The Effect of *Yaji*-Meat-Sauce Consumption on Cerebellar Neurons of White Albino Rats

1,2A.O. Nwaopara, 1,3U. Akpamu, 2A.M. Izunya, 2G.A. Oaikhena, 4O. Okhiai, 2L.C. Anyanwu, 5B.O. Idonije and 6G.P. Oyadonghon

1Anthonio Research Centre, Ekpoma, Nigeria
2Department of Anatomy, 3Department of Physiology, 4Department of Nursing Sciences, 5Department of Chemical Pathology, Ambrose Alli University, Ekpoma, Edo, Nigeria
6Department of Anatomy, Ambrose Alli University, Uturu, Abia State, Nigeria

Abstract: This study on the cerebellum is one in the series of several studies aimed at determining the effects of *Yaji* on the histology of the brain. Eighteen-week-old white albino rats of an average weight of 170 g were used for this study and they were divided into eight (8) groups (A-H). Group A served as control while groups B-H served as the test groups. For 2 weeks, group A received normal feed only, while groups B-H received feed plus graded levels of *Yaji* (10, 20, 30, 40, 50, 60, and 70%, respectively) per ration of feed daily. The results showed distortions in the cellular architecture of the cerebellum irrespective of the dosage. The micrographs presented histological signs of purkinje cell degeneration and the clumping of granular cells with cerebellar cavitations. Our findings suggests that *Yaji* has neurotoxic potentials, which ‘illuminates’ further the rising concern about the safety of *Yaji* consumption even beyond the shores of Nigeria, as well as re-echo the urgent need to regulate the production and consumption of *Yaji*.

Key words: Additives, cerebellum, excitotoxicity, *Suya, Yaji*, spices

INTRODUCTION

There is a growing concern about the indiscriminate and mass consumption rate of *Yaji*, which, in recent years, have been the basis of several scientific investigations (Nwaopara et al., 2004; 2007a, b; 2008a, b; 2009; 2010a, b). Some of the findings from such investigations show that an excessive consumption of *Yaji* has the capability to induce pancreatic, liver, kidney and brain damage (Nwaopara et al., 2004; 2007b; 2008a; 2010a, b). These findings further illuminate the fears that an unregulated production and consumption of *Yaji* portends serious dangers to the health of its consumers. Of importance also, are the reports that some of the active principles in *Yaji*, like capsaicin, piperine and monosodium glutamate possesses excitotoxic and apoptotic potentials (Choi, 1988; Blaylock, 1997; Lipton and Rosenberg, 1994; Whetsell and Shapira, 1993; Olney, 1989; Olney et al., 1997; Sugimoto et al., 1998; Ankarcrorna et al. 1998; Martin et al., 2000).

This Nigerian meat sauce known as *Yaji*, is a complex physical mixture of groundnut cake powder, additives, spices and salt (Okonkwo, 1987). Its main additive called ‘white maggi’ contains monosodium glutamate (MSG) while the constituent spices-ginger, clove, red pepper and black pepper (Nwaopara et al., 2004) contains gingerol (Witchtl, 2004), eugenol (Krishnaswamy and Raghuramulu, 1998), capsaicin (Collier et al., 1965), and piperine (McGee, 2004) as active principles respectively. In fact, the potential health hazards of *Yaji*, based on its active principles in combination, have been highlighted (Nwaopara et al., 2007a).

The Nigerian meat delicacy served with *Yaji* is called *Suya*. It is a popular, traditionally processed, ready to eat meat product that may be served or sold along streets, in club houses, at picnics, parties, restaurants and within institutions (Igene and Mohammed, 1983). According to Omojola (2008), it is one of such intermediate moisture products that is easy to prepare and highly relished while Uzeh et al. (2006) describes it as a mass consumer fast food whose preparation and sales along the streets, are usually not done under strict hygienic condition because they are still done locally.

With focus on the complexity of *Yaji* and the barrage of health related questions on it, this two-week study on the cerebellum is one in the series of several studies aimed at determining the effects of *Yaji* consumption on organ systems.
MATERIALS AND METHODS

Location and duration of study: This study was conducted at the histology laboratory of Anthonio Research Center, Ekpoma, Edo State, Nigeria. The preliminary studies, animal acclimatization, ingredients procurement/Yaji production, actual animal experiment, histological processing, microscopy/micrography and evaluation of results, lasted for a period of seven months. However, the actual administration of Yaji to the test animals lasted for two weeks.

The substance of study: The constituents of Yaji were procured from the Aduwawa Cattle market, Benin City, Edo State, Nigeria, and subsequently mixed as appropriate in powdery forms. Since the commonly sold Yaji is a crude mixture of its constituents with no standard production procedure (weight for weight), the mixture of these constituents to produce Yaji for this study was as directed by the dealers of Yaji at the Aduwawa Cattle market, Benin City, Edo State, Nigeria but were respectively measured in order to determine the respective quantities of the constituents in a given quantity of Yaji.

The measurements were done using an electric weighing balance by Denver Company USA (200398.1REV.CXP-3000). The measured quantities were Ajinomoto (‘white maggi’ containing MSG) (150 g), Black pepper (30 g), Clove (39 g), Ginger (78 g), Groundnut cake powder (230 g), Red pepper (22 g), and Salt (100 g). The total value of these constituents summed up to 649 g. To produce pellets for the experimental animals, appropriate quantities of Yaji and feed were mixed with sprinkles of water and the resultant paste was then split into bits and allowed to dry under the sun.

The subjects/ substance administration: White albino rats of an average weight of 170 g were used for this study. They were divided into eight (8) groups (A-H). Group A served as the control while the subgroups of B-H served as the test groups. Through out the duration of the experiment, group A rats were fed with normal feed (Growers mash) from the Bendel Feeds and Flour Mills (BFFM), Ewu, Edo State, Nigeria, while test groups B-H rats were fed for two weeks with growers mash from the same source plus graded levels of Yaji (B, 10%; C, 20%; D, 30%; E, 40%; F, 50%; G, 60%; H, 70%) per ration of feed daily.

The total daily feeding allowance for each experimental group was 30 g while the feeding allowance per rat was 6g. Test groups B (10%) received 3g of Yaji daily (0.6 g/rat), C (20%) received 6g of Yaji daily (1.2 g/rat), D (30%) received 9 g of Yaji daily (1.8 g/rat), E (40%) received 12 g of Yaji daily (2.4 g/rat), F (50%) received 15 g of Yaji daily (3 g/rat), G (60%) received 18 g of Yaji daily (3.6 g/rat), and H (70%) received 21 g of Yaji daily (4.2 g/rat).

Tissue processing: The experimental animals were sacrificed after two (2) weeks and the tissues obtained were immediately fixed in formaldehyde to prevent autolysis and putrefaction. Tissue sections were produced by normal histochemical methods of fixation, dehydration, impregnation, embedding, sectioning and staining (with H and E) described by David (2004). The micrographs of the relevant stained sections were subsequently taken with the aid of a light microscope (at magnification × 40).

RESULTS AND DISCUSSION

The result of this study showed several degenerative changes amongst which are the presence of vacuolations, eosinophilic cells, pyknotic nuclei, and gliosis. The generally observed distortions in the cellular architecture of the cerebellum were independent on the dosage. Specifically, the micrographs showed histological signs of purkinje cell degeneration as marked “A” or “a” and the clumping of granular cells with cerebellar cavitations in the Plates labelled 10, 20, 30, 40, 50, 60 and 70%.

Considering the obvious complexity of Yaji in terms of the contained active principles and the known negative potentials of its active ingredients particularly in combination; as well as the obvious histological signs of purkinje cell degeneration, clumping of granular cells, and cerebellar cavitations represented on the micrographs, one can postulate that the contents in Yaji can induce cerebellar cell damage. Eweka and Om’Iniabohs (2007) had earlier suggested that MSG consumption may have some deleterious effects on the cerebellum of adult wister rats at higher doses and by extension may affect the functions of the cerebellum thereby resulting in tremor, unstable and uncoordinated movement or ataxia. The basis for this assertion is predicated upon the fact that monosodium glutamate may act as a toxin to cerebellar neurons; affect cerebellar cellular integrity; and cause defects in membrane permeability and cell volume homeostasis. Of course, the excitotoxicity potentials of MSG are no longer in doubt (Espinar et al., 2000; Urena-Guerrero et al., 2003).

There are reports too that on one hand, pipericine in black pepper is cytotoxic to cerebellar granule neurons (Unchern et al., 1998), while on the other hand, it promotes DNA damage (Pyuchuwatwarat et al., 1995), which is itself, a significant trigger for apoptosis. Thus, these well-known excitotoxic potentials of pipericine in black pepper may have contributed to the observed histological changes. This also applies to capsaicin in red pepper, known to cause neurodegeneration (Jancso et al., 1977; Ritter and Dinh, 1993; Chard et al., 1995; Wood et al., 1993).

Another consideration is the known deleterious effects of oxidized groundnut oil on the architecture of tissues (Florence and Adewale, 2004), which in this
Plate 1: 10, 20, 30, 40, 50, 60, 70% (Cerebellum Brain H&E x40) showing histological signs of purkinje cell degeneration (as marked A or a) and clumping of granular cells with cerebellar cavitations. Compare the surviving purkinje cells with the degenerating eosinophilic ones in plates 10, 30, 40 and 60% (as marked B)
circumstance, implicates the fried ground cake powder in Yaji. This is predicated upon the fact that dietary oil rich in polyunsaturated fatty acids is susceptible to oxidative changes during use like frying (Ologan, 2002) resulting in the formation of peroxides, aldehydes, ketones, aldehydrossters and ozonides (Frankel, 1980; Kubow, 1992; Odutuga et al., 1997) known to be injurious to health (Frankel, 1980; Halliwell and Gutteridge, 1984; Addis, 1986; Kubow, 1992).

CONCLUSION

Our findings therefore, suggest that there are active ingredients in Yaji that have neurotoxic potentials, confirming an earlier assertion that Yaji has the capacity to induce neurodegeneration (Nwaopara et al., 2010). It is our candid opinion that the growing concern about the safety of Yaji consumption even beyond the shores of Nigeria and the urgent need to regulate its production and consumption can no longer be ignored.

ACKNOWLEDGMENT

We are sincerely grateful to Mr. Olupona Babafemi of the Histopathology Laboratory, University College Hospital (UCH) Ibadan, Oyo State, Nigeria, for his technical assistance.

REFERENCES


AUTHORS CONTRIBUTION

Nwaopara, A.O. is the research team leader. He conceived and supervised this research study. Akpamu, U. is the assistant research team leader and research laboratory supervisor at Anthonio Research Lab. Ekpoma, Edo State, Nigeria. His animal/tissue handling experience immensely contributed to the success of this study. Tissue processing was supervised by Nwaopara, A.O. and U. Akpamu, with technical assistance from Mr. Olupona Babafemi. Micrography, results evaluation, research reporting and critical inquisitions were undertaken by the entire research team (Nwaopara, A.O., U. Akpamu, A.M. Izunya, G.A. Oaikhena, O. Okhiai, L.C. Anyanwu, B.O. Idonije and G.P. Oyadonghon,) Their backgrounds in Anatomy, Physiology and Pathology played significant roles.