Characterization of the Minimum Effective Layer of Thermal Insulation Material Tow-plaster from the Method of Thermal Impedance

M.S. Ould Brahim, I. Diagne, S. Tamba, F. Niang and G. Sissoko

Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal

Civil Engineering Department, Ecole Polytechnique de Thies, Sénégal

IUT/UT, University Thies, Thies, Senegal

Abstract: Our objective in this study is to determine the effective thermal insulating layer of a composite tow-plaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. The overall coefficient of heat exchange is determined from the Bode plots. A method for determining the thermal conductivity is proposed.

Key words: Frequency dynamic regime, thermal impedance, Nyquist representation, effective thermal insulation layer

INTRODUCTION

Thermal comfort in buildings (Tamba et al., 2007) requires good thermal insulation. Tow (the tow is made up of filaments, hemp, flax, etc., prepared to be spun), biodegradable natural product is used as thermal insulation in combination with the plaster as a binder. Thermo physical characteristics (thermal conductivity \(k \approx 0.15\text{W/m}^\circ\text{C}\); coefficient of thermal diffusivity \(\alpha \approx 2.07\times10^{-7}\text{m}^2/\text{s}\) (Voumbo, 2008) of a tow-plaster material are measured.

Several methods for determining the thermal conductivity of materials are proposed. Jannot et al. (2009) proposes a technique for determining the thermal conductivity of insulating materials with low density. The three-dimensional modeling system is used for sensitivity analysis. The estimation method is described and applied to experimental measurements performed at atmospheric pressure and vacuum.

Bekkouche et al. (2007) studied the effect of thermal insulation on a piece of habitat in a region of Algeria. The simulation study showed the effect of thermal barrier that influences on the insulation a sunny wall.

In this study, a simulation technique is proposed to characterize the heat transfer through the material from the study of the thermal impedance. Nyquist representations (Dieng et al., 2007) have characterized some thermal phenomena in the determination of series resistance and shunt. Bode diagrams helped give the limits of the overall coefficient of heat exchange and propose a technique to derive the thermal conductivity of thermal insulating material.

Theory: Study design: The study device, Fig. 1a, is a material made of tow and plaster of parallelepiped shape whose thermo physical properties (thermal conductivity and thermal diffusivity coefficient) (Gaye et al., 2001) are determined.

The tow-plaster material, Fig. 1b, is subject to a side in contact with the outdoor environment: climatic solicitation (temperature, fluid motion outside) under dynamic frequency regime. The other side of the material is isolated environment where the temperature is changing in dynamic frequency regime established. The heat exchange is assumed at lower level of this face.

Through the heat exchange coefficients (\(h_{1y}, h_{2y}, h_{1x}, h_{2x}\)) the material acquires or disposes of the heat, which translates into a temperature change in the material.

The climatic solicitation conditions are imposed along the depth (Oy) of the material. Both parties are defined in the material of the thermal response: the area sensitive to climate solicitation and thermal insulation layer effectively.

The evolution of heat along the axis (Ox) reflects lateral losses of heat through the material, the heat transfer coefficients \(h_{1x}\) and \(h_{2x}\) are supposed to ignore low heat exchanges on the sides.

Thermal impedance of the material: Temperature and heat flux density in the material: The temperature \(T(x, y, t)\) of the tow-plaster material is defined by the heat Eq. (1), without heat source and then. The temperature of the material is essentially exchanges heat to walls of the material.
The tow-plaster material is subject to the following boundary conditions:

\[
\lambda \frac{\partial T}{\partial x} \bigg|_{x=0} = \frac{T(0, y, t) - 0}{h_x} \quad (3)
\]

\[
-\lambda \frac{\partial T}{\partial x} \bigg|_{x=L} = \frac{T(L, y, t) - 0}{h_x} \quad (4)
\]

\[
\lambda \frac{\partial T}{\partial y} \bigg|_{y=0} = \frac{T(x, 0, t) - T_{a1}}{h_y} \quad (5)
\]

\[
-\lambda \frac{\partial T}{\partial y} \bigg|_{y=h} = \frac{T(x, H, t) - T_{a2}}{h_y} \quad (6)
\]

The thermal impedance of the tow-plaster material: The thermal impedance \(Z(x, y, w) \) (annex 6) (Bourouga et al., 2000) is defined in Eq. (16) as the ratio of temperature variation \(DT(x, y, w, t) \) between a position in front of coordinates \((x, 0)\) and an inner position of the

\[
\mu_n = \sqrt{\beta_n^2 + \frac{i \omega}{\alpha}} = \sqrt{\beta_n^2 + \frac{\omega}{2 \alpha}} \quad (8)
\]

\[
\tan(\beta_n L) = \frac{\lambda \beta_n (h_{1x} + h_{2x})}{(\lambda \beta_n)^2 - h_{1x} h_{2x}} \quad (9)
\]

\[
f_1(\beta_n) = \tan(\beta_n L) \quad (10)
\]

\[
f_2(\beta_n) = \frac{\lambda \beta_n (h_{1x} + h_{2x})}{(\lambda \beta_n)^2 - h_{1x} h_{2x}} \quad (11)
\]

Table 1 summarizes some eigenvalues \(\beta_n \) from which the temperature of the insulation plaster tow followed.

In dynamic frequency and given boundary conditions imposed on the system, we get the expression in annex (1) temperature \(T(x, y, w, t) \)

\[
\mu_n \text{ and } \beta_n \text{ are constants constituting the eigenvalues related by Eq. (8) and determined graphically from Fig. 2 by considering the transcendental Eq. (9).}
\]
Table 1: Eigenvalues b_n determined graphically, $h_1 = h_2 = 0.05 \text{ W/m}^2.\text{°C}; 1 = 0.15 \text{ W/m}^2.\text{°C}$.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_n</td>
<td>5</td>
<td>65</td>
<td>127</td>
<td>189</td>
<td>250</td>
<td>314</td>
<td>378</td>
<td>441</td>
<td>505</td>
<td>566</td>
<td>629</td>
<td>692</td>
</tr>
</tbody>
</table>

Table 1: Eigenvalues b_n determined graphically. $h_1 = h_2 = 0.05 \text{ W/m}^2.\text{°C}; 1 = 0.15 \text{ W/m}^2.\text{°C}$.

Material coordinates (x, y) on the density of heat flow $\psi(x, y, w, t)$, (annex 5) passing through this portion of the material.

$$Z(x, y, \omega) = \frac{\Delta T}{\psi}$$ \hfill (16)

Expression, annex 6, corresponds to the thermal impedance of the material in dynamic frequency regime.

RESULTS

Evolution of temperature and density of heat flow: For an effective thermal insulation layer (E.T.I.L) (Voumbo et al., 2010a, b), $e = 2 \text{ cm}$, Figure 3 shows the changes in temperature, curve (2), and the density of heat flow curve (1) through the thermal insulating plaster-tow in function of the excitation pulse.

For low values of pulse excitation, $\omega < 10^{-4} \text{ rad/s}$, temperature T is high, which corresponds to a density of heat flow in the relatively weak material. For these low values of pulse excitation, the material does not good thermal insulator.

Beyond a pulse excitation $\omega > 10^{-4} \text{ rad/s}$, the material temperature decreases significantly while the density of heat flow ψ increases and reaches a maximum corresponding to an optimal value of the excitation pulse $\omega_{opt} = 6.46 .10^{-4} \text{ rad/s}$ for an experimental period $\tau = 0.2 \text{ h} \ 40 \text{ min}$ of exterior climatic solicitation providing optimal thermal insulation. Note that the optimal excitation pulse ω_{opt} corresponds to the temperature curve at an inflection point corresponding to minimum temperature insulation inside the middle $T \approx 9.5^\circ \text{C} = 282.65 \text{ K}$.

For higher excitation pulses above ω_{opt}, the temperature and heat flux density decrease and evolve in the same manner as characterizing a very good performance thermal insulation for the effective thermal insulating layer considered and periods of climatic solicitations exterior $\tau < 0.2 \text{ h} \ 40 \text{ min}$.

The characteristic of temperature variation - density of heat flux: The Fig. 4 defined the thermal impedance of thermal insulating material from the evolution of the temperature variation ($\Delta T = T(x, y = 0) - T(x, y)$) depending on the density of heat flow ψ through the material. The curves of this figure have the same profile and define at any point an operating point characterized by dynamic thermal impedance Z.

Consider a thin layer $\delta y = \varepsilon (e - 0)$, near the face subject to climatic solicitations exterior $\Delta T = T(x, y = 0) - T(x, y)$.

$$T(x, y = \varepsilon) = 0. \text{ This corresponds to almost zero thermal impedance } Z \text{ resulting in an important passage of heat flux density (short circuit current of electricity).}$$

In depth for a position $y > H - e$, we have $\Delta T = T(x, y = 0) - T(x, y = H - e) \approx T(x, y = 0)$; the thermal impedance Z of the material is the maximum heat flux density vanishes (ΔT corresponds to an open circuit voltage).

The thermal impedance Z of thermal insulating material can thus characterized the thermal behavior of materials from its study.

Bode diagram of the thermal impedance: The evolution of the modulus of the thermal impedance as a function of the excitation pulse for different values of thickness $\Delta y = y - 0 = y$, is given in Fig. 5.

The curves show two profiles characterizing two main areas of thermal insulating material according to the exterior climatic solicitations:
Fig. 5: The behavior of the impedance versus the logarithm of the excitation pulse, influence of the depth of the insulating material. $x = 0.025\ m$; $h_1y = 50\ W/m^2\ ^\circ\ C$; $h_2y = 0.05\ W/m^2\ ^\circ\ C$; $T_{o1} = 25^\circ C$; $T_{o2} = 10^\circ C$

Area Sensitive to Exterior Climate Solicitations, A.S.E.C.S, $\Delta y = 5\ mm$, curve (4): the variation of thermal impedance module is relatively low: the layer absorbs a significant amount of heat causing the wall heat and presents an important jump for the cut-off pulse $\omega_c = 10^{-5}\ rad/s$.

The effective thermal insulation layer, E.T.I.L, for $\Delta y \geq 1\ cm$, curves (1), (2) and (3) have the same profile; thermal impedance is constant and small for low values of the pulsation and high and constant values of the relatively large excitation pulse. The curves show a cut-off pulse $\omega_c = 10^{-5}\ rad/s$, comparable to that obtained in the A.S.E.C.S.

For $\omega > \omega_c = 3.48.10^{-4}\ rad/s$, the thermal impedance modulus increases with the exciter pulse, the heat flux density decreasing significantly in the material; the temperature positions increase in the E.T.I.L virtually zero.

Table 2 summarizes some values limit of the thermal impedance in A.S.E.C.S and E.T.I.L.

Determination of series resistance and shunt: Nyquist representations of the thermal impedance give the evolution of the imaginary part of impedance as a function of the real part.

Figure 6a identifies the values of series resistors R_s ($\omega = 0$), shunt R_{sh} (from the cutoff frequency of giving $R_{sh}/2$), thermal resistance $R_{s} + R_{sh} = R_{th}$ and limit thermal resistance R_L ($\omega = \omega_c$).

$R_{s} \leq R_{sh}$; R_s is the thermal resistance characterizing the phenomena of heat transfer to the wall material (heat exchange coefficients, pulse excitation) and heat transfer by conduction in the material (thermal conductivity of the insulation).

The curves (1), (2) and (3) of Fig. 6a, show that the resistance values (R_s, R_{sh}, R_{sh} et R_s) increase with the thickness $Dy = y - 0 = y$, increased thermal resistance resulting in substantial loss of heat flux density in the material corresponding to a favorable feature of the insulation.

The curve (3) has a negative value of R_s, reflecting, for A.S.E.C.S, relaxation phenomena; some of the heat received by the insulator is pushed to the outside environment through heat exchange coefficient.

Figure 6b shows the influence of heat transfer coefficients on the values of series resistance and shunt. The series resistance decreases as the heat transfer rate increases as opposed to the shunt resistor.

Table 3 shows some values of resistors (R_s, R_{sh}, R_{sh} et R_s) and shows their evolution as a function of the
Table 3: Values of shunt and series resistances with depth and the coefficient of heat exchange

<table>
<thead>
<tr>
<th>y (cm)</th>
<th>(R_s)</th>
<th>(R_{sh})</th>
<th>(R_s + R_{sh})</th>
<th>(R_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.074</td>
<td>0.074</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>0.111</td>
<td>0.074</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>0.354</td>
<td>0.074</td>
<td>0.074</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Comparison of the limits values of the overall coefficient of heat exchange with respect to

<table>
<thead>
<tr>
<th>(K) (W/m²°C)</th>
<th>(\Delta T) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.9</td>
<td>30</td>
</tr>
<tr>
<td>76.9</td>
<td>15</td>
</tr>
<tr>
<td>76.9</td>
<td>6</td>
</tr>
<tr>
<td>3.5</td>
<td>3.75</td>
</tr>
</tbody>
</table>

To highlighting two important parts of the thermal insulating material:

- Area Sensitive to Exterior Climate Solicitations (A.S.E.C.S)
- Effective thermal insulating layer (E.T.I.L)

Nyquist representations have determined the values of series resistance, shunt resistance and the limit value thermal resistance.

DISCUSSION

The heat transfer through the material is characterized by the overall coefficient of heat transfer defined by the expression \(K = 1/|Z| \). The overall coefficient of heat exchange \(K \) depends on heat transfer, thermal conductivity \(l \) and pulse excitation \(w \).

Table 4 below gives the limits for the overall heat transfer coefficient obtained from Table 2.

- For \(\omega = 0 \), the overall coefficient of heat exchange is very large relative to \(\lambda/\gamma \); the contribution of heat transfer coefficients by convection is relatively large; flux density of heat absorbed by the material is important.
- For \(\omega = \omega_h \), the overall coefficient of heat exchange is minimal and less than \(\lambda/\gamma \); the material gives up heat by relaxation phenomena accentuated for small thicknesses of material \((R_s < 0 \text{ for } y < 0.5 \text{ cm}) \).
- For \(\omega = \omega_h \), considering the relatively low values of insulation thickness, \(\Delta y = y - 0 = y < 0.5 \text{ cm} \), the overall coefficient of heat transfer is comparable to \(\lambda/\gamma \) with a maximum relative uncertainty 4.67%. This allows a determination of thermal conductivity \(\lambda \) of the thermal insulating material.

The uncertainty becomes increasingly important when the thickness of the material increases.

CONCLUSION

The study of heat transfer from the thermal impedance in the dynamic frequency regime has allowed
A.S.E.C.S: Area Sensitive to Exterior Climate Solicitations

Greek letters:
- \(\rho \) density, kg/m\(^3\)
- \(\alpha \) coefficient of thermal diffusivity, m\(^2\)/s
- \(\phi \) pulse excitation, rad/s
- \(\tau \) solicitation period climate, hour

Indexes/Exhibitors:
- \(i = 1, 2 \), extern

Appendix:

\[
T(x, y, \omega, t) = \left[\sum_n \left(\cos(\beta_n x) + \frac{h_x}{\lambda \beta_n^2} \sin(\beta_n x) \right) \times \left(a_n \cosh(\mu_n y) + b_n \sinh(\mu_n y) \right) \right] e^{j \omega t}
\]

\[
a_n = \frac{4 \lambda \beta_n \sin(\beta_n L) \left[h_{x1} \lambda \mu_n \cosh(\mu_n H) + h_{x2} \sinh(\mu_n H) \right] T_{01} + h_{x2} \lambda \mu_n T}{D_n \left[h_{x1} \lambda \mu_n \cosh(\mu_n H) + h_{x2} \sinh(\mu_n H) + \lambda \mu_n (\lambda \mu_n \cosh(\mu_n H) + h_{x2} \cosh(\mu_n H)) \right]}
\]

\[
b_n = \frac{h_{x1} \lambda \beta_n \sin(\beta_n L) \left[h_{x2} \lambda \mu_n \sinh(\mu_n H) - (\lambda \mu_n \sinh(\mu_n H) + h_{x2} \cosh(\mu_n H)) T_{01} \right] \left[h_{x1} \lambda \mu_n \cosh(\mu_n H) + h_{x2} \sinh(\mu_n H) + \lambda \mu_n (\lambda \mu_n \cosh(\mu_n H) + h_{x2} \cosh(\mu_n H)) \right]}{D_n}
\]

\[D_n = \lambda \beta_n \left(2\beta_n L + 2 \beta_n L + h_{x1} (1 - \cos(2 \beta_n L)) \right)\]

\[
\psi(x, y, \omega, t) = \lambda \left[\frac{\beta_n^2}{{\lambda \beta_n}} \sum_n \cos(\beta_n x) + \frac{h_{x1}}{\lambda \beta_n} \sin(\beta_n x) \right] \times \left[a_n \sinh(\mu_n y) + b_n \cosh(\mu_n y) \right] e^{j \omega t}
\]

\[
Z(x, y, \omega) = \left[\sum_n \left(\cos(\beta_n x) + \frac{h_{x1}}{\lambda \beta_n} \sin(\beta_n x) \right) \times \left(a_n \cosh(\mu_n y) + b_n \sinh(\mu_n y) \right) \right] e^{j \omega t}
\]

ACKNOWLEDGMENT

We thank all the authors cited in references; their work we are a very big contribution. We also thank the members of the international group of research renewable energy of laboratory of semiconductors and solar energy at the University Cheikh Anta Diop in Dakar.

REFERENCES

