Properties of T_δ-spaces and pairwise T_δ-spaces

D. Narasimhan
Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam-612001, India

Abstract: The separation axioms play an important role in the application of topological spaces. The concepts of T_δ-spaces and pairwise T_δ-spaces are introduced and studied by Chandrasekhar Rao and Narasimhan (2006). The aim of this study is to continue the study of some characterizations of T_δ-spaces and pairwise T_δ-spaces in topological and bitopological spaces.

Keywords: T_δ-space, Pairwise T_δ-space, pairwise gT_δ-space, pairwise $\delta g_{\alpha \delta}$-space, pairwise αg_{γ}-space, T_δ-space, gT_δ-space.

INTRODUCTION

Levine (1963, 1970) introduced semi open sets and g-closed sets. Njastad (1965) introduced α-open sets. Maki et al. (1993a,b) introduced α g-closed sets. Bhattacharyya and Lahiri (1987), Arya and Nour (1988), Dontchev (1995), Dontchev and Ganster (1996), Gnanambal (1997) and Chandrasekhar Rao and Joseph (2000) investigated g_{α}-closed sets, g_{δ}-closed sets, respectively. Maki et al. (1993) introduced T_{α}, T_{δ} and $T_{\alpha \delta}$ spaces respectively. Chandrasekhar Rao and Thangavelu (2003) studied complemented spaces. Veera Kumar (2000, 2002, 2006a,b) introduced $T_{\alpha \delta}, T_{\delta}, T_{\alpha \delta}$ spaces. Chandrasekhar Rao and Narasimhan (2007, 2009) introduced T_δ-spaces.

Meanwhile, Kelly (1963) introduced the concept of bitopological spaces by using quasi metric space as a natural structure. Further work in this area were done by Fletcher (1965), Lane (1967), who introduced pairwise regularity independently. The concept of pairwise T_γ (pairwise semi Hausdorff) was introduced by Kim (1968).

The concept of pairwise T_γ-space was initiated by Sunder Lal and Gupta (1999) and they classified some of pairwise T_γ-axioms by affixing strong, weak, minimally and almost. The $\alpha, \beta, \delta, \gamma$ closed sets were introduced by Sheik and Sundaram (2004). Rajamani and Vishwanthan (2005) introduced α g_{δ}-closed sets and defined new spaces known as $T_\gamma, T_\delta, T_\alpha, T_{\alpha \delta}$-spaces and investigated some of their properties.

The concept of pairwise complemented spaces (2006) and T_δ-spaces are introduced and studied by Chandrasekhar Rao and Narasimhan (2008). The aim of this paper is to continue the study of some characterizations of T_δ-spaces and pairwise T_δ-spaces in topological and bitopological spaces.

PRELIMINARIES

Let (X, τ) or simply X denote a topological space. For any subset $A \subseteq X$, the closure [resp. δ-closure, α-closure] of a subset A of a space (X, τ) is the intersection of all closed [resp. δ-closed, α-closed] sets that contain A and is denoted by $cl(A)$ [resp. $cl_\delta(A), cl_\alpha(A)$]. We shall require the following known definitions.

Definition: A set A of a topological space (X, τ) is called

- **Semi open** if there exists an open set U such that $U \subseteq A \subseteq cl(U)$
- **Semi closed** if $X-A$ is semi open
- **Generalized closed** (g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
• Generalized semi open (gs-open) if \(F \subseteq \text{ints}(A) \) whenever \(F \subseteq A \) and \(F \) is closed in \(X \)

• Generalized semi closed (gs-closed) if \(X - A \) is gs-open,

• Semi star generalized closed (s'g-closed) if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi open in \(X \)

• \(\alpha \)-open if \(A \subseteq \text{int} \{ \text{cl}(A) \} \}

• \(\alpha \)-closed if \(\text{cl} \{ \text{int}(A) \} \subseteq A \)

• \(\alpha \) gs-closed if \(\alpha \text{ cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \(X \)

• \(\alpha \) gs-open if \(\alpha \text{ cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \(X \)

PROPERTIES OF \(T_\varsigma \)-SPACES

A topological space \((X, \tau)\) is called \(T_\varsigma \)-space if every \(s'g \)-closed set is closed in \(X \). Let \(X = \{a, b, c\}, \tau = \{\varnothing, X, \{a\}\} \). Then \(s'g \)-closed sets in \(X \) are \(\varnothing, X, \{b, c\} \), which are closed in \(X \). Hence \((X, \tau)\) is \(T_\varsigma \)-space.

Theorem: If \((X, \tau)\) is a \(T_\varsigma \)-space and \(T_1^\Omega \)-space then \(X \) is a \(T_\varsigma \)-space.

Proof: Let \(A \) be \(s'g \)-closed in \(X \). Then \(A \) is \(s'g \)-closed. Since \(X \) is \(T_\varsigma \)-space, \(A \) is \(s'g \)-closed in \(X \). Since \(X \) is a \(T_1^\Omega \)-space, we have \(A \) is closed in \(X \). Hence \(X \) is a \(T_\varsigma \)-space.

Theorem: If \((X, \tau)\) is both \(\Omega \)-space and \(T_1^\Omega \)-space then \(X \) is a \(T_\varsigma \)-space.

Proof: Let \(A \) be \(s'g \)-closed in \(X \). Then \(A \) is \(s'g \)-closed. Since \(X \) is \(\Omega \)-space, \(A \) is \(s'g \)-closed in \(X \). Since \(X \) is a \(T_1^\Omega \)-space, we have \(A \) is closed in \(X \). Hence \(X \) is a \(T_\varsigma \)-space.

Theorem: Suppose \(X \) is a \(s'T_\varsigma \)-space and \(T_1^s \)-space then \(X \) is a \(T_\varsigma \)-space.

Proof: Let \(A \) be \(s'g \)-closed set. Then \(A \) is \(s'g \)-closed. Since \(X \) is a \(s' \)-space, \(A \) is \(s'g \)-closed. Since \(X \) is a \(T_\varsigma \)-space, we have \(A \) is closed in \(X \). Hence \(X \) is a \(T_\varsigma \)-space.

Theorem: Suppose \(X \) is a \(s'T_\varsigma \)-space and \(T_1^s \)-space then \(X \) is a \(T_\varsigma \)-space.

Proof: Let \(A \) be \(s'g \)-closed set. Then \(A \) is \(s'g \)-closed. Since \(X \) is a \(s' \)-space, \(A \) is \(s'g \)-closed. Since \(X \) is a \(T_\varsigma \)-space, we have \(A \) is closed in \(X \). Hence \(X \) is a \(T_\varsigma \)-space.

Theorem: Suppose \(X \) is a \(s' \)-space and \(T_1^s \)-space then \(X \) is a \(T_\varsigma \)-space.

Proof: Let \(A \) be \(s'g \)-closed set. Then \(A \) is \(s'g \)-closed. Since \(X \) is a \(s' \)-space, \(A \) is \(s'g \)-closed. Since \(X \) is a \(T_\varsigma \)-space, we have \(A \) is closed in \(X \). Hence \(X \) is a \(T_\varsigma \)-space.
Theorem: Suppose X is a τ_T-space and τ_T^g -space then X is a T_s-space.

Proof: Let A be a g-closed set. Then A is g-closed. Since X is a $T_{1\frac{1}{2}}$-space, we have A is g-closed. Since X is τ_T^g-space, we have A is closed. Hence, X is a T_s-space.

Theorem: Suppose X is a complimented space. If a subset A of X is δg-closed, then A is δg^* -closed.

Proof: Suppose X is a complimented space. Let A be a δg-closed set. Let $A \subseteq U$, U is semiopen in X. Since X is a complimented space, U is open in X. Since A is δg-closed, $cl_h (A) = U$. Hence A is δg^* -closed.

PROPERTIES OF PAIRWISE T_s-SPACES

First we recall some known definitions.

Definition:
A set A of a bitopological space (X, τ_1, τ_2) is called:

1. $\tau_1 \tau_2$-generalized closed if $\tau_2-ccl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X.
2. $\tau_1 \tau_2$-semi generalized closed if $\tau_2-scl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-semi open in X.
3. $\tau_1 \tau_2$-generalized semi closed if $\tau_2-gscl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X.
4. $\tau_1 \tau_2$-open if $A \subseteq \tau_1-int \{ \tau_2-cl \{ \tau_1-int (A) \} \}$.
5. $\tau_1 \tau_2$-α closed if $\tau_2-ccl \{ \tau_1-int \{ \tau_2-cl (A) \} \} = U$.
6. $\tau_1 \tau_2$-α gs closed if $\tau_2-ccl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open.
7. $\tau_1 \tau_2$-δg closed if $\tau_2-ccl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-semi open in X.
8. $\tau_1 \tau_2$-δg^* closed if $\tau_2-ccl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-δg open.
9. $\tau_1 \tau_2$-Ω closed if $\tau_2-ccl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-Ω open.
10. $\tau_1 \tau_2$-α gs closed if $\tau_2-scl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-α g open.
11. $\tau_1 \tau_2$-δg closed if $\tau_2-scl (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-δg open.
12. $\tau_1 \tau_2$-Ω closed if $\tau_2-scl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-Ω open.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise T_{sa}-space if every $\tau_1 \tau_2$-$s g$ closed set is τ_s-closed and every $\tau_1 \tau_2$-g closed set is $\tau_{s'}$-closed.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise T_{ga}-space if every $\tau_1 \tau_2$-$g s$ closed set is $\tau_{g'}$-closed and every $\tau_1 \tau_2$-s closed set is $\tau_{g''}$-closed.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise $T_{g a}$-space if every $\tau_1 \tau_2$-$s g$ closed set is $\tau_{g'}$-closed and every $\tau_1 \tau_2$-g closed set is $\tau_{g''}$-closed.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise T_{gs}-space if every $\tau_1 \tau_2$-$g s$ closed set is $\tau_{g'}$-closed and every $\tau_1 \tau_2$-s closed set is $\tau_{g''}$-closed.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise $T_{s g}$-space if every $\tau_1 \tau_2$-$s g$ closed set is $\tau_{s'}$-closed and every $\tau_1 \tau_2$-g closed set is $\tau_{s''}$-closed.

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise T_{ss}-space if every $\tau_1 \tau_2$-$s g$ closed set is $\tau_{ss'}$-closed and every $\tau_1 \tau_2$-g closed set is $\tau_{ss''}$-closed.

MAIN RESULTS

Definition: A bitopological space (X, τ_1, τ_2) is called a pairwise T_{sa}-space if every $\tau_1 \tau_2$-$s g$ closed set is $\tau_{s'}$-closed and every $\tau_1 \tau_2$-g closed set is $\tau_{s''}$-closed.

Example: Let $X = \{ a, b, c \}$, $\tau_1 = \{ \emptyset, X, \{ a \} \}$, $\tau_2 = \{ \emptyset, X, \{ a, c \} \}$. Then (X, τ_1, τ_2) is a pairwise T_{sa}-space.

The necessary and sufficient condition for a bitopological space to be a pairwise T_{sa}-space is obtained in the following theorem.

Theorem: A bitopological space (X, τ_1, τ_2) is a pairwise T_{sa}-space if and only if the singleton $\{ x \}$ is either τ_1-open or τ_2-τ_1-s-semi closed, $i, j = 1, 2$ and $i \neq j$.

Proof: Let X be a pairwise T_{sa}-space and suppose that $\{ x \}$ is not $\tau_{s'}$-semi closed. Then $X - \{ x \}$ is not $\tau_{s'}$-open. Consequently X is the only $\tau_{s'}$-open set containing the set $X - \{ x \}$. Therefore, $X - \{ x \}$ is $\tau_{s'}$-$s g$ closed in X. Since X is a pairwise T_{sa}-space, we have $X - \{ x \}$ is $\tau_{s'}$-closed in X. Consequently, $\{ x \}$ is $\tau_{s'}$-open in X.

1388
Conversely, suppose that \(\{x\} \) is either \(\tau_i \)-open or \(\tau_j \)-semi closed, \(i, j = 1, 2 \) and \(i \neq j \). Let \(A \) be a \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed set in \(X \). Obviously \(A \subset \tau_{1\delta} \text{cl} (A) \). Let \(x \in \tau_{1\delta} \text{cl} (A) \).

Case i: Suppose that \(\{x\} \) is \(\tau_i \)-open. Since \(x \in \tau_{1\delta} \text{cl} (A) \), we have \(x \in A \). Thus, \(\tau_{1\delta} \text{cl} (A) \subset A \).

Case ii: Suppose that \(\{x\} \) is \(\tau_i \)-semi closed and \(x \notin A \). Then \(\tau_{1\delta} \text{cl} (A) \setminus A \) contains the \(\tau_i \)-semi closed set \(\{x\} \). This is a contradiction to the fact that \(A \) is \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed in \(X \). Hence, \(x \in A \), implies that \(\tau_{1\delta} \text{cl} (A) \subset A \). Therefore, \(\tau_{1\delta} \text{cl} (A) = A \).

Similarly, we can prove every \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed set is \(\tau_i \)-closed. Hence \(X \) is a pairwise \(T_{1\delta} \)-space.

Theorem: If a bitopological space \((X, \tau_i, \tau_j)\) is pairwise \(T_{1\delta} \)-space and \((X, \tau_i, \tau_j)\) is \(\tau_i^{*} \), \(i = 1, 2 \), then \(X \) is a pairwise \(T_{1\delta} \)-space.

Proof: Let \(A \) be a \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed set in \(X \), \(i, j = 1, 2 \) and \(i \neq j \). Then \(A \) is a \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed set in \(X \). Since \(X \) is a pairwise \(T_{1\delta} \)-space, we have \(A \) is \(\tau_i \)-\(\tau_j \)-\(\delta \)-\(g \) closed in \(X \).

Thus, we have studied some more characterizations of \(T_{1\delta} \)-spaces in both unital and bitopological spaces. In addition, the necessary and sufficient condition for a bitopological space to be a pairwise \(T_{1\delta} \)-space is obtained.

CONCLUSION

Thus, we have studied some more characterizations of \(T_{1\delta} \)-spaces in both unital and bitopological spaces. In addition, the necessary and sufficient condition for a bitopological space to be a pairwise \(T_{1\delta} \)-space is obtained.

REFERENCES

