles), -7x black lines formed by a series of points on the inter-radial membranes. Juveniles with transverse humeral spot sometimes one orange humeral spot.

D. rostratus plays an important role in the ecology and fisheries of West Africa and other inland waters. They constitute an important trophic web of this ecosystem and have been introduced into many artificial lakes and reservoirs such as Kivu, Kariba and Tiga dam in parts of Africa (Coulter, 1970). Prior to their introduction into artificial lakes, they had colonized artificial lakes from natural riverine habitats.

Population parameters evaluate the effect of fishing on a fishery as a basis for fishery management decisions (Sissenwine et al., 1979). The fundamental models used are based on four parameters: Growth, recruitment, natural and fishing mortality (Ricker, 1975). Age and growth are particularly important for describing the status of a fish population and for predicting the potential yield of the fishery. It also facilitates the assessment of production, stock size, recruitment to adult stock and mortalities (Lowe-McConnel, 1987).

Fish mortality is caused by several factors, which include, age (King, 1991); fish predation (Otobo, 1993), environmental stress (Chapman and Van Well, 1978); parasites and diseases (Landau, 1979) and fishing activity (King, 1991). The exploitation rate is an index, which estimates the level of utilization of a fishery. The value of exploitation rate is based on the fact that sustainable yield is optimized when the fishing mortality coefficient is equal to natural mortality (Pauly, 1983).

Significant contributions on growth studies have been made by Schaefer (1954), Beverton and Holt (1957), Ricker (1975) and Gulland (1969), among many other scientists, but the studies were concerned primarily with temperate stocks. On the other hand, studies on the population dynamics of tropical fish stock have been limited by the difficulty of ageing tropical fish species, which from the ecological perspective inhabit 'steady-state environment'.

The length-weight relationship of fish is an important fishery management tool. Its importance is pronounced in estimating the average weight at a given length group (Beyer, 1987) and in assessing the relative well being of a fish population (Bolger and Connoly, 1989). Consequently length-weight studies on fish are extensive. Notable among these are the reports of Shenouda *et al.* (1994) for *Chrysichthys* spp. from the southern most part of the River Nile (Egypt); Alfred-Ockiya and Njoku (1995) for mullet in New Calabar River, Ahmed and Saha (1996) for carps in lake kapitel, Bangladash; King (1996) for Nigeria fresh water fishes; Hart (1997) for Mugil cephalus in Bonny Estuary and Diri (2002) for *Tilapia guinensis* in Elechi creek.

Following the adoption of Peterson length frequency distribution method for ageing tropical fishes. There have been notable contributions by Longhurst (1964), Gulland (1969) and Pauly (1980) in this area of fisheries research. In spite of these efforts, length-weight, Length-breadth, growth, mortality and exploitation rate data on many tropical fish species are still lacking.

Condition factor compares the wellbeing of a fish and is based on the hypothesis that heavier fish of a given length are in better condition (Bagenal and Tesch, 1978). Condition factors decreases with increase in length (Bakare, 1970; Fagade, 1979); and also influences the reproductive cycle in fish (Welcome, 1978). Condition factors of different species of cichlid fishes have been reported by Siddique (1977), Fagade (1978, 1979, 1983), Dadze and Wangila (1980), Arawomo (1982) and Oni et al. (1983). Condition factors reported for some other species include: Alfred-Ockiya (2000) for Chana chana in fresh water swamps of Niger Delta and Hart (1997) for Mugil cephalus in Bonny estuary.

Age studies of fishes form an important aspect of their biology and relationship with their environment. Lackey and Hubert (1981) observed, that it aids in the productivity, longevity, periods of maturity, recruitment of various year classes and determination of potential yield of fish stock. Information obtained on age could contribute to the optimal, or at least a rational exploitation of a fishery.

The Nun River is one of the most important river systems in the Niger Delta providing nursery and breeding grounds for a large variety of fish. Fishing in the river is intensified and catch per unit effort is low. Consequent upon speedy industrialization and other human activities, the river is fast becoming degraded. Fishing is carried out indiscriminately with various traditional and modern fishing gear (Sikoki *et al.*, 1998). In spite of the importance of this mochokidae and Nun River fishery, no attempt had been made to assess the population parameters of *Distichodus rostratus* from the Nun River.

Available data on similar or the same water body but different aspects are often scattered in unpublished reports, consultancy and related studies including the work of Ogbo (1982), (Otamiri River); Dokubo (1982) (Sombreiro River); Akari (1982), (Orashi River); Nwadiaro (1989), (Oguta Lake); Orji and Akobuche (1989), (Otamiri River); Chindah and Osuamkpa (1994), (Bonny River), Sikoki and Hart (1999), (Brass River); Abowei (2000), (Nun River) and Ezekiel *et al.* (2002), (Oduhioku Ekpeye flood plain). This informed this study to provide biological and statistical information on *Distichodus rostratus* from the Nun River.

MATERIALS ANDS METHODS

Study area: The study was carried out in the fresh water reaches of the lower Nun River for a period of one year (January, 2008-December, 2008). The Nun River is one of the numerous low land rivers in the Niger Delta. The Niger Delta Basin covers all the land between latitude 4°14′ N and 5°35′ N and longitude 5°26′ E and 7°37′ E. (Powell *et al.*, 1985). It extends along the coast from the rivers basin in the West of Bonny River with characteristic extensive interconnection of creeks. It is the most important drainage feature of the Niger Basin River system with about 2% of the surface area of Nigeria. The annual rainfall of the Niger Delta is between 2,000-3000 mm per year (Abowei, 2000). The dry season lasts for four months from November to February with occasional rainfall.

The lower Nun River is situated between latitude 5°01′ and 6°17′ E. The stretch of the river is a long and wide meander whose outer concave bank is relatively shallow with sandy point bars (Otobo, 1993). The depth and width of the river varies slightly at different points (Sikoki et al., 1998). The minimum and maximum widths are 200 and 250 m, respectively. The river is subject to tidal influence in the dry season. Water flows rapidly in one direction during the flood (May to October). At the peak of the dry season, the direction is slightly reversed by the rising tide. At full tide the flow is almost stagnant.

The riparian vegetation is composed of a tree canopy made up of Raphia hokeri, Nitrogena sp., Costus afer, Bambosa vulgaris, Alchornia cordiffolla, Alstonia boonei, Antodesima sp. and submerged macrophytes which include: Utricularia sp., Nymphea lotus, Lemna erecta, Cyclosorus sp., Commelia sp. and Hyponea sp. (Sikoki et al., 1998).

Fish sampling: Sampling was carried out forth nightly for one year, using gillnets, long lines, traps and stakes. Catches were isolated and conveyed in thermos cool boxes to the laboratory on each sampling day. Fish specimens were identified using monographs, descriptions, checklist and keys (Daget, 1954; Boeseman, 1963; Reed *et al.*, 1967; Holden and Reed, 1972; Poll, 1974; Whyte, 1975; Jiri, 1976; Alfred-Ockya 1983; Whitehead, 1984; Loveque *et al.*, 1991). Total length and weight of the fish specimens were measured to the nearest centimeter and gramme respectively, to obtain the

required data. The weight of each fish was obtained after draining from the buccal cavity and blot drying samples.

Age was estimated from the length frequency distribution plot using six hundred fish specimens (600), following the integrated Peterson method (Pauly, 1983). The diagram was repeated six times along the time axis and a single continuous growth curve was flitted. The relative age (in years) and the corresponding modal lengths were determined from the plot. Total length and weight of fish specimens were measured to the nearest centimeter and grammes respectively, to obtain data on the length-weight relationship.

Length-weight and length-breadth relationship of fish specimens were determined using the exponential equation (Roff, 1986):

$$W = a1^{b} \tag{1}$$

Where, b is an exponent with a value nearly always between 2 and 4, often close to 3. The value b = 3 indicates that the fish grow symmetrically or isometrically (provided its specific gravity remains constant). Values other than 3 indicate allometric growth: If b>3, the fish becomes heavier for its length as it grows larger.

The methods used to obtain the growth parameters of the Von Bertalanffy's growth formula (VBGF) were:

Ford Walford plot: Lt + 1 was plotted against Lt where Lt + 1 are lengths separated by a year interval. The value of Lt at the point of interception of the regression line with the 45° lines gave L_{∞} .

Graphs of length and weight increment $^{\blacktriangle}L$ at age against the original length $L_{_1}$ and $W_{_1}$.

The degree of association between the length and weight was expressed by a correlation coefficient "r". The correlation coefficient could take values ranging between – 1 and +1. When "r" is negative, it means that one variable tends to decrease as the other increases; there is a negative correlation (corresponding to a negative value of 'b' in regression analysis). When r is positive, on the other hand, it means that the one variable increases with the one (which corresponds to a positive value of b in regression analysis) (Pauly, 1983).

However, whether the correlation that was identified could have arisen by chance alone, the 'r' value was tested for 'significance'. That is, whether the (absolute) value of "r" was higher than or equal to a critical value of "r" as given in a statistical table.

Length-breadth relationship was determined using:

$$M = a (T_x)^j$$
 (2)

Where, a = Initial growth constant, J = Growth rate exponent and $T_L = Total$ length of fish. Both coefficients were determined by least square regression analysis after logarithmically transforming all data into the from:

$$Log M = Log a + J log T_L$$
 (3)

If J = 1.0 then M growth rate is constant and equal to the initial growth consistent (isometric growth), otherwise there is a negative (J<1.0) or positive (J>1.0) allometric growth.

Length performance index was estimated from the equation (Pauly and Munro 1984):

$$\emptyset = \text{Log } k + 2 \log l_{\infty}$$
 (4)

Where k and l are parameters of VBGR.

Growth performance index \emptyset^1 was estimated from the equation (Pauly and Munro, 1984):

$$O^1 = \text{Log k} + 0.67 \log W_{m}$$
 (5)

Where k is a parameter of VBGR and W_{∞} is the mean weight of very old fish. The points at which the growth curve cuts the length axis on the sequentially arranged time scale gave the length at age counted from the origin. The estimation was derived from Pauly (1983).

The total mortality coefficient (Z) was estimated from the formular given by Ssentengo and Larkin in Pauly (1983).

$$Z = \frac{nk}{(n+1)(L_{u}-1^{1}/L_{u}-I)}$$
 (6)

Where n = number of fish in computing the mean length T, 1' = smallest of fish that is fully represented in the catch. K and L^{∞} are parameters of the VBGF.

An independent estimate of Z was obtained from the Hoeing formular in Ehrhardt *et al.* (1975).

$$Z = 1.45 - 1.01 T_{max}$$
 (7)

Where $T_{max} = Longevity$ (years)

Natural mortality coefficient (M) was estimated from Taylor's formula in Ehrhardt *et al.* (1975).

$$M = 2.995T_{\circ} + 2.9975K \tag{8}$$

Fishing mortality coefficient (f) was estimated as:

$$E = Z - M$$
 (Gulland, 1971) (9)

The exploitation ratio was estimated using the formula:

$$E = F/Z$$
 (Gulland, 1971) (10)

The condition factor (CF) was calculated from the expression

$$CF = \frac{100W}{L^3}$$
 (11)

Where.

W = The fresh body weight (g)

L = Total length (cm).

Table 1: Length-weight regression equation, correlation coefficient(r) and significance of correlation for *Distichodus rostratus* species from the lower Nun River.

Fish species	Regression equation	Correlation coefficient	Significance of correlation
Distichodus rostratus	LogW = 0.0136 + 2.76logL	0.976	P<0.05,t=29.1,df=512

Table 2: Length-breath relationship of Distichodis rostratus from the Nun River

Fish species	Length-breath-equation	Correlation-coefficient	Significance of correlation		
Distichodus rostratus	LogM = 1.60 logTL	0.968	p<0.05	t = 43.5	df = 507

Table 3: Length and weight at age of Distichodus rostratus from the lower Nun River

Fish species	Length-at-age (cm yr ⁻¹)					Weight-at-age (g yr ⁻¹)				
	1+	2+	3+	4+	5+	1+	2+	3+	4+	5+
Distichodus rostratus	24.5	34.5	440	50.2	54.0	93.1	243.6.0	334.4	441.6	442.8
Table 4: Growth increm	ent with a	ge at length	and weight fo	r Distichodi	ıs rostratu.	s in the low	er Nun River			
Fish species	Lengtl	n-at-age (cm)			Weight-a	nt-age (g yr ⁻¹)			_
	1-2	2-3	3-4	4	4-5	1-2	2-3	3.	-4	4-5
Distichodus rostratus	22.0	10.	.0 9.5	5	8.0	109.1	141.5	9	9.8	77.2

Table 5: Growth parameters of Distichodus rostratus from the fresh water reaches of the lower Nun River

Fish species	Growth par	Growth parameters								
	L	W _{max} (g)	L∞ (cm)	b	$\Theta^{\scriptscriptstyle 1}$	Ø	K_{vr-1}	T _{oxr} -1	Tmax vr	
Distichodus rostratus	54.0	420.8	55.0	2.76	2.87	1.84	0.27	-0.46	6	

RESULTS

The length-weight regression equation, correlation coefficient (r) and significance of correlation of Distichodus rostratus from the lower Nun River is presented in Table 1. The regression equation was Log W = log W = 0.0136 + 2.76 log L and correlation coefficient of 0.976 at p<0.05.

The length-breath regression equation, correlation coefficient (r) and significance of correlation of *Distichodus rostratus* from the lower Nun River is presented in Table 2. The regression equation was LogM = 1.60 logTL and correlation coefficient of 0.968 at p<0.05.

Table 3 shows the length and weight at age of the fish species studied. The largest specimen *Distichodus rostratus* measured 54.0cm and weighed 442.8g at age 5+. The smallest specimen measured 24.5 cm and weighed 93.1 at age 1+.

Table 4 shows the growth increment with age at length and weight for *Distichodus rostratus*. Growth increment in length was highest in 1-2 years (22 cm); while growth in weight was highest in 2-3 years $(141g\ yr^{-1})$.

Table 5 shows the growth parameters of ten fish species from the fresh water reaches of lower Nun River. The Maximum length at age attained L_{max} was 54.0 cm weighing 420 g. The length attained at infinity (L ∞) was 55.0 cm. Growth exponent (b) was 2.76. Length performance index (θ^1) values ranged was 2.87. Weight performance index values (\emptyset) ranged was 1.84. Growth coefficient (K) value was 0.27. The hypothetical age at which length is zero (T_{\circ}) was -0.46 and the maximum age estimated was 6 years.

Table 6: Condition index values and factors of *Distichodus rostratus*

Hom Hun Kiver					
Fish species	Condition index value	Condition factor			
Distichodus rostratus	0.96-1.00	0.98			

The condition index values and factor of *Distichodus* rostratus from the lower Nun River are shown in Table 6. There was no temporal variation in the condition of the fish through out the year with condition index value ranging from 0.86-1.00 and condition factor value of 0.98.

Table 7 shows the estimated mortality and exploitation value, of *Distichodus rostratus*. Total mortality (Z) value was 1.5 yr⁻¹. Natural Mortality (M) value was 0.97; fishing mortality (F) value was 0.52. Value for the rate of exploitation was 0.35 with corresponding percentage value of 35%.

DISCUSSION

The length-breath relationship *Distichodus rostratus* exhibited positive allometric growth (J<1.0). King (1991) also observed allometric length-breadth growth in *lllisha* africana in Qua Iboe estuary. Abowei and Davies also reported allometric length breath relationship for Gnathonemus tamandua from the fresh water reaches of the lower Nun River. The length breadth relationship being alometric means that growth rate was neither constant nor equal to the initial growth constant (J < 1.0). However, the transformed length fitted over breath resulted to a three dimensional growth structure of most fish species (Lagler et al., 1977). Values of the length exponent in the length-breadth relationship of the species being allometric implied that studied the breadth of the fish species increased faster than the cube of their total length.

Table 7: Estimated mortality and exploitation values of Distichodus rostratus from the lower Nun River

Fish species	Total mortality Z yr-1	Natural mortality M yr-1	Fishing mortality E yr-1	Exploitation rate	E%
He mis yno don tis					
membranaceus	1.5	0.97	0.52	0.35	35

There is linear relationship between the fish body breadth and gill net mesh size selectivity. Ita and Madahili (1997) reported a linear relationship between body breath and gill net mesh size selectivity. Fish species with larger body-breadth were caught more in larger mesh sizes, while fish with small body breadth swim across nets with larger mesh size because of its small size.

The L_{max} values of 54.0 cm, for Distichodus rostratus varied for L_{max} values reported for the fish species studied by others. Reed et al. (1967) recorded L_{max} values of 120cm for Clarotes laticeps, from Northern Nigeria. It has however been shown that the maximum size attainable in fishes is generally location specific (King, 1991). King (1996) attributed the differences in maximum size attained by fish in different water bodies to noise from out board engines and industrial activities. Abowei and Hart (2007) attributed the differences in maximum size of Chysichthys nigrodigitatus in the lower river to high fishing pressure, environmental pollution and degradation. The fresh water reaches of the Nun River are often subjected to outboard engine operation. The SPDC Nun river flow station is also located along the river.

Generally the estimated growth parameters in this study varied from those estimated for some fish species from some water bodies. Spare and Venema (1992) had already reported that growth parameters differ from species to species and also stock to stock even within the same species as a result of different environmental conditions. The hypothetical age at which length is zero (T_o) values was negative. This result compared favorably with the general observation made by Pauly (1983). King (1996) also estimated a negative To value for Tilapia marie from Cross river Niger. However, the results from this study varied from the report by Arawomo (1982), who reported positive "T_o" values for Sarotherodon niloticus in Opa reservoir. Valentine (1995) and Abowei and Hart (2007) also reported positive "T_a" values for major cichlids and Chryschthys nigrogiditatus from Umuoserche Lake and Nun river respectively.

The growth performance index of was relatively high. Growth performance index Ø compares the growth performance of different population of fish species. Faster growth rates are defensive mechanism against predators. The maximum age, (6) years estimated for this study varied with the maximum age of 3-5 years estimate for some fish species in Nun river by Hart and Abowei (1997). The maximum age attained for fish species varies from to species to species (Hart and Abowei, 2007).

The exploitation rate assesses if a stock is over fished or not, on the assumption that optimal value E ($E_{\rm opt}$) is equal to 0.5. The use of E or 0.5 as optimal value for the exploitation rate is based on the assumption that the

sustainable yield is optimized when F = M (Gulland, 1971). The result shows that *Distichodus rostratus* with an exploitation rate of 0.35 is lower than the optimal value for sustainable yield, for the exploitation of the fishery. These populations therefore stand the risk of under exploitation if urgent measures are not taken to develop the fishery.

REFERENCES

Abowei, J.F.N., 2000. Aspects of the fisheries of the lower Nun River. Ph.D Thesis, University of Port Harcourt, Port Harcourt. pp: 248.

Abowei, J.F.N. and A.I. Hart, 2007. Size, composition, age, growth, mortality and exploitation rate of *Chysichthys nigrodigitatus* from Nun River, Niger Delta, Nigeria. Afr. J. Appl. Zool. Environ. Biol., (9): 44-50.

Akari, E.J., 1982. Identification of common fresh water fishes of a stretch of Orashi River. HND Project, Rivers State University of Science and Technology, Port Harcourt. pp. 45.

Alfred-Ockiya, J.F., 1983. Field characteristics of some common fresh water fishes of the Niger Delta. Department Paper (2) pp: 36.

Alfred-Ockiya, J.F. and D.C. Njock, 1995. A comparative analysis of the length weight relationship and condition factors of four species of grey mullet (Pisces/Mugilidae) from New Calabar River, Rivers state of Nigeria, Nigeria J. Tech. Edu., 2: 5-10.

Alfred-Ockiya, J.F., 2000. The length-weight relationship of snakehead (*Chana chana*) from the fresh water swamps of Niger Delta, Nigeria. J. Aquat. Sci., 15: 12-14.

Ahmed, K.K. and S.B. Sahai, 1996. Length-weight relationship of major carp in Kaptai Lake. Bangladash. NAGA. The ICLARM Q., pp. 28.

Arawomo, G.D., 1982. The growth of Sarotherodon niloticus in Opa, reservoir. University of Ife, Nigeria. Proceedings of the 2nd Annual Conference of the Fisheries Society of Nigeria (FISON) Kainji Lake Resource Institue, New Bussa, Nigeria, 20-30th October, pp: 221-227.

Bagenal, T.B. and F.W. Tesch, 1978. Methods for Assessment of Fish Production in Fresh Waters. 3rd Edn. Blackwell Scientific Publications Ltd. London, pp: 101-136.

Bakare, O., 1970. Bottom deposit as food of inland fresh water fish. Visser, S. Akainji. A Nigeria Man Made Lake. Kainji Lake Studies, Vol. 1: Ecology. NISER, Ibadan, pp: 52.

- Beyer, J.E., 1987. On length-weight relationships computing the mean weight of the fish of a given length class, Fishbyte, 5(1): 11-13.
- Bolger, T. and P.L. Connoly, 1989. The selection indices for the measurement and analysis of fish condition. J. Fish. Biol., 30:171-182.
- Boverton, R.J.H. and S.J. Holt, 1957. On the dynamics of exploited fish populations. Fish. Invest. Minist. Agne fish. Food. 19: 533.
- Bosseman, M., 1963. Annotated list of fisheries from the Niger Delta. Verh. Lerden. 61: 48.
- Chapman, D.W. and P. Van Well, 1978. Growth and mortality of *Stolothrissa tangenicae*. Trans. Am. Fish. Soc., 2(107): 26-35.
- Chindah, A.C. and A. Osuamke, 1994. The fish assemblage of the lower Bonny river, Niger Delta, Nigeria. Afr. J. Ecol., 72: 58-65.
- Coulter, G.W., 1970. Population changes within a group of fish species in Lake Tanganyuka, following their exploitation. J. Fish Biol., 2: 329-523.
- Daget, J., 1954. Les Poissons due Niger Superior. Swets and Zeitlinger N.V. Amster Don, pp. 391.
- Dadzie, S. and B.C.C. Wangila, 1980. Reproductive biology, length-weight relationship and condition factor of pond raised *Tilapia zilli* (Gervais). J. Fish Biol., 17: 243-253.
- Dokubo, I.A.K., 1982. Longitudinal distribution of fishes in Sombrero River, Rivers State. B.Sc. Project, University of Port Harcourt, Choba. pp: 140.
- Diri, M.S., 2002. Length-weight relationship of Sarotherodon melanotheron and Tilapia guineensis in Elechi Creek, Niger Delta, Nigeria. B.Sc. Project. Rivers State University of Science and Technology, Port Harcourt. pp: 25.
- Ezekiel, E.N., J.F.N. Abowei and A.I. Hart, 2002. The fish species assemblage of Odhiokwu Ekpeye flood plains. Niger Delta. Int. J. Sci. Technol., 1(1): 54-59.
- Ehrhardt, N.M., P.S. Jacquemin, G.G. Francisco, G.D. German, M.L.B. Juan, O.O. Juan and S.N. Austin, 1983. On the Fishery and Biology of the Grant Squid. *Dosidicus* sp. was in the Gulf of California, Mexica, Mexica In: Caddy, J.R. (Ed.), Advances in Assessment of World Cephalopod Resources. FAO Fish Tech. Paper, 231: 306-339.
- Fagade, S.O., 1974: Age determination of *Tilapia melanotheron* in the Lagos Lagoon, Nigeria. Int. Symp. Ageing Fish., pp: 71-77.
- Fagade, S.O., 1979: Observations on the biology of specie of Tilapia from the Lagos Lagoon, Bull. De l' I, F. A. N. 41, A₃:. pp: 60-72.
- Fagade, S.O., 1983. The biology of *Cromido tilapia* gunteri from a small Lake. Arch. Hydrobiol., 97: 60-72.
- Gulland, J.A., 1969. Manual of Methods of Fish Stock Assessment, Part 1. Fish Population Analysis. FAO Manual in Fisheries Science No. Rome, pp. 154.

- Gulland, J.A., 1971. The Fish Resources of the Ocean West Poly Fleet, Survey Fishing News (Books) Ltd. FAO Tech. Paper No. 97, pp. 428.
- Hart, S.A., 1997. The biology of *Mugil cephalus* (Linnaeus, 1758) Perciforms: (Mugilidae) in Bonny estuary. M.Sc. Thesis, Deptartment of Zoology, University of Port Harcourt, Nigeria, pp. 102.
- Hart, A.I. and J.F.N. Abowei., 2007. A study of the length-weight relationship, condition factor and age of ten fish species from the lower Nun River. Niger Delta. Afr. J. Appl. Zool. Environ. Biol., 9: 13-19.
- Holden, M. and W. Reed, 1972. West African Fresh Water Fisher. Longmans Ltd. London. pp: 53.
- Ita, E.O. and A. Maelahili, 1997. The current status of fish stock and fisheries in Kainji Lake; Consultancy Report on Fish Stock Assessment in Kainji Lake. The Nigerian-German (GTZ) Kainji Lake Fisheries Promotion Project, New Bussa. pp: 128.
- Jiri, C., 1976. A Colour Guide of Familia Fresh Water Fishes. Octopus Books Ltd. London, pp. 25.
- King, R.P., 1991. Some aspects of the reproductive strategy of *Illisha africana* (Block 1795) (Teleost, Clupudae) in Qua Iboe estuary, Nigeria. Cybium, 15(3): 239-251.
- King, R.P., 1996. Population dynamics of the Mud Skipper, *Penophthalinus barbarus* (Gobidae) in the estuarine swamps of Cross River, Nig. J. Aquat. Sci.,11: 31-34.
- Lackey, R.T. and W.D. Hubert, 1978. Analysis of exploited fish populations sea grant Ext. Div. Virginia Poly. Inst. and State University, Blackberry Virginal, pp: 97.
- Lagler, K.F., J.E. Bardach, R.R. Miller and D.R.M. Passion, 1977. Ichthydogy. 2nd Edn., John Wiley and Sons, pp: 506.
- Landau, R., 1979. Growth and population studies on *Tilapia galilae* in Lake inneret. Fresh Water Biol., 9: 23-32.
- Longhurst, A.R., 1964. Bionomics of the Sclaenidae of Tropical West Africa. J. Cons. Perm. Int. Explor. Mer., 29(1): 83-114.
- Loveque, C., O. Pyugy and G.G. Teugels, 1991. The Fresh and Brackish Water Fishes of West Africa, Musee Royale De. I. Afriqae Centrale, Tervurem, Belgique, Edition De. I. ORESTO, pp. 38.
- Lowe-McConnel, R.H., 1987. Ecological Studies in Tropical Fish Communities, Cambridge University Press, London, pp: 73.
- Nwandiaro, C.S., 1989. Icthyiofauna of lake osuta, a shallow lake in Southern Nigeria. Arch. Hydrobiol., 115(3): 463-475.
- Ogbo, E.A., 1982. Identification of commonly found fresh water fishes of Otamiri River, Rivers State HND Project. Rivers State University of Science and Technology, Port Harcourt, pp: 43.

- Oni, S.K., J.Y. Olayemi and J.D. Adegboye, 1983. The comparative physiology of three ecologically distinct freshwater fishes: *Alestes nurse* RUPEL, *Synodontis schall*. Block and Schneeide and *Tilapia zilli* Gervais. J. Fish Biol., 22: 105-109.
- Orji, R.C. and O.E.A. Akobuchi, 1989. Studies on the icthyofauna of Otamiri River in Imo State, Nigeria. J. Aquat. Sci., 4: 11-15.
- Otobo, A.J.T., 1993. The ecology and fishery of the Pygmy Herring. *Sierrathensa leonensis* (Thysvan Den Audenaerde, 1969) in the Nun River and Taylor Creek of the Niger Delta. Ph.D. Thesis. University of Port Harcourt, pp: 298.
- Pauly, D., 1980. On the interrelations between natural mortality, growth parameters and mean environmental temperature in 175 fish stock. J. Cons. Int. Explor. Mer., 39(2): 175-192.
- Pauly, D., 1983. Some Simple methods for the assessment of tropical fish Stock. FAO Fish. Tech. Pap No. 234, pp: 52.
- Pauly, D. and J.L. Munro, 1984. Once more on growth Comparison in Fishes and Vertebrates. Fishbyte, 2(1): 21.
- Poll, M., 1974. Synopsis and geographical distribution of the clupeidae, in fresh water. Description of three new species. Bull De. Ca. Clare. Deb. Sci Sene-Tome (Lx(2), pp. 141-161.
- Powell, C.B., S.A. Whyte, M. Isoun and F.U. Oteogbi, 1985. Oshika oil spillage environmental impact, effect on aquatic biology. Paper Presented at the NNPC/FMHC International Seminar on Petroleum Industry and the Nigerian Environment, 11-13 Nov. 1983, Kaduna, Nigeria, pp: 168-178.
- Reed, W., T. Burchad, A.J. Hopson, J. Jenness and I. Yaro, 1967. Fish and fisheries of Northern Nigeria. Ministry of Agriculture, Northern Nigeria, pp: 226.
- Ricker, W.E., 1975. Computer and interpretation of biological statistics of fish population. Bull. Res. Board-Cam., pp: 315-318.
- Roff, D.A., 1986. Predicting body size with life history models. Biosci., 36(5): 316-232.

- Schaefer, M.D., 1954. Some aspects of the dynamics of populations important to the management of the commercial marine fishes. Bull. Int. Am. Trop. Tuna. Comm., 1(2): 27-56.
- Shenouda, T.S., F.A. Faten, M.R. Mahmoud and M.M. Ray, 1994. A detail study on age and growth for *Chrysichthys auratus* and *Chrysichthys rueppelli* from the southern most part of the River Nile (Egypt). J. Egypt. Ger. Soc., 200(1412): 73-101.
- Siddique, A.Q., 1977. Reproductive biology, lengthweight and relative condition of *Tilapia leucostica* (Trewaeva in lake Naivasha, Kenya). J. Fish. Biol., 10: 351-260.
- Sikoki, F.D., A.I. Hart and J.F. Abowei, 1998. Gill net selectively and fish abundance in the lower Nun river, Nigeria. J. Appl. Sci. Environ. Manage., 1: 13-19.
- Sikoki, F.D. and S.A. Hart, 1999 Studies on the fish and fisheries of the Brass river system and adjoining coastal waters in Bayelsa State Nigeria. J. Appl. Sci. Environ. Manage., 2: 63-67.
- Sissenwine, M.P., B.E. Brown and H. Brenna, 1979. Brief history and the state of the arts of fish production models and some applications to fisheries of the North-Eastern United States. Climate and Fisheries Workshop Centre for Ocean Management Studies. University of Rhode Island, pp. 25-28.
- Spare, P., E. Ursin and S.C. Venema, 1992. Introduction to tropical fish stock Assessment. Part 1 Manual. FAO Fisheries Technical Paper No. 306 1 Rome. FAO, pp. 337.
- Valentine, A.A., 1995. Studies on the major Lichilid fishes of Umuoseriche Lake, Oguta Imo State, Nigeria. Ph.D Thesis, Zoology, University of Port Harcourt, pp. 170.
- Welcome, R.L., 1979. Fisheries Ecology of Flood Plain Rivers. Longman Press. London, pp. 317.
- Whitehead, P.J.P., 1984. Family Clupeidae. In: Gosse, D.J., J.P. Thys, V. Den and D.F.S. Audennered (Eds.), Checklist of the Freshwater Fishes of Africa. ORSTOM, 1: 11-20.
- Whyte, S.A., 1975. Distribution, tropic relationship and breeding habits of the fish population in a tropic Lake Basin and Lake Busumbwi. Ghana J. Zool., 177: 25-56.