The Numerical Analysis of the Schemes of 1-Order Ordinary Differencial Equations

Li Hongxia School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, Zhejiang, China, 310018

Abstract: In this study, we will consider the numerical methods of 1-order differential equations, such as forward euler scheme, predict-correct scheme and the 4-order Runge-kutta scheme. The truncation errors of these schemes are analyzed theoretically and numerically in there. The error tables and the numerical experiments are also presented at the last.

Key words: Euler scheme, numerical analysis, ordinary differential equations, runge-kutta scheme

INTRODUCTION

In this study, the initial value problem of 1-ordinary differential Eq. (1) is considered (Hairer and wannerin, 1993; Hu and Tang, 2006).

$$\begin{cases} u = f(t, u), t_0 \le t \le T \\ u(t_0) = u_0 \end{cases}$$
(1)

We are going to analyze the truncation error of the forward-euler scheme, predict-correct scheme and the 4order Runge-kutta scheme theoretically or in numerically. The study is organized as following: The numerical schemes for the 1-ordered ordinary equations; numerical experiments; summary.

THE NUMERICAL SCHEMES OF THE 1-ORDERED ORDINARY EQUATIONS

In this section we will introduce the 3 schemes of the 1-ordered differential equations and analyze the truncation error of each scheme (Li *et al.*, 1999).

We divide the closed interval $[t_0, T]$ to nth subinterval and get some mesh points: t_0, t_1, t_2, t_n .

Then
$$h = \frac{T - t_o}{n}$$
, Let u_n to approximate the exact

solution of (1) $u^{(t)}$ at t_n .

Forward-Euler scheme:

$$\mathbf{U}_{n+1} = \mathbf{u}_n + \mathbf{h} \mathbf{f}(\mathbf{t}_n, \mathbf{u}_n) \tag{2}$$

The truncation error of forward-euler scheme: replacing the numerical solution u_n in (2) by the exact solution $u(t_n)$ then the difference of each side of Eq (2) is the truncation error of the scheme.

$$R = u(t_{n+1}) - u(t_n) - hf(t_n, (t_n))$$
(3)

The Taloy series of $u(t_{n+1})$ for t_n is written as:

$$u(t_{n+1}) = u(t_n) + hu(t_n) + \frac{h^2}{2}u''(t_n) + o(h^3)$$
(4)

Substituted (4) to (3) then we get:

$$R = u(t_n) + hu(t_n) + \frac{h^2}{2}u''(t_n) + o(h^3) - u(t_n)$$

- $hf(t_n, u(t_n)) = \frac{h^2}{2}u''(t_n) + O(h^3) = o(h^2)$ (5)

So the forward-euler scheme is a 1-order, s method.

Predict-correct scheme:

$$u_{n+1} = u_n + \frac{n}{2} \Big[f(t_n, u_n) + f(t_{n+1}, \tilde{u}_{n+1}) \Big]$$

$$\tilde{u}_{n+1} = u_n + h f(t_n, u_n)$$
(6)

We can also analyze the truncation error of predictcorrect scheme as that for the forward euler scheme.

$$R = -\frac{h^3}{12}u'(t_n) + o(h^4) = o(h^3)$$
(7)

So the predict-correct scheme is a 2-order, s method.

Published: January 15, 2012

Order Runge-Kutta scheme:

$$\begin{aligned} u_{n+1} &= u_n + \frac{h}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right) \\ k_1 &= f \left(t_n, u_n \right) \\ k_2 &= f \left(t_n + \frac{h}{2}, u_n + \frac{h}{2} k_1 \right) \\ k_3 &= f \left(t_n + \frac{h}{2}, u_n + \frac{h}{2} k_2 \right) \\ k_4 &= f \left(t_n + h, u_n + h k_3 \right) \end{aligned}$$
(8)

This scheme is also called Simposon method. The truncation-error of this scheme is:

$$\mathbf{R} = \mathbf{O}(\mathbf{h}^5) \tag{9}$$

So the scheme is 4-order method.

NUMERICAL EXPERIMENTS

In this section, we will show the differences of each scheme by numerical experiments. Example (Hu and Tang, 2006):

Fig. 1: Forward scheme where h = 0.1

Fig. 2: Forward scheme where h = 0.2

Fig. 3: Forward scheme where h = 0.5

Fig. 4: Forward scheme all together

Fig. 5: Predict-correct scheme where h = 0.1

Fig.6: Predict-correct scheme where h = 0.2

- **Case 1:** The numerical solutions of forward scheme. We will show the figures of forward scheme with different values of h.
- **Case 2:** The numerical solutions of predict-correct scheme.

Fig. 7: Predict-correct scheme where h = 0.5

Fig. 8: Predict-correct scheme all together

Fig. 9: 4-order Runge-kutta scheme where h = 0.1

Fig. 10: 4-order Runge-kutta scheme where h = 0.2

We will show the figures of predict-correct scheme with different values of h.

Fig. 11: 4-order Runge-kutta scheme where h = 0.5

Fig. 12: 4-order Runge-kutta scheme all together

Fig. 13: Forward-eulerl predict-correct; Runge-Kutta for h = 0.1

Table1: The truncation error of all schemes for h = 0.1

	Foward-euler	Prodict-correct	Runge-Kutta
0	0	0	0
0.2	0.02139	0.001403	2.76E-06
0.4	0.05183	0.003425	6.74E-06
0.6	0.06912	0.006271	1.23E-05
0.8	0.15194	0.010206	2.01E-05
1	0.22996	0.015574	3.07E-05

Table 2:	The truncation	error of forward scheme	for $h = 0.1; 0.2; 0.5$
h	h = 0.1	h = 0.2	h = 0.5
X = 1.0	0.12454	0.22996	0.46828

Case 3: The numerical solutions of 4-order Runge-Kuttascheme. We will show the figures of 4order Runge-Kutta scheme with different values of h.

Case 4: The numerical solutions of all schemes for h = 0.1

We can see from Table 2 and Fig. 1-12 that the samller h is the more exact numerical solution is for the same scheme.

We can also so from Table 1 and Fig. 13 the 4-order Runger-kutta scheme is most exact; the predict-correct scheme is more exact and the accuracy of the forward scheme is low.

CONCLUSION

In this study, we have analyzed the error of the numerical schemes for 1-ordered ordifferential equations. We also prensented the numerial approximations of some experiments to illustrate the difference of the scheme. At last, we get the conclusion that 4-orderd Runge-Kutta scheme is the highest resolution scheme, and the forwardeuler scheme is easy to implement.

ACKNOWLEDGMENT

This study is supported by China NSF Grant (No. 10871168).

REFERENCES

- Hairer, E. and G. Wannerin, 1993. Solving Ordinary Differential Equations I, Springer-Verlag Beilin. Heideberg.
- Hu, J. and H. Tang, 2006. Numerical Solution of Differential Equationss. (In Chinese): The Scientific Press.
- Li, L., C. Yu and Z. Zhu, 1999. Numerical Solution of Differential Equationss. (In Chinese): The Press of Fu Dan University.