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Abstract: In this study, we develop modified Nonsubsampled Contourlet Transform (NSCT). The construction
of NSCT is based on new nonsubsampled pyramid structure and Nonsubsampled Directional Filters (NSDF).
The result is improved in flexible multiage, multidirectional and shift invariant image decomposition that can
be effectively implemented through Matlab. The modified NSCT, it proposed to distinguish noise and edge
effectively. So we assess the performance of the modified NSCT in image denoising applications. In this
application the NSCT compares favorably to other existing method.
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INTRODUCTION

During the acquiring and transferring of image, there
always exists noise, so in order to improve the quality of
image, we must do some work to delete noise. Since
eliminating noise and preserving the edge is the main
problem in image denoising by NSCT. With this NSCT
we loose the information in high frequency bands. So that
the authors are focused on the edge and texture detail. A
more advanced method such as wavelets, NSWT,
curvelets (Cand  and Donoho, 2004) and contourlet
transform (Cunha, 2005) eliminates the noise in redundant
images. The redundant images represents more flexible to
design. In this paper application as denoising and contour
detection, a redundant representation outperform a non
redundant. 

Another important feature of a transform is its
stability with respect to shifts of the input signal. An
example that will discuss the importance of shift in
variance is image denoising by thresholding where the
lack of shift invariance phenomena around singularities
(Coifman, 1995). Thus, most state-of-the-art wavelet
denoising algorithms (Chang, 2000) use an expansion
with less shift sensitivity than the standard
maximally decimated wavelet decomposition the most
common being the nonsubsampled wavelet transform
(NSWT) computed with a trous algorithm (Shensa, 1992)
now it is implemented using Mat lab software.

In addition to shift-invariance, it has been recognized
that an efficient image representation has to account for
the geometrical structure pervasive in natural scenes. In
this direction, several representation schemes have

recently been proposed (Donoho, 1999). The contourlet
transform is a multidirectional and multiscale transform
that is constructed by combining the Laplacian pyramid
(Do and Vetterli, 2005) with the directional filter bank
(Bamberger and Smith, 1992) proposed. The pyramidal
filter bank structure of the contourlet transform has very
little redundancy, which is important for compression
applications. However, designing good filters for the
contourlet transform is a difficult task.

So In this study, we propose an over complete
transform that we call the modified Nonsubsampled
Contourlet Transform (NSCT). Our main motivation is to
construct a flexible and efficient transform targeting
applications where redundancy is not a major issue (e.g.,
denoising). The NSCT is a fully shift-invariant,
multiscale, and multidirectional expansion that has a fast
implementation. The proposed construction leads to a
filter-design problem that to the best of our knowledge
has not been addressed elsewhere. The design problem is
much less constrained than that of contourlets.This
enables us to design filters with better frequency
selectivity thereby achieving better subband
decomposition. So the NSCT has proven to be very
efficient in image denoising.So first let us see the
contourlet transform and its construction. 

In the literature (Cunha et al., 2005; Donoho, 1999;
Simoncelli et al., 1992; Pennec and Mallat, 2005; Cand
and Donoho, 2004; Liang, 2008; Portilla et al., 2003;
Rosiles and Smith, 2003; Sendur and Selesnick, 2002;
Luo and Wu, 2008; Shensa, 1992; Wakin et al., 2006; Do
and   Vetterli,   2005;  Qing  et  al.,  2008;  Coifman  and
Donoho,   1995;   Bamberger   and  Smith,  1992; Chang
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et al., 2000), the modified nonsubsampled contourlet
transform is not present. In this work an attempt is made
to implement modified NSCT using mat lab.

CONTOURLET TRANSFORM

Contourlet transform can offer a sparse representation
for piecewise smooth images. By first applying a
multiscale transform and then applying a local direction
transform to gather the nearby basis function at the same
scale into linear structures. With this insight, a double
filter bank structure in which at first the Laplacian
Pyramid (LP) is used to capture the point discontinuities,
And followed by a Directional Filter Bank (DFB) to link
point discontinuities into linear structure.

Laplacin pyramid: The basic idea of the LP is the
following. First, derive a coarse approximation of the
original signal, by low pass filtering and down sampling.
Based on this coarse version, predict the original (by up
sampling and filtering) and then calculate the difference
as the prediction error. Usually, for reconstruction, the
signal is obtained by simply adding back the difference to
the prediction from the coarse signal. The process can be
iterated on the coarse version. Analysis and usual
synthesis of the LP are shown in Fig. 1a and b,
respectively. The outputs are a coarse approximation c
and a difference d between the original signal and the
prediction. The process can be iterated by decomposing
the coarse version repeatedly

Directional Filter Banks (DFB):  We introduced a 2-D
directional filter bank (DFB) that can be maximally
decimated while achieving perfect reconstruction. The
DFB is efficiently implemented via an l-level tree
structured decomposition that leads to 2l sub bands with
wedge-shaped frequency partition as shown in Fig. 2.

The original construction of the DFB in involves
modulating the input signal and using diamond-shaped
filters. Furthermore, to obtain the desired frequency
partition, an involved tree expanding rule has to be
followed. As a result, the frequency regions for the
resulting sub bands do not follow a simple ordering as
shown in Fig. 2 based on the channel indices. The new
DFB avoids the modulation of the input image and has a
simpler rule for expanding the decomposition tree. We
focus on the analysis side of the DFB since the synthesis
is exactly symmetric. Intuitively, the wedge-shaped
frequency partition of the DFB is realized by an
appropriate combination of directional frequency splitting
by the fan QFB’s and the “rotation” operations done by
resampling. To obtain a four directional frequency
partitioning, the first two decomposition levels of the
DFB are given in Fig. 3. We chose the sampling matrices

(a)

(b)
Fig. 1: Laplacian pyramid scheme (a) Analysis (b) Synthesis

Fig. 2: Frequency portioning obtained with NSCT

Fig. 3: The first two levels of the DFB. At each level, QFB’s
with fan filters are used. The black regions represent the
ideal frequency supports of the filters

in the first and second level to be Q0 and Q1, respectively,
so that the overall sampling after two levels is Q0Q1 = 2 A
I2, or down sampling by two in each dimension.

Directional Filter Bank (DFB): So the contourlet allows
form any number of DFB decomposition levels lj to be
applied at each LP level j and then can realize the
property of anisotropy scaling. Figure 4 shows a
multiscale and directional decomposition using a
combination of a LP and a DFB. Band pass images from
the LP are fed into a DFB so that directional information
can be captured. The scheme can be iterated on the coarse
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Fig. 4: The nonsubsampled contourlet 

image. The combined result is a double iterated filter bank
structure, named contourlet filter bank, which
decomposes images into directional sub bands at multiple
scales.

An effective transform captures the essence of a
given signal or a family of signals with few basis
functions. The set of basis functions completely
characterizes the transform and this set can be redundant
or not, depending on whether the basis functions are
linear dependent. By allowing redundancy, it is possible
to enrich the set of basis functions so that the
representation is more efficient in capturing some signal
behavior. In addition, redundant representations are
generally more flexible and easier to design. In
applications such as denoising, enhancement, and contour
detection, a redundant representation can significantly
outperform a no redundant one. 

Due to down sampling and up sampling, the
contourlet transform is shift-variant and the lack of shift
invariance causes pseudo-Gibbs phenomena around
singularities. To achieve the shift-invariance, the
nonsubsampled contourlet transform is applied which
built upon nonsubsampled pyramids and Nonsubsampled
DFB. Compare with the common contourlet transform,
the NSCT has such advantage as follows. First each
subband has the same size, so it is easier to gain the
relationship among the sub-bands. Second the resolution
can be kept since the original data is not decimated, at the
same time the contourlet coefficients has more redundant
information which helps to distinguish the noise from
feature.

CONSTRUCTION OF NSCT

Figure 5a displays an overview of the proposed
NSCT. The structure consists in a bank of filters that
splits the 2-D frequency plane in the subbands illustrated
in Fig. 5b. Our proposed transform can thus be divided
into two shift-invariant parts: 
C A nonsubsampled pyramid structure that ensures the

multiscale property

C A nonsubsampled DFB structure that gives
directionality

Nonsubsampled Pyramid (NSP): The multiscale
property of the NSCT is obtained from a shift-invariant
filtering structure that achieves subband decomposition
similar to that of the Laplacian pyramid. This is achieved
by using two-channel nonsubsampled 2-D filter banks.
Fig.6 illustrates the proposed Nonsubsampled Pyramid
(NSP) decomposition with J = 3 stages. Such expansion
is conceptually similar to the one dimensional (1-D)
NSWT computed with the Matlab and has J+1
redundancy, where J denotes the number of
decomposition stages. The ideal pass band support of the
low-pass filter at the j th stage is the region [-(B/2j),
(B/2j)] 2. Accordingly, the ideal support of the equivalent
high-pass filter is the complement of the low-pass, i.e., the
region [-(B/2j-1), (B/2j-1)]2/ [-(B/2j), (B/2j)]2. The filters for
subsequent stages are obtained by upsampling the filters
of the first stage. This gives the multiscale property
without the need for additional filter design. The proposed
structure is thus different from the separable NSWT. In
particular, one band pass image is produced at each stage
resulting in J+1 redundancy. By contrast, the NSWT
produces three directional images at each stage, resulting
in 3J+1 redundancy. The 2-D pyramid is obtained with a
similar structure. Specifically, the NSFB is built from
low-pass filter H0 (Z). One then set H1 (Z) = 1-H0 (Z), and
the corresponding synthesis filters G0 (Z) = G0 (Z) = 1. A
similar decomposition can be obtained by removing the
down samplers and upsamplers in the Laplacian pyramid
and then upsampling the filters accordingly. Those perfect
reconstruction systems can be seen as a particular case of
our more general structure. The advantage of our
construction is that it is general and as a result, better
filters can be obtained. 

Nonsubsampled Directional Filter Bank (NSDFB): The
directional filter bank is constructed by combining
critically-sampled two-channel fan filter banks and
resampling operations. The result is a tree-structured filter
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(a) (b)
Fig. 5: Nonsubsampled contourlet transform. (a) NSFB structure that implements the NSCT; (b) Idealized frequency partitioning

obtained with the proposed structure

(a) (b)
Fig. 6: Proposed nonsubsampled pyramid is a 2-D multiresolution expansion similar to the 1-D NSWT. (a) Three-stage pyramid

decomposition. The lighter gray regions denote the aliasing caused by upsampling; (b) Subbands on the 2-D frequency plane.

(a) (b)

Fig. 7: Four-channel nonsubsampled directional filter bank constructed with two-channel fan filter banks. (a) Filtering structure; (b)
Corresponding frequency decomposition

bank that splits the 2-D frequency plane into directional
wedges. A shift-invariant directional expansion is
obtained with a nonsubsampled DFB (NSDFB). The
NSDFB is constructed by eliminating the down samplers
and up samplers in the DFB. This is done by switching off
the down samplers/ up samplers in each two-channel filter

bank in the DFB tree structure and up sampling the filters
accordingly. This result in a tree composed of two-
channel NSFBs. Figure 7 illustrates four channel
decomposition. Note that in the second level, the up
sampled fan filtersUi (ZQ), i = 0, 1 have checker-board
frequency support, and when combined with the filters in
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(a) (b)
Fig. 8: Need for upsampling in the NSCT. (a) With no upsampling, the high pass at higher scales will be filtered by the portion of

the directional filter that has “bad” response; (b) Upsampling ensures that filtering is done in the “good” region

the first level give the four directional frequency
decomposition shown in Fig. 7. The synthesis filter bank
is obtained similarly. Just like the critically sampled
directional filter bank, all filter banks in the
nonsubsampled directional filter bank tree structure are
obtained from a single NSFB with fan filters. Moreover,
each filter bank in the NSDFB tree has the same
computational complexity as that of the building-block
NSFB.

Combining the Nonsubsampled pyramid and
nonsubsampled directional filter bank in the NSCT: 
The NSCT is constructed by combining the NSP and the
NSDFB as shown in Fig. 5a. In constructing the NSCT,
care must be taken when applying the directional filters to
the coarser scales of the pyramid. Due to the tree-structure
nature of the NSDFB, the directional response at the
lower and upper frequencies suffers from aliasing which
can be a problem in the upper stages of the pyramid. This
is illustrated in Fig. 8a, where the pass band region of the
directional filter is labeled as “Good” or “Bad.” Thus, we
see that for coarser scales, the high-pass channel in effect
is filtered with the bad portion of the directional filter pass
band. This results in severe aliasing and in some observed
cases a considerable loss of directional resolution. 

We remedy this by judiciously upsampling the
NSDFB filters. Denote the k-th directional filter by UK
(z). Then for higher scales, we substitute UK (z2mI) for UK
(z) where m is chosen to ensure that the good part of the
response overlaps with the pyramid pass band. Figure 8b
illustrates a typical example. Note that this modification
preserves perfect reconstruction. In typical five-scale
decomposition, we up sample by 2I the NSDFB filters of
the last two stages. Filtering with the upsampled filters
does not increase computational complexity. Specifically,
for a given sampling matrix and a 2-D filter H (z), to
obtain the output y (n) resulting from filtering x(n)  with
H(zs), we use the convolution formula:

Y[n] = E h[k]x [n-sk]        

This is the result of Matlab. Therefore, each filter in
the NSDFB tree has the same complexity as that of the
building-block fan NSFB. Likewise, each filtering stage
of the NSP has the same complexity as that incurred by
the first stage. Thus, the complexity of the NSCT is
dictated by the complexity of the building- lock NSFBs.
If each NSFB in both NSP and NSDFB requires L
operations per output sample, then for an image of N
pixels the NSCT requires about BNL operations where B
denotes the number of subbands. For instance, if L = 32,
a typical decomposition with four pyramid levels, 16
directions in the two finer scales, and eight directions in
the two coarser scales would require a total of 1536
operations per image pixel.

The modified method of NSCT on image denoises:
Since the NSCT can decompose image in multi-scale and
multi-direction. We know that the edge can be kept best
when the anisotropic filter’s long axes is in accord with
the edge, and with the angle between the edge and the
anisotropic filter’s long axes becomes filter’s long axes is
placed at different orientations and which resulting in the
many directional sub bands. In these directional sub
bands, every one represents a direction and the edge in
this direction has a largest gray scale comparing with
which in any other direction since the edge in this
direction is in accord with the filter’s long axes and the
largest gray scale is denoted as the largest contourlet
coefficients in corresponding position.

On the base of the idea that after the transforming of
contourlet, the image contourlet coefficients is larger than
the noise contourlet coefficients, we can compare the
contourlet coefficients at the same locations among the
directional sub bands, since the largest coefficients in the
same location represent the gray scale is largest and the
edge direction is in accord with the filter’s long axes and
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(a) (b)

(c) (d)

Fig. 9: Image denoising with the NSCT. Where the noisy
intensity is 20 (a) Original Lena image (b) Denoised
with the NSWT, PSNR = 32:40 dB (c) Denoised with
the curvelet transform and hard thresholding, PSNR =
32:52 dB. (d) Denoised with the NSCT, PSNR = 33:04
dB

which means the edge is kept best. Through choosing the
largest contourlet coefficients in each corresponding
location, we choose the best kept image edge and by
comparing the contourlet coefficients the small noise
coefficients are replaced by the large image edge, so it
removes the noise without the need to set a threshold

We summarize our denoising method using the NSCT in
the following algorithm:
C Compute the NSCT of the input image for N levels

and the direction of every level can be chosen as
needed. 

C As we know, the noises are in high frequency bands
which lie in the first two or three levels, so we just
need to adjust the contourlet coefficients in these first
two or three levels. For each level, we compare the
directional subband coefficients in the same location
and replace the small one with the large one. For
example, at the n level, where n = 1, 2, 3

d( j,k,n) = Cn
l (j,k) ; if   d( j,k,n) < Cn

l (j,k)
             = d (j, k, n); otherwise 

where l denotes the direction and l=1, 2…, L-1. And we
use the d (j, k, n) to replace the Cln (j, k) so all the
contourlet coefficients represent the best kept edge.

C Reconstruct the denoising image from the modified
NSCT coefficients, and then we can get a denoised
image.

Table 1: Show the denoising performance of the NSCT
Comparison to other transform
-------------------------------------------------------------------------

Lena MODIFIED
F Noisy NSWT CURVELET CT NSCT
10 28.13 35.26 35.17 32.91 35.69
20 22.13 32.40 32.52 29.30 33.04
30 18.63 30.66 31.10 28.01 31.05
40 16.13 28.37 29.14 26.85 30.10
50 14.20 27.41 28.16 25.87 29.10

NUMERICAL EXPERIMENTS

We compare the denoising results by the proposed
method with modified NSCT. In this paper we choose a
Lena image to satisfy our method. Figure 9 shows our
results. Figure 9a represents the original Lena image.
Figure 9b represents the denoised image using NSWT
with PSNT 32.40dB. Figure 9c shows denoised image
using with PSNR 32.52 dB. Figure 9d shows result of our
approach. From these figures we can show that NSCT has
more efficient. And result our approach has less noise and
increase its PSNR values. Several noise images are tested
to improve the effect and results are listed in Table1. 
                  

CONCLUSION

In this study we have developed a fully shift-invariant
version of the contourlet transform, the NSCT. The design
of the NSCT is reduced to the design of a nonsubsampled
pyramid filter bank and a nonsubsampled fan filter bank.
We exploit this new less stringent filter-design problem
using approach, thus dispensing with the need for 2-D
factorization. We also developed the 2-D NSFB. This
structure, when coupled with the filters designed via
mapping, provides a very efficient implementation that
under some additional conditions can be reduced to 1-D
filtering operations. Applications of our proposed
transform in image denoising. In denoising, we studied
the performance of the NSCT when coupled with a hard
thresholding, soft thresholding estimator. For hard
thresholding; our results indicate that the NSCT improves
the better performance than competing transform such as
the existed NSWT and curvelets. Concurrently, our results
are competitive to other denoising methods. In particular,
our results show that a fairly simple estimator in the
NSCT domain yields comparable performance to state-of-
the-art denoising methods that are more sophisticated and
complex. In image denoising, the results obtained with the
NSCT are superior to those of the NSWT both visually
and with respect to objective measurements. 
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