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Analysis of Building Blocks in SHA — 256
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Abstract: In this study, we analyse the role of some of the building blocks in SHA-256. We show that the
disturbance correction strategy is applicableto the SHA -256 architecture and we prove that functions 2, o are

vitalfor the security of SHA -256 by showing that for a variant without themit is possible to find collisions with
complexity 2°*hash operations. As a step towards an analysis o fthe full function, we present the results of our

experiments on Hamming weights of expanded messages for different variants of the message expansion and
show that there exist low-weight expanded messages for XOR-linearised variants.
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INTRODUCTION

Recent results on the practicalcryptanalysis of many
hash functions from the MD family, including M D4,
MDS5 (Wang et al., 2005; Wang and Hongbo, 2005) as
well as SHA-0 and SHA-1 (Biham, 2005; Wang and
Hongbo 2005; Ryymen and Oswald, 2005; Wang et al.,
2005a, 2005b) drew a considerable attention to the

security of hash functions and raised some questions
about the securnty ofthe latest function m this family,

namely SHA-256. The first published mdependent
analysis of the members of SHA-2 family was done by
Gilbert and Handschuh (2003). They showed that there
exists a 9-step local collision with probability 2°°°. Later
on, this result has been improved by Hawkes et al. (2004).
They showed howto increase the probability to2 *” using
mod ular differences.

Inthis study,we mvestigate the limits ofapplying the
disturbance-correction strategy that was introduced by
Chabaud and Joux (1998) to cryptanalyse SHA-0. We
demonstrate the importance of the S-boxes applied n
SHA-256. Throughout this paper.we use different
linearisation models, namely a linearisation with respect
to the XOR-operation (XOR- linear) and a linearisation
with respect to modular addition (ADD-linear). We start
from the analysis of an ADD-linear variant of SHA -256
and derive a differential characteristic that produces
collisions for that linear model. Next, we present a zero-
output differential characteristic with probability 2°* for
the hash function with the Boolean functions.

This proves thatthe application ofthe functions 2,
2,, 0o, and o, 1s crucial for the security of the original
hash function, since they are replaced by the identity
function in this analysis. In parallel to this research, a
different varniant of SHA -256 was analysed by Yoshida
and Biryukov (2005).

A better understanding of the impact of these
functions on the whole design 1s the next step m the
analysis of SHA -256. W hile the influence of 2,and X%,on
the probability of single correction has been studied
well by Hawkes et al. (2004) as far as we know, there has

been no analysis of the message expansion mvolving

0,and o,. Inthis study,we discuss some properties ofthe
message expansion and present ourresults of the search

for low- weight message differences for various (XOR-
Iinear) varnants of the message expansion.

MATERIALS AND METHODS

SHA -256 (SHS, 2002) 1s an iterated cryptographic

hash function based on a compression function that
updates the state of eight 32-bit chaming variables A ,...H

according to the values of 16 32-bit words M,,..., M5 of
the message. The compression function consists of 64

identical steps presented m Fig. 1. The step
transformation employs bitwise Boolean functions

Maj (A,B,C)=(AAB)V(AAC)V(BAC),
Ch (E,F,G) = (EAF)V(—EAQG),
and two S-boxes

Yo(x) = ROT R*(x)® ROT R”’(x)PROT R*(x),
2,(x) = ROT R°(x)PROT R"(X)PROT R*(x),

built from word rotations to the right (ROT R)and bitwise

XORs denoted by®. The i-th step uses a fixed constant K,
and the 1th word W, of the expanded message. The

message expansion works as follows. An input message
1s split mto 512-bit message blocks (after padding). A

single message block will be denoted either as a row
vectorm € Z,”* or as avector M\€ Z,32 with 0<i< 16.

Duringthe message expansion, this inputis expandedinto
a vector of64 32-bit words which may be also seen as the

2048-bit expanded message row-vector w; € Z,”'*. The
words W, are generated from the initial message M

according to the following formula:

-
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If we set N=64, we get standard SHA -256, taking a
different value of N results in a reduced (or extended)
variant of it. The functions 0,(x)=ROTR'(X)ROT
R'"*(x)@SHR*(x) and o0,(x)=ROT R'""(X)PROT
RY(x)PSHR'’(x) are S-boxes defined using word
rotations to the right (ROT R) and shifts to the right
(SHR).

Methods in computing collisions for an ADD-linear
variant of SHA- 256: In orderto analyse the usefulness
of adisturbance-correction strategy applied to the SHA -2
architecture, we mvestigate an DD-linear variant of SHA -
256, where S-boxes are replaced with the 1dentity
function:
0O,=0,= 2,= 2,=1d (2)

and Boolean functions are replaced by the addition
modulo 2°7,

M aj(x,y,z) =Ch(x,y,z) =x+y +z (3)

Now the whole function consists only of linear
operations with respect to the modular addition. If we

introduce a difference A = W.0 - W,, we can cancel this
disturbance by introducing in the next 8 steps 1+ 1,...,1+
8 the following sequence of corrections:

{—4A2A20.4A.20,A,,0,— A} (4)

The whole process of correcting a single disturbance
1s presented in Table 1. In the first 4 steps we use
corrections that keep differences frominfluencing register
A and later from step 1 + 4 we successively cancel
differences in the register H. The next step is to find a
disturbance pattern that follows the expansion process
and can give raise to a corrective pattern. We will use an
argument similar to the one used for finding disturbance
patterns for SHA -1 (Matusiewicz and Pieprzyk, 20035;
Riymen and Oswald, 2005; Pramstaller et al., 2005). Let
us mtroduce the necessary notation first. Forany vector
s=[Sg,..., S;], let us denote by Delay*(s) am an ADD-
linearised variant of SHA-256 vector constructed by
preceding elements of's by a zero elements, 1.e.,

Delay“i(s)=|0,...0,50,.., 5

i

aAhmes

and by Delay“n(s )the same vectortruncated to only n first
elements, 1.e.,

Delay - (51=|0

Based on this notation, we can state the following simple
fact which will be used later on.
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Fig 1: One step ofthe SHA-256 compression function

Table 1: Correcting a single disturbance ?I introduced in step 1

Step s  aA AB AC AD AE, Ak AG, aH, AW,
1 0 0 0 0 0 0 0 0 A,
i+1 Al 0 0 0 Al 0 0 0 -4 A1
12 0 Al 0 0 2Aa1 Al 0 0 241
1+3 0 0 Al 0 -Al -2A1 Al 0 241
1+4 0 0 0 Al -Al -Al 2a1 Al 41
15 0 0 0 0 Al -Al -Al -2a1 241
1+6 0 0 0 0 0 Al -Al -A1 Al

1+7 0 0 0 0 0 0 Al -a1 0
i+8 0 0 0 0 0 0 0 Al -Al
1+9 0 0 0 0 0 0 0 0

Lemma 2.1.1: Let W €7,°32. If Delay*(W ) is a result of

the expansion using the recursive formula (1) with N
= 64 + a, then all the vectors Delay’64 (W) for 0 <b < a

are also results of the expansion process (1).

Proof: Each vector Delay’64(W) consists of elements of
the Vector Delay’(W ) with indices a-b ,a- b+1,...,a-b+
63 and as a part of a sequence followmng the recurrence
relation, also follows the relation.

The message expansion can be seen as an ADD-

linear transformation E: Z,'%;,~ Z,%*,,. This means that E
can be written as a 64 x 16 matrix:

()

Where I,, stands for the identity matrix and A

denotes amatrixofthe linear transformation producing 16
new words out of 16 old ones according to the recurrence
relation(1). Below theoremfully charactenses disturbance

patterns for an ADD-linear variant of SHA -256.

Theorem 2.1.2: Let A,=M"- M be a message difference.

The expanded difference a= E(Ay) 1s a valid disturbance

vector for an ADD-linear varnant of SHA-256 if the
followmng conditions are satisfied:

I= A7[8:16]4 5
0= A7 [8:16]4 4

(6)
(/)
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WhereM [a::b] means a matrix consisting ofrows of
the matrix M from the a-th row to the b-th row inclusive.

PROOF: The fundamentalobservation is that each single
word A; of the disturbance vector has to be corrected by
adding to the next 8 words the followmg differences

defined by Eq. (4),

]:l:l

:T—-flﬂz-,ﬁﬂz-,ﬁﬂzﬂﬂ A A - ﬂ

This shows that the last non-zero disturbance word
may appear in position 55, because we need eight steps
56,...,63 to correct 1t. Thus, the last 8 words of the

expanded difference E:- A, have to be zero. Since E is
defined by (5), this condition can be written as (6). Now,
let us consider the following linear combination of A and
its delayed versions:

C= i 4 Delay’ G4(4) +2 Delap” G4 4)+2
Dielay 54{&}+4Dﬂ.!’::;y - 64(4)+2 Delgy” 64(4)
4 Delay ® 640 &) — Delay ® 640 4) ()

Itis easy to see that each disturbance word A,1in Cis
corrected by its appropriate multiplicities appearing in the
next eightpositions and coming fromthedelayed vectors.
Since the message expansion 1s linear, C i1s the result of
the expansion if and only ifallthedelayed and truncated
vectors Delay®64 (a), 0 < b < 8 are results of the
expansion process. Lemma 3.1 assures that it 1s true if
Delay® (a) = [0,0,0,0,0,0,0,0,4,,..., A¢]" 1S the result of
the (extended, N=68) expansion process. We can achieve
this by taking the first 16 words and expanding them
forward according to Eq. (1), butalso by taking any 16

cons ecutive words and expanding partly forward and
partly backward. In our case we select elements 8-23 for

the expansion. If we indexelements of Delay ° (a) starting
from -8 and split the vector into two parts: one having
negative and the other one having non-negative mdices,

we can express this requirement equivalently by the
followmn g two conditions:

=A~"' Ay and A =E a2,

vhas to end with 8

zeros, has to be satisfied, since a1s already the result ofan
expansion. This condition can be wrntten simply in the

form of Eq. (7) what completes the proof. As long as Eq.

Only the first condition, namely A -1

(6) and (7) are satisfied, a 1s a valid disturbance pattern
and C 15 a complete differential characteristic
corresponding to 1t. After obtaining explicit forms of the
matrices A’and A ' (this is possible since A is a bijection)

we solve the system of Eq. (6) and (7) over Z,32 and get

the following result:

A o= [0A1000000, 0Kz 0000000, 0 20000000, 0z 0000000,

A e Oz, O A0, QLA =S0oooooo, O  <oooooo,
U= 0000000, O X 0000000, 01000000, o aooooo,

I:I..E"SI:II:I:II:II:IDD,I:I..EHDDDDDIILDFTDDEI]DDU,DEEEI:IDI]DDD] [S]
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This shows that the solution space 1s just one-
dimensional. Any multiple of A\, 1s also a solution, but

since all components of the vector (9) have only up to
four most significant binary digits different from zero (so
2°%(mod 2°%) where a;

there are only 16 distinct

they are all of the form a;
€{0,...,15},0 < 1 < 16),
disturbance pattemns.Using any of them results in a
collision for ADD-linearised SHA -256.

Methods of Incorporating Boolean functions: Now let
us consider a variant of SHA-256 still without S-Boxes,
but with both Boolean functions Majand Ch m place. If
we multiply the basic pattern (9) by 8 (so shift it left by 3
bitpositions ), we geta disturbance pattern a™* _E (8,;) that
has non-zero bits at the most significant bits only. The
most significant bits of o™ are as follows:

1000000001101011
0000011100101111

1011100110100110
1011100000000000

(10)

A* 1s a disturbance pattern that not only follows the
message expansion but also allows us to treat it as a
binary pattern with a relatively low weight of 27. We can
approximate both Boolean functions with probability at
least 2 assuming that the function produces an output
difference each time the input difference 1s non-zero. This
approximation 1s shown i Table 2.

If we use this approximation and trace how a single

bit disturbance A*, 1introduced 1n step 1 propagates

throughthenext 8steps,we getthe following sequenceof
corrections:

{Ozojﬁirxﬁiﬁorxoﬁoﬁﬁi}rx (1 1)

Which we need in steps 1+1,...,i+8 in order to cancel

the mitial disturbance a,. The whole process 1s very
similar to the one used to obtam the sequence of
corrections (as given 1n (4)). A complete differential 1s
, by
adding delayed disturbance patterns multiplied by
of Eq. (11), 14 6%
{0,0,1,1,0,0,0,1}. This time however, correction process

obtained in the same way as in the previous case

corresponding coefficients
1s probabilistic as each active Boolean function almost
always (except for input differences (0, 1, 1) for Ch and
(1, 1, 1) for M aj) introduces a factor of 1/2. A detailed

analysis of these probabilities is presented in Table 3.

After multiplication of all factors, we obtamn a probability
Further
optimisation are also possibleas we can choose messages

for a successful correction equal to 2.

m such a way that conditions for successful correction
will be always satisfied for the first 16 steps, what could
increasethe probability toaround 2 °*. This shows that the

use of substitution boxes o,, o, and 2,, 2,1s es sential for
the security of SHA-256 and al
mixing only modular additions with Boolean functions is

so demonstrates that

not enough for constructing a secure hash function.
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Table 2: Probabilities of non-zero output diferences for the Boolean

functions Ch and M aj

mput diflrence Ch Function Maj function

{d, , 6,.,.8.) condition prob condition Prob
(1,0,0) y+z=1 1/2 y+z=1 1/2
(0,1,0) x=1 1/2 x+z=1 142
(0,0,1) x=0 1/2 x+y=1 142
(1,1,0) X +y+z=0 1/2 x+y=0 1/2
(1,0,1) x+y=0 1/2 x+z=0 1/2
(0,1,1) — 1 y+z=0 1/2
1,1.1, +7=0 1/2 - 1

Table3: Negativeexponentseo ftheprobabilities introduced in step sbyBo olean
functions Maj and Ch. Columns M ajand Ch show input differences to Boolean

functions and 2 “gives probabilities introduced by each step.
S Maj Ch e S Maj Ch e s Maj Ch e s Maj Ch e

o 000 o000 O 16 110 010 2 32 Ol1 100 2 48 111 1101
I 100 100 2 17 111 101 1 33 001 010 2 49 111 OI1 O
2 o010 010 2 18 01l o010 2 34 000 001 1 50 OIl 101 2
3 oor 1ol 2 19 1001 001 2 35 000 100 1 51 101 010 2
4 000 110 1 20 110 100 2 36 000 010 1 52 110 101 2
5 ooo 11t 1 210 111 110 1 37 000 001 1 53 111 1101
6 000 oIl ©O0 22 oIl oO11 1 38 100 100 2 54 011 Ol11
7 ooo ool 1 23 00l 101 2 39 110 110 2 55 001 101 2
8 000 000 O 24 100 110 2 40 111 OI1 O 56 000 0101
9 000 000 O 25 110 o011 1 41 oOl1 ool 2 57 000 1011
10 100 100 2 26 O11 101 2 42 001 100 2 58 000 OI10 1
11t 110 110 2 27 101 110 2 43 100 110 2 59 000 001 1
12 olfr 111 2 28 010 OIl1 1 44 010 111 2 60 000 000 O
(13 101 111 2 29 001 001 2 45 101 OI1 1 61 000 000 O
14 o0o1o o011 1 30 100 000 1 46 110 001 2 62 000 000 O
15 101 101 2 31 110 000 1 47 111 100 1 63 000 000 O

The Methods of role in S-Boxes: The substitution boxes
2, and 2, constitute the essential part of the hash
functions and full fills two tasks: They add bit diffusion
and destroy the A DD-linearity of the function. There are
mo dular differentials for 2, and 2, that hold for one bit
input difference with probability 2° (necessary for S-
boxes used in steps 1+ 1,1+ 5)and with probability

around 2 ' for mput difference equal to 2, (¢) (used for
2,in step 1 + 2). Using the approach of modular
differences 1t 1s possible to obtain a corrective pattern for
the complete round structure with probability around
2% A better result of 27°° was obtained by Hawkes
et al. (2004) by explicit computation of modular
differences for 2,and X%,,ratherthan approximating them
with a constant differential. The S-boxes o, and o, play a
similar role: They provide nonlinearity and better
diffusionforthe message expansion. Thesetwoproperties
ofthemessageexpansion constitute the foundation ofthe
security of the full SHA-256, as in order to apply
corrective pattems in a straightforward way, one would
need at least 37 expanded words equal to zero (since at
most three corrective patterns can be applied).
Although, this seems to be unlikely, further research

1s needed 1n this direction. In the rest of this study,
we concentrate on the message expansion and list some
Interesting properties of it:

* 0, and o, have both the property to increase the
Hamming weight of low-weight inputs. This increase 1s
upper bounded by a factorof 3. The average mcrease of
Hamming weight for low-weight inputs 1s even higher if
three rotations are used instead of two rotations and one
bit-shift. However, a reason for this bit-shift is given by
the next observation.

* In contrast to all other members of the MD4-family
including SHA-1, rotatingexpanded message words to get

new expanded message words 1s not possible anymore
(even in the XOR-linearnsed case). This 1s due to the bit-

shift bemg used m ¢,and o,.

RESULTS AND DISCUSSION

In thefirst attemptto getanidea about the effect ofall
the changes between the SHA-1 message expansion and
the SHA-256 message expansion, we consider single bit
differences. Table 4 illustrates this comparison. We
consider variants reduced to 40 steps as well as full
variants (80 steps for SHA-1 variants and 64 steps for
SHA -256 variants). By the modified SHA-1 message
expansion we refer to a variant where every XOR 1s
replaced by an addition modulo 2°?. By the modified
SHA -256 mes sage expansion, we refer to a variant where
every addition 1s replaced by an XOR. W e observe that
both the introduction of modular additions and the

replacement of a single bit-shift by a structure.
In variants using modular addition, we used the all-

zero vector as a starting poimnt using o, and o, heavily
increases the number of affected bits in the expanded

message. When talking about the SHA -1 message
expansion, 1t was alrcady observed i1n the works

Matusiewicz and Pieprzyk (2005), Riyjmen and Oswald

(2005) that weights much smaller than 107 (as given 1n
Table4)can be found. The mmmimmum weight found for the

message expansion of SHA-1 i1s 44. A more recent

treatment of low-weight disturbance patterns i SHA-1
can be found 1n Jutla and Patthak (2005). Due to the

nonlmear behaviour of the modular addition, no linear

code can describe the SHA-256 message expansion.
However, if the modular addition 1s replaced by XOR, a

inear code over Z, can be constructed. If we consider

SHA-256 with N steps, this code can be represented by a
512 x 32N generator matrix G. Due to the XOR-

Imearisation, every possible difference of two expanded

words 1s also a valid word in this code. Therefore,
probabilistic algorithms from coding theory (Leon, 1988;
Stern, 1989; Chabaud and Joux, 1998) can be used to find
low-weight differences for the XOR-linearised SHA -256
message expansion. Someresults of thiscodeword search
are depicted mm Fig. 2. All mmimum weights found for

variants of the message expansion up to the full 64 steps
are shown 1n the figure. Until the 42-step variant, our

algorithms found reasonablelowweights.This 1s depicted
by the solid line. Considering the 40-step variant, the

weight 0126 1s low compared to a minimal weight of 110
for single-bit differences given in Table 4. The 40-step

expanded message 1s given mn Table 5, for varnants with

more than 42 steps, the running time of our algorithms 1s
currently too high to return reasonable low weights. The
sudden jump after step 42 1s not an intrinsic property of
the SHA-256 message expansion, but rather the result of
the limited running time of our algorithms.
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Table 4: Comparison of the number of afiected bits for a single bit
diference in various message expansions

Time Orig. SHA-1 mod.SHA-1 mod.SHA-256 orig. SHA-256
min(40 steps) 18 1 8 110 137
max(40 steps) 30 41 297 307
min(full) 107 247 467 ol )
mi x( full) 174 354 694 709

Table 5: Low-weight expanded message for the XOR-linearised 40-

step message expansion of SHA-256

00000001 00040088 00000000 00000000
00000000 00000001 00000000 00000000
00000000 15522028 00000000 00000000
00000000 000A 0400 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00004050 00000000
00000000 00000000 00000000 00000000
00000000 00040088 00000001 00000000
00000000 00000000 00000000 00000000
00000001 00000000 00000000 00000000
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Fig 2: Hamming weights of low-weight words found for step-
reduced variants of the XOR- linearised SHA-256 message
eXp ansion

To show that there indeed are low-weight words for
N>42, we proceed as follows. After obtamning a low-
welight word for42steps we use theexpansion process to
extend it to the fulllength word. Weights obtamed m this

way are depicted by the dashed line. A 42-step word of
weight 35 1s used there as a starting point. Expanding itto

64 steps gives us a weight of 356. This 1s considerable
lower than 467, which the mimimal weight 1s given for a
single bit difference 1n Table 4. However, there 1s room
for mprovements. In contrast to the words found for the
SHA -1 message expansion, there are no zero bands
(Rymen and Oswald, 2005) any more.Note that the given
expanded message isnot necessarily a valid difference in
casec ofthe real message expansion since we approximate
the modularaddition by the bitwise XOR operation. Also
note that the given vector cannot directly be used as a
collision-producing disturbance pattern as described by
Chabaud and Joux in their original attack on SHA-0
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(Chabaud and Joux, 1998). The reason i1s that there are
truncated local collisions (Chabaud and Joux, 1998)
generated by non-zero words i the backward expansion.

These local collisions start before step 0 and would

cause additional difficulties for constructng a collision-
producing differential characteristic. However, we expect
to find input words for reduced variants of the message

expansion that can beusedto build a collision-producing
difference. A number of conditions on chaining variables
need to be satisfied i order to ensure that the
concatenation of local collisions (which hold with a
probability between 2" and 2™* results in a collision of

the output of the compression function. If we do not
assume any pre-fulfilled conditions, the maximal weight
we allow for a perturbation pattem is 3 (since 27°7%_27'%%),
Considering the weights m Fig. 2, this would mean a
maximum of 24 steps. In this study, we presented
methods for finding collisions fortwo simplified variants
of SHA-256, one fully linearised with respect to
the modular addition and the other one with all the
S-Boxes replaced by the 1dentity function. These
results show that the presence of S-Boxes 1s essential
for the security of SHA-256. We studied properties
of the message expansion and presented expanded

messages with low Hamming weights
for the XOR- linearised message expansion of SHA -256.

The general ideas of all these results apply also to other
members of the SHA -2 family.
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