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Abstract: Medical image fusion and segmentation has high impact on the digital image processing due to its
spatial resolution enhancement and image sharpening. It has been used to derive useful information from the
medical image data that provides the most accurate and robust method for diagnosis. This process is a
compelling challenge due to the presence of inhomogeneities in the intensity of images. For addressing this
challenge, the region based level set method is used for segmenting the fused medical images with intensity
inhomogeneity. First, the IHS-PCA based fusion method is employed to fuse the images with intensity
inhomogeneity which is then filtered using the homomorphic filter. Then based on the model of the fused image
and the derived local intensity clustering property, the level set energy function is defined. This function is
minimized to simultaneously partition the image domain and to estimate the bias field for the intensity
inhomogeneity correction. The outstanding performance of this approach is illustrated using images of various
modalities. Experimental results highlight the effectiveness and advantage of this approach with the help of
various metrics and the results are found to be good and accurate.
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INTRODUCTION

Medical imaging helps the global healthcare system
for non-invasive diagnose, treatment and cure. The
current research on medical image analysis mainly focus
on image fusion and segmentation as it is an effective
means of mapping the anatomy of the subject. Fused
medical images integrates multimodal medical image to
single image with vivid and accurate description of the
same object. As they endow with both anatomical and
functional information, it assists in scheduling surgical
procedures. Some of the image modalities are Magnetic
Resonance Imaging (MRI), Computed Tomography (CT),
Positron Emission Tomography (PET) and Single-Photon
Emission Computerized Tomography (SPECT) that
provides quantification of tissue volumes, diagnosis,
study of anatomical structure and treatment planning.
MRI images provide detailed information on soft tissue
with more distortion and do not use ionizing radiation.
ACT scan combines many X-ray images taken from
different angles and provides high resolution information
on bone structure tissue with less distortion. For PET and
SPECT scan, a radioactive substance known as tracer is
used, which reveals the working of organs and tissues and
the blood flow to and from organs. The difference in
SPECT and PET scan is that the former emit gamma rays
of varying energies and is used for estimating the relative
myocardial blood flow but is affected by attenuation

artifacts, while the latter emits positron which are more
stable. SPECT measures the concentration of chemicals
injected into the body and thus gives images of the
chemical function of body parts. The fusing of MRI and
CT image helps a physician to obtain a better
visualization of the patient’s condition as it clearly
identifies both the bone structure and tissue structure in a
single image. MRI image has high spatial resolution and
shows the tissue anatomy but PET images are low
resolution images but can convey the function of the
organ. So the fusion of MRI and PET enhance the spatial
resolution of the functional images without spatial
distortion. SPECT/MRI fusion like all other fusion is
widely used as it helps for accurate diagnosis.

Image segmentation is another important area in the
medical image gquide surgery. It provides richer
information in numerous biomedical imaging applications
and for the delineation of anatomical structures. It is
defined as the process of partitioning the given image into
interested domains with least human manipulation. Active
contour model which is based on the theory of surface
evolution and geometric flows have been the successful
one among the several segmentation methods (Kass etal.,
1988; Blake and lIsard, 1998; Paragios and Deriche,
2000). The two main categories of the existing active
contour models are Edge based models (Xu and Prince,
1998; Caselles et al., 1993; Kichenassamy et al., 1996)
and Region based models (Ronfard, 1994; Mumford and
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Shah, 1989; Chan and Vese 2001; Paragios and Deriche,
2002, Caselles et al., 1997; Tsai et al., 2001; Chunming
et al., 2007; Zhang et al., 2010). Edge based active
contour model use the local edge detector information that
depends on the image gradient to evolve the contour
toward the object boundaries. Region based active
contour model use the statistical information to build the
region descriptor to guide the motion of the contour. The
latter model has better performance over the former since
itis able to segment the objects with weak boundaries and
less sensitive to the initial contour position. One of the
most popular methods in the region based image
segmentation is the level set method (Sethian, 1999)
which is a numerical technique for capturing dynamic
interfaces and shapes. It has been introduced by Osher
and Sethian (1988) and most widely used because of their
advantageous properties such as topology adaptability and
robustness to initialization.

Nowadays, level set method turns its sight to deal
with intensity inhomogeneous images. It often exists in
the real medical images due to imperfection in the
imaging device and susceptibility effect induced by the
object being imaged. Particularly in MRI images, non
uniform magnetic fields produced by radio-frequency
coils as well as from variations in object susceptibility
causes intensity inhomogeneity. The information fromthe
magnetic resonance images can be added to the CT or
PET or SPECT image that would help surgeons for better
diagnostics. If intensity inhomogeneous MRI image is
fused with another image then the resultant image may
not serve the purpose of fusion. Segmentation of such
fused images usually requires intensity inhomogeneity
correction. Recently, (Chunming et al., 2011) proposed a
Local Clustering based Variational Level Set (LCVLYS)
model for simultaneous segmentation and bias correction.
Our idea is to use this model to segment the fused image
and also for bias correction.

In this study, a novel approach for segmenting and
bias correcting the fused medical image is presented using
the level set method. For this process, initially the low
resolution medical image (CT, PET and SPECT) and the
Intensity Inhomogeneous Magnetic Resonance Imaging
(IIH_MRI) image are selected. The selected images
(CT/MRI, PET/MRI and SPECT/MRI) are fused using
IHS-PCA fusion method (Changtao et al., 2010) to get the
combined information in a single image. Then the
segmentation and the intensity inhomogeneity correction
(bias correction) is done by employing the Local
Clustering based Variational Level Set (LCVLS) model
(Chunming et al., 2011).

Related works: The objective of the image fusion is to
reduce the ambiguity, minimize redundancy in the fused
image and to achieve optimal resolution in the spatial and
spectral domains. Several methods are there to modulate
lower resolution images such as the IHS, PCA and DWT.
Changtao et al. (2010) has proposed of MRI/PET fusion
based on the combination of IHS and PCA where
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Daneshvar (Sabalan and Hassan, 2007) speaks about the
same fusion with human retina model. The wavelet
transformation is used to fuse medical images in Zhang
et al. (2008) and Jionghua et al. (2010). As we are not
concentrating specifically on any two images for fusion
we have chosen the conventional fusion method based on
IHS as it is well suited for practical applications. A
modified fusion based on IHS for three bands and four
bands are described in Choi (2006) and are termed as Fast
IHS (FIHS) and Generalized IHS (GIHS) respectively to
reduce the spectral distortion. However, FIHS performs
better than IHS, it also results in slight distortion. So the
new Spectral Adjusted IHS (SAIHS) method is proposed
in to remove the distortion efficiently. Even the method is
based on the spectral characteristics of the sensors for
satellite images, it is showing good results for medical
images.

Region based models aim to partition the image into
regions by utilizing the statistical image information. It
builds the region descriptor that guides the motion of the
active contour model. Initially, the region based active
contour model that works well for the images with two
regions was proposed by Chan and Vese (2001). They
extended their work in Vese and Chan (2002) and
proposed Piecewise Constant (PC) model based on the
Mumford-Shah segmentation in which multiple level set
functions are used to represent the multiple regions.
However, it is not suitable for the images with intensity
inhomogeneities.

In order to segment the images with intensity
inhomogeneities, the Piecewise Smooth (PS) model is
proposed (Vese and Chan, 2002; Tsai et al., 2001). But
these models are computationally inefficient and
expensive. In Chunming et al. (2007) Li proposed the
Local Binary Fitting (LBF) method which utilizes the
local image information and therefore it is able to segment
the objects with intensity inhomogeneities. It performs
well than the PC and PS models. Zhang et al. (2010)
proposed the new region based active contour model by
introducing the Local Image Fitting (LIF) energy to
extract local image information which can be used to
segment the intensity inhomogeneous images. This
method has less computational complexity than the LBF
method. The Region Scalable Fitting (RSF) Energy
method was proposed by Chuming et al. (2011) which
performs well for the images with weak object
boundaries. It is also the efficient method to segment the
medical images with intensity inhomogeneities
(Chunming et al., 2008). However, these methods are
quite sensitive to the initialization of the contour for the
level set evolution and also not suitable for the intensity
inhomogeneous correction.

Chunming et al. (2011) proposed a local clustering
based variational level set framework for simultaneous
intensity inhomogeneous image segmentation and bias
correction. First, the local intensity clustering property is
derived based on the model of the images with the
intensity inhomogeneity. For the image intensities in the
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Fig. 1: Block diagram for the proposed method

neighbourhood of each point, the local intensity criterion
function is defined which is then integrated with respect
to the neighbourhood center to give a global criterion of
image segmentation. In the level set formulation, to
represent the partition of the image domain into distinct
regions and a bias field, this criterion function defines
energy in terms of the level set functions. Then the energy
minimization is performed in the level set process to
segment the images and also to estimate the bias field for
the intensity inhomogeneity correction or bias correction.

PROPOSED METHODOLOGY

The proposed simultaneous level set segmentation
and bias correction for the IHS-PCA fused medical image
using the LCVLS model is explained in this section.
Figure 1 shows the block diagram for the entire process.

Fusing and filtering: The fusion algorithm of the medical
images is based on combination of IHS and PCA
(Changtao et al., 2010; EI-Mezouar et al., 2011). In IHS
model we have to convert the red, green and blue
components of the low resolution image to Intensity (1),
Hue (H) and Saturation (S). The main conversion system
methods are the linear, the triangular spectral mode and
here the second method is followed and it results in a
fused and enhanced spectral image. The input images can
be any of the three categories. They are:

C HH_MRIland CT
C IHH_MRIand PET
C HH_MRIand SPECT
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The low resolution image is transformed to IHS
triangular model components. Normally in triangular
spectral mode, the Intensity (I) which displays the
brightness in a spectrum is calculated by:

I=R+G+B/3 1)

But if the intensity factor is near to high resolution
image then the spectral resolution can be reduced. So that
the spectral responses (El-Mezouar et al., 2011) of the
sensors is used and the two constants a = 0.75 and b =
0.25 and an NIR band is introduced as it is used in
satellite images. So Eq. (1) is replaced by:

I=R+a*G+b*B+NIR/3 (2)

The property of spectral wavelength and the purity of
the spectrum are Hue (H) and Saturation (S) respectively,
and it can be expressed as:

H=GIB/3113B,S=I1B/lifB<R, G 3)

H=BIR/3I13R+1,S=1-R/NifR<B,G (4)
H=R!G/3I-3G+2,S=11G/I,ifG<R,B (5
The corresponding inverse IHS transform as follows:

R=1I(1+2S13SH), G=1(1-S+3SH), B=1(1-95)
ifB<R,G (6)

R =1(11S), G = I(1 + 55 — 3SH), B = I(1 — 4S +
3SH), ifR<B, G (7
R=1(117S+3SH), G = I(11S), B = | (1+8S5 — 3SH),
ifG<R,B (8)

After the conversion of RGB to IHS, histogram
matching of the high resolution image and the intensity
component of low resolution image is performed. The
histogram matched high resolution image is termed as
New Pan. The intensity component and New Pan is taken
as principle component for PCA method. The weighted
coefficients after PCA transform is done by calculating
the Spatial Frequency (SF) of the original low resolution
image (Yesou et al., 1993; Ehlers, 1991) and the old Pan.
The relevance of SF is to measure the image blocks
(Shutao et al., 2001; Eskicioglu and Fisher, 1995)
calculated for image f(x, y) with K x L pixels and is
defined as:

SF = J/(RF)? + (CF)?

where, RF and CF are the row and column frequency,
respectively.

9)

L

l 2
RF - \/MZZ[“W)’ fooy-1]
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Fig. 2: Segmentation and bias correction of fused images. CT/MRI fused image segmentation and bias correction is shown (a) and
(b). PET/MRI and SPECT/MRI fused image segmentation and bias correction is shown in (c) and (d), respectively. Column
1 shows the homomorphic filtered image. Column 2 shows the segmented result. Column 3 shows the bias corrected image.
Histogram of fused image and bias corrected image is shown in column 4 and 5

1 & & 2
CF = \/le_z YIfoxy- fx-1y)]  (0)
Y=1X=2

The selection of two principal component weighted
coefficients is shown with:

| ="1,+%I, (12)
where, I, and I, represent the two principal components
after PCA. " and $ are normalized SF values. The last
step is to find the inverse of IHS transform of the new
intensity, the old hue and saturation components which
will results in the fused image.

Then the homomorphic filter is applied to the fused
image prior to the segmentation process. Generally,
homomorphic filter is a non-linear filtering technique for
enhancing an image by increasing the contrast and by
normalizing the brightness across the image at the same
time. It is performed with Butterworth low pass filter
which is defined as:
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H(u, v) = 1/1+[D(u, v)/D,]*"

where, n denotes the order of filter, D, is the cutoff
distance from center and D(u,v) is given as:

D(u, v) = [(u = M/2)* + (v — M [2)7]*?

where, m and n denotes the number of rows and columns
of the fused image. The filtered output is shown in Fig. 2.

LCVLS model: Let an image | is considered as a

function | : 1:Q > % defined on a continuous domain.

And to deal with intensity inhomogeneities, it is modeled
as:

I=bJ+n (12)
where, J is the true image which is assumed to be
piecewise constant since it measures an intrinsic physical

property of the objects, b is a bias field component that
denotes the intensity inhomogeneity and assumed to be
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varying slowly and n is additive noise that is assumed to
be zero-mean Gaussian noise. Based on this model and
assumptions, the criteria is defined as an energy
functional in terms of the regions S; , the constants c;,and
the bias field b and is minimized to get the optimal

regions{a.}’,, constants {¢,}", and the bias field ‘that results

in the image segmentation and bias field estimation.

However due to the presence of intensity
inhomogeneities, it is difficult to segment the regions
based on the pixel intensities. Therefore a useful property
of local intensities is derived which is referred as a local
intensity clustering property. To derive this, a circular
neighborhood with a radius D centered at each pointy g S
is defined by:

Oyé{x:\x— y\ < p}

The partition of the neighborhood O, is induced by
the partition {Q , }21 of the entire domain S. This property

allows applying the K-means clustering to classify the
intensities in the neighborhood O, into N clusters, with
centersm; .b(y) ¢, i =1, 2, ..., N. Then specifically for
classifying the intensities I(x) in the neighborhood O,, a
clustering criterion is defined as:

de

6=y

[ Ky-0[1x) - b(y)e, (13)

N

where, K(y-x) is kernel function (nonnegative window
function), such that K(y-x) = 0 for x 0 O,. Equation (13)
is called local clustering criterion function that evaluates
the classification of the intensities in the neighborhood
O,. The smaller value of g, yields the better classification.
So to minimize the g, with respect to y over the image
domain S, an energy is defined as:

N

o [Z

i=1

[ Ky = 0l10 - by)e,| dx|dy (14)

Here the kernel function K is truncated Gaussian
function defined by:

Eef\u\z/ZJZ, for|ul<p
K(uy=1ja (15)
0, otherwise
where, a is a normalization constant such that

j K(u) = Lois the scale parameter of the Gaussian
function and D is the radius of the neighborhood O,.

The above defined energy functional is in terms of
the regions Q ,,...,Q . To derive the solution for the
energy minimization problem, the energy is converted to

a level set formulation. It can be done by representing the
disjointregions S, ..., Sy with number level set functions
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each with a regularization term. Generally, the level set
function can take positive or negative signs to represent a
partition of the domain S into disjoint regions S; and S,.

Let N: S6U be a level set function with two disjoint
regions:

Q,= {x:¢(x) > O} and Q, = {x:¢(x) < 0} (16)

that forms a partition of the domain S. The level set
formulation of the energy with N = 2 and N>2, called two
phase and multiphase formulation, respectively. Here only
the two phase formulation is considered.

In the two case level set formulation, the regions S,
and S,can be represented with their membership function
defined by M;(N) = H (N) and M, (N) =1 - H (N)
respectively, where H is the Heaviside function
(Chunming et al., 2011). Thus, the energy functional can
be expressed as:

&= [ Y ([ K(y-0[1(x- by)cildy) M, (g00)dx  (17)

i=1

For convenience, the constants ¢, ..., ¢y can be
represented as a vector ¢ = (c,, ..., Cy). Thus the variables
of the energy functional g are the level set function N, the
vector ¢ and the bias field b. So the energy functional g
can be written as:

N
dacb)=[Y e (OM (GO0 18
i=1
where, e, function is defined by:
&, (x) = [ K(y- |10 - b(y)e, | dy (19)

The variational level set formulation uses the above
defined energy as the data term which is defined by:

F(g.c,0) = &(g,c,b) + VL(#) + 1R | (¢) (20)

where, L(N) and U, (N) are the regularization terms
defined below. The term L(N) that computes the arc
length of the zero level contour of N is defined by:

L(#) = [VH(#)x (21)
The term U(N) is defined by:
% ,(4) =] p(v d)ox (22)

where, p is a potential or energy density function p:[0,
4)6U such that p(s) = (1/2)(s - 1)% With this potential
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fusion

Fig. 3: IHS-PCA based process. (a) and (b)
showsCT/MRI fusion, (c) shows PET/MRI fusion and
(d) shows SPECT/MRI fusion. Column 1 and 2 shows
original images and column 3 shows respective fused
image

p, the energy term U, (N) in (20) is minimized by
maintaining |[v N| 1 which is called signed distance
property. And so U,(N) is called distance regularization
term (Chunming et al., 2010).

The energy F(N, c, b) is minimized by an iteration
process with respect to each of its variables (Chunming
et al., 2011). Thus solution for the energy minimization
problem is achieved by minimizing this energy term that
results in the image segmentation given by the level set
function N and estimation of the bias field b.

EXPERIMENTAL RESULTS

In order to validate the theoretical analysis, efforts
were taken for quantitative analysis. In each step of
experimentation, the quantitative metrics are taken
depending on the base of results. The experiment is
conducted on the selected medical images with 256x256
dimensions. Initially the intensity inhomogeneous MRI
images are selected to get individually fused with CT,
PET and SPECT images. Figure 3 shows the IHS-PCA
based fusion process for the four different pairs of images.
For evaluating spatial and spectral quality of fused
medical images, metrics such as relative bias, relative
variance, Correlation Coefficient (CC), Universal Image
Quality Index (UIQI), are taken. Bias is the difference
between the mean value of input and output images and
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Table 1: Objective indicators for IHS-PCA based medical image fusion

Parameters Fuse 1 Fuse 2 Fuse 3 Fuse 4

Relative Bias 0.122797 0.5052573 0.182485 0.071502
Relative Variwxe 0.006214 0.575788 0.062028 0.005282
CcC 0.95781 0.870488 0.856781  0.929975
ulQl 0.991473 0.899124 0.985668  0.997616

relative bias is the ratio between the bias and the mean
value of the original image. The relative variance is
calculated by dividing the variance difference of the
original and the fused image by the variance of the
original low resolution image.

Correlation Coefficient (CC) is the most widely used
similarity metric which indicates the likeness between the
original low resolution medical image and the fused
image. With x and y as original and fused image and
X and y as their mean value, the CC for MxN image is

calculated by:

Jii(

i=1j

ccix/y)= (23)

._.
IN
T
IN

ulQl:

The Universal Image Quality Index (UIQI) (Wang
and Bovik, 2002) range from -1 to +1. It is calculated by
considering the information contained in reference image
such as loss of correlation, luminance distortion and
contrast distortion. The performance evaluation for each
fused image is shown in Table 1:
OpB _ 2/aMB 2008

UIQI = .
2 2 2 2
op0B U A+ H'B O A+tO B

(24)

where, F represents the standard deviation and :
represents the mean value. The first term in Eq. (24) is the
correlation coefficient, the second term represents the
mean luminance and the third measures the contrast
distortion UIQI is also used to similarity between the two
images.

Then the fused image is employed with the
homomorphic filter to make the images suitable for the
segmentation and bias correction. The output of the
LCVLS model is shown in Fig. 2. This figure shows the
segmented and bias corrected images along with the
filtered images. The histogram of the filtered image and
the bias corrected image is also shown in Fig. 2 which
depicts that intensity inhomogeneity of the fused image is
removed more efficiently using the proposed approach.
Also the performance of the segmentation process is
evaluated using statistical measures such as Rand Index
(RI), Global Consistency Error (GCE) and Variation of
Information (V1).

The resemblance between two data clusters can be
measured using rand index (Unnikrishnan et al., 2007).
With a given set of n elements, two segments of S and
two sets X and Y, Rand index (R) can be defined as:
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Fig. 4: Statiscal measure for segmentation of four fused images

Table 2 : Performance measure for the segmentation results of fused
images
Fused Image RI GCE VI
CT/MRI 0.942 0.4391 3.7868
CT/MRI 0.9188 0.5051 3.9108
PET/MRI 0.8736 0.5561 5.2376
SPECT/MRI 0.9484 0.3217 2.6655
_ a+b _at b (25)
a+b+c+d ( n]
2

where, a + b represents the number of agreements among
X and Y and ¢ + d represents the number of
disagreements among X and Y. The value of R falls in the
range of 0 to 1 depends upon the similarities between the
given clusters.

Global Consistency Error (GCE) is one of the
objective evaluations which measures to quantify the
consistency between the image segmentations
(Unnikrishnan et al., 2007). It is defined as:
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GCE(s,,s,) = %min{Z (s, i) 2 E(s,.5,, pi),} (26)

where, s;and s, are two segments that contain the given
point p;. It gives the error values in [0, 1] in which lower
value signifies the better segmentation.

Variation of Information (VI) is a quality measure
used to define the distance between two segmentations
(Unnikrishnan et al., 2007). If X and Y are the two
clustering where x={x,.x, X.}.p,=|x|/nn=Y || then

variation of information is defined as:

VI(X, Y) = H(X) + H(Y) - 2I(X, Y) (27)
where H(X) and H(Y) are entropy of X and Y
respectively and 21(X, Y) is mutual information between
X and Y. The lower VI value indicates the greater
similarity. These objective evaluations are performed in
the segmented outputs and the results are shown in
Table 2. Figure 4 shows the graphical representation of
the statistical measures of segmentation. The higher
values of R1 and lower values of GCE and V1 indicate the
better segmentation.
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CONCLUSION

This study presents the novel approach for
segmenting and correcting the intensity inhomogeneity in
the IHS-PCA fused medical images using the LCVLS
model. This model efficiently utilizes the local image
information and therefore able to simultaneously segment
and bias correct the images with intensity inhomogeneity.
It has desirable performance for segmenting and bias
correcting the medical images of various modalities. It is
more robust to initialization and good approximation to
the bias field. In addition, the subjective and objective
evaluation of this approach proves to be effective and
efficient in the process of medical image fusion,
segmentation and bias correction. With this appreciable
performance, we expect that the proposed approach will
find its utility in the area of medical diagnosis.
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