Enhanced Wireless Network Ad Hoc Pattern

M. Kamalakannan and V. Khanaa
Bharath University, Chennai, India

Abstract: Early simulation experience with wireless ad hoc networks suggests that their capacity can be surprisingly low, due to the requirement that nodes forward each others’ packets. The achievable capacity depends on network size, traffic patterns and detailed local radio interactions. This study examines these factors alone and in combination, using simulation and analysis from first principles. Our results include both specific constants and general relationship Scaling helpful in understanding the limitations of wireless ad hoc networks. We examine interactions of the 802.11 MAC and ad hoc forwarding and the effect on capacity for several simple configurations and traffic patterns. While 802.11 discovers reasonably good schedules, we nonetheless observe capacities markedly less than optimal for very simple chain and lattice networks with very regular traffic patterns. We validate some simulation results with experiments. We also show that the traffic pattern determines whether an ad hoc network’s per node capacity will scale to large networks. In particular, we show that for total capacity to scale up with network size the average distance between source and destination nodes must remain small as the network grows. Nonlocal traffic patterns in which this average distance grows with the network size result in a rapid decrease of per node capacity.

Key words: Ad-Hoc network, authentication, network allocation route, optimization, security, wireless

INTRODUCTION

Ad hoc wireless networks promise convenient infrastructure-free communication. We expect the total capacity of such networks to grow with the area they cover, due to spatial re-use of the spectrum: nodes sufficiently far apart can transmit concurrently. However, ad hoc routing requires that nodes cooperate to forward each others’ packets through the network. This means that the throughput available to each single node’s applications is limited not only by the raw channel capacity, but also by the forwarding load imposed by distant nodes. This effect could seriously limit the usefulness of ad hoc routing.

In this study, we focus our analysis and simulations on static ad hoc networks. Note that in most mobility scenarios, nodes do not move significant distances during packet transit times. Thus, for capacity analysis, we can view mobile networks as effectively static.

The following simplification of an analysis by Kumar. (1998) estimates the per node capacity to be expected in an ad hoc network. Radios that are sufficiently distant can transmit concurrently; the total amount of data that can be simultaneously transmitted for one hop increases linearly with the total area of the ad hoc network. If node density is constant, this means that the total one-hop capacity is o, where n is the total number of nodes. However, as the network grows larger, the number of hops between each source and destination may also grow larger, depending on communication patterns. One might expect the average path length to grow with the spatial diameter of the network, or equivalently the square root of the area, or O. With this assumption, the total end-to-end capacity is roughly $O n$, and the end-to-end throughput available to each node is

$$O^I$$

Gupta and Kumar (1998) also demonstrated the existence of a global scheduling scheme achieving (1) n log n for a uniform random network with random traffic pattern.

It is not encouraging that the throughput available to each node approaches zero as the number of nodes increases. Furthermore, this simple analysis omits the constant factors which determine whether any particular networks will have a useful per node throughput.

A common observation in analyses of ad hoc routing protocols is that capacity is the limiting factor; that is, the symptom of failure under stress is congestion losses. A high volume of routing queries or updates, caused by mobility or a large number of nodes, causes congestion; the result is not just dropped data packets, but also lost routing information and consequent misrouting of data. Evaluations of ad hoc protocols tend to use very low data rates in order to avoid running out of capacity. For example, Das et al. (2000) observe that in a simulated network of 100 nodes, each with a 2 Mbps radio, the
throughput available to each node is on the order of a few kilobits per second. They report that their network has an area large enough that 7 transmissions may proceed concurrently without interfering; this means that the per node throughput actually available was about 50 times smaller than the apparent capacity. The loads used in other ad hoc routing studies are consonant with this; for example, both Karp and Kung and Dosh et al. (1998) limit the total offered load to about 60 Kbps despite using 2 Mbps radios. The interaction of ad hoc routing and capacity suggests that any evaluation of an ad hoc network requires an understanding of network capacity.

While the above discussion suggests that ad hoc networks are fundamentally nonscalable, it may not reflect reality. The studies cited above assume a random communication pattern: each pair of nodes is equally likely to communicate, so that packet path lengths grow along with the physical diameter of the network. This assumption is probably reasonable for small networks. However, users in large networks may communicate mostly with physically nearby nodes: their neighbors in the same lecture hall of a university, or on the same floor of a building, or in the same company in a city. If local communication predominates, path lengths could remain nearly constant as the network grows, leading to constant per node available throughput. This study makes two contributions to the understanding of practical ad hoc network scalability. At a detailed level, it examines the interaction between ad hoc forwarding and the 802.11 channel access protocol in order to estimate the constants in Eq. (1). At a system level, it examines the impact of communication patterns on the form of Eq. (1), and determines some conditions under which per node capacity is likely to scale to large networks. These results are likely to be useful both in understanding and in the deployment of real ad hoc networks.

802.11 BACKGROUND

This study assumes use of the IEEE 802.11 Distributed Coordination Function, the access method used in ad hoc mode. To reduce collisions caused by hidden terminals in (Bharghava et al., 1994) the network,

802.11 uses a four-way RTS/CTS/Data/Ack exchange. In brief, a node that wishes to send a data packet first sends an RTS (request to send) packet to the destination. If the destination believes the network is idle, it responds with a CTS (clear to send). The sender then transmits the data packet and waits for an ACK (acknowledgment) from the receiver. If a node overhears an RTS or CTS, it knows the medium will be busy for some time, and avoids initiating new transmissions or sending any CTS packets.

802.11 RTS and CTS packets include the amount of time the medium will be busy for the remainder of the exchange. Each node uses these times to update its “Network Allocation Vector” (NAV). The NAV value indicates the amount of time remaining before the network will become available. Upon successful receipt of an RTS frame not addressed to itself, a node updates its NAV to the maximum of the time carried in the RTS frame and its current NAV value. Upon receiving an RTS addressed to itself, a node returns a CTS frame only if its NAV value is zero, otherwise no CTS is sent. Hence, a sender will see no CTS if its RTS packet has collided with another transmission at the receiver, or if the receiver’s NAV indicates that the network is not available. A node times out and resends the RTS if it receives no CTS.

802.11 doubles its backoff window each time a timeout occurs; it resets the backoff to a minimum value after a packet is transmitted successfully or is dropped after reaching maximum retry limit.

MAC interactions: This section presents simulations of scenarios that illustrate the detailed interaction between ad hoc forwarding and the 802.11 MAC. The section starts with simple scenarios and works towards complex situations that are more likely to be seen.

The simulator used is the ns Kevin and Kannan (1997) simulator with the CMU wireless extensions Kuma. (1998) whose parameters are tuned to model the Lucent Wavelan card at a 2 Mbps data rate.

Note that one node can interfere with packet reception at another node even when they are too far apart for successful transmission. At long enough distances the interference becomes negligible. In the simulator, the effective transmission range is 250 m, and the interfering range is about 550 m.

Most of the simulations involve stations separated by 200 m, just under the transmission range. This separation is likely to yield close to the maximum capacity possible, since with higher node density the capacity must be divided up among more nodes.

All simulated data packets are preceded by an RTS/CTS exchange, regardless of size. Each data point is an average of 5 runs lasting 300 sec of simulated time. Nodes are stationary.

Single cell capacity: As a baseline for comparison with more complex situations, Fig. 1 shows the simulated total capacity of a single cell (200 m by 200 m) network as the number of nodes increases. Each node is a packet source, sending as fast as 802.11 allows, each packet to a randomly selected destination. The 2-node scenario has the highest capacity, since it has the minimum contention. Figure 1 also shows that the RTS/CTS/ACK exchange adds significant overhead. An RTS packet is 40 bytes, CTS and ACK packets are 39 bytes, and the MAC header of a data packet is 47 bytes long.
Capacity of a chain of nodes: In an ad hoc network, packets travel along a chain of intermediate nodes toward the destinations. The successive packets of a single greedy connection interfere with each other as they move down the chain, forcing contention in the MAC protocol. This subsection examines the realizable capacity of a single chain of nodes where packets originate at the first node and are forwarded to the last node in the chain.

The following analysis shows that an ideal MAC protocol could achieve a chain utilization as high as. Consider the network shown in Fig. 2, where node 1 is the source and 6 is the sink. Assume for the moment that the radios of nodes that are not neighbors do not interfere with each other. Nodes 1 and 2 cannot transmit at the same time because node 2 cannot receive and transmit simultaneously. Nodes 1 and 3 cannot transmit at the same time because node 2 cannot correctly hear 1 if 3 is sending. Nodes 1 and 4 can, with the above assumption, send at the same time. This leads to a channel utilization of 1.

However, if one assumes that radios can interfere with each other beyond the range at which they can communicate successfully, the situation is worse. For example, 802.11 nodes in the ns simulator can correctly receive packets from 250 m away, but can interfere at 550 m. Hence, in Fig. 2, node 4’s packet transmissions will interfere with RTS packets sent from 1 to 2, preventing 2 from correctly receiving node 1’s RTS transmissions or sending the corresponding CTS. Therefore, we expect the maximum utilization of a chain of ad hoc nodes in the ns simulator to be. Figure 3 shows simulation results for a single chain. For this set of simulations, each node is 200 m away from its immediate neighbors. Node 1 is the source of data traffic and the last node in the chain is the traffic sink. Node 1 sends data as fast as its MAC allows.

As the chains get longer, they approach a utilization of 0.25 Mbps for 1500-byte packets, or of the maximum of 1.7 Mbps. This is substantially less than the predicted.

We conducted a set of simulations in which the source (node 1) sent 1500-byte packets at various controlled rates. Figure 4 shows the results. The maximum throughput is achieved at 0.41 Mbps, which is very close. Speed of 0.425 Mbps. However, as the offered load increases (even a little) beyond this optimum, the chain throughput drops sharply. This shows that the 802.11 MAC is capable of sending at the optimal rate, but does not discover the optimum schedule of transmissions on its own.

802.11 fails to achieve the optimum chain schedule because an 802.11 node’s ability to send is affected by the amount of competition it experiences. For example, node in a 7-node chain experiences interference from 5 other nodes, while node 1 is interfered with by three other nodes. This means that node 1 could actually inject more

Thus the data throughput is at most greater. Also accounted for this limit is reduced to 1.7 Mbps.
packets into the chain than the subsequent nodes can forward, as detailed in Fig. 5. These packets are eventually dropped at nodes 2 and 3. The time node 1 spends sending those extra packets decreases delivered throughput since it prevents trans-missions from subsequent nodes. This unfairness was also noted by (Thyagarajan et al., 2000) their proposed solution, which tries to give each singlehop flow equal capacity allocation, might raise the efficiency of ad hoc chain forwarding configurations.

In addition to allocating bandwidth unevenly, 802.11 backoff works badly with ad hoc forwarding. Consider the case when node 4 is in the middle of transmitting a data packet to node 5 and node 1 attempts to initiate transmission to 2 (Fig. 2). Because of two-hop interference, node 1’s RTS packet will be corrupted by node 4’s transmission and node 2 will not respond with a CTS. Since node 1 does not know about node 4’s transmission, it will back off and retry. Hence for the duration of node 4’s transmission all transmission attempts from node 1 will fail, causing a dramatic increase in its backoff window under 802.11’s binary exponential backoff scheme. Therefore when node 4 is done with its transmission and has nothing more to send, node 1 may remain backed off during a time in which it could be transmitting. Figure 5 shows the percent of time spent in wasted backoff for each node along a 7-node chain. We consider a certain period of backoff to be wasted when no node that might cause interference is transmitting. As we can see, even though node 3 is receiving packets from node 2 at a rate (0.35 Mbps) already much less than the optimum rate that can be supported (0.425 Mbps), node 3 is unable to maintain the same rate as node 2, while at the same time wasting time backing off.

To summarize, an ideal ad hoc forwarding chain should be able to achieve of the throughput that a single-hop transmission can achieve. Simulation shows that the 802.11 MAC protocol

VERIFICATION OF CHAIN RESULTS

As a rough check on the simulations presented above for ad hoc chains, Fig. 6 shows results measured on real hardware. The hardware was configured to mimic the simulation parameters used in Fig. 3 as closely as possible. The radios involved are Cisco 340 (Aironet PC4800) cards operated in ad hoc mode at 2 Mbps. Each
node was placed as far from its predecessor as possible without sacrificing lowloss communication. Only 6 nodes were available. The fact that Fig. 6 matches Fig. 3 fairly closely suggests that the simulations do not contain major errors; for example, the average difference for the 1500-byte packet throughput is only 6.

Capacity of a regular lattice network: The previous analysis showed how the successive nodes in a single forwarding chain interfere with each other. To gauge the effectiveness of 802.11 channel allocation, we consider a lattice network. Two types of traffic pattern will be discussed: horizontal traffic flows moving from the left edge to the right edge and crossed horizontal and vertical flows (Fig. 7). The regularity of the net-work and traffic patterns allows estimation of nearly optimal global scheduling schemes to compare with 802.11’s actual performance.

Consider the scenario in the left-hand half of Fig. 7. Here a lattice of nodes has parallel traffic flows moving from the left edge to the right edge. Assume each node is 200 m from its east, west, north, and south radio neighbors. To account for interflow interference, when only every third chain is active, the active chains are separated vertically by more than the 550 m interference limit. This implies that every third chain can operate without interchain interference, potentially delivering the of channel capacity derived in Section 3.2. Thus each flow in the lattice network may be expected to achieve a throughput of the channel capacity. For 1500-byte packets, this is 1.7 or 0.14 Mbps.

Figure 8 shows the per flow throughput for a variety of lattice sizes.

The number of chains is the same as the number of nodes in each chain, producing square lattices. The total number of nodes is shown on the X axis. As the network grows large, the per flow throughput for 1500-byte packets settles at about 0.1 Mbps, some-what less than our estimated value. The inefficiencies of 802.11 we have found in the chain scenarios are still present: nodes in the beginning of the chain experience less contention and hence send more packets that could handled by nodes in the later part of the chain. There are also wasted backoff periods for the same reason as explained in the chain scenario.

Cross traffic in a lattice: Now consider a slightly more general situation, in which both vertical and horizontal flows are present, as in the right-hand diagram in Fig. 7. All traffic originates at the top and left edges of the network, and is forwarded downward or rightward to the opposite edges; the middle nodes do not originate any traffic.

In this case, we should not expect the overall capacity of the network to decrease significantly. In theory we could impose a schedule on the entire network in which all the vertical flows operate in one time cycle, and all the horizontal flows in the next. This would cause each flow to see half as much throughput as in the previous section, but since there are twice as many flows, the overall network throughput is the same. Of course, 802.11 may not schedule packets this efficiently in practice. For example, the fact that each node has a single queue means that a node may lose a chance to send a packet vertically while the packet at the head of the queue is waiting for contention in the horizontal direction. Figure 9 shows the average per flow throughput obtained by simulation, which is slightly less than the predicted value of half of the per flow throughput for lattice networks without cross traffic. We find that the average percentage of time spent in wasted backoff is 2.23 as opposed to 0.75 in the 8 by 8 lattice network without cross traffic. We consider a
Random traffic in a random layout: As a final step toward evaluating realistic scenarios, let us relax the backoff period to be wasteful if any packet in the queue (not necessarily at the head) might be transmitted successfully during that time. The increased wasted backoff reflects head-of-queue blocking.

As an alternate analysis, the efficiency of the 802.11 MAC under different topologies and traffic patterns can be evaluated by measuring total one-hop network throughput. Figure 10 illustrates the simulated total throughput obtained in various 2-dimensional network configurations. The X axis indicates the physical area of the network; the number of nodes is proportional to the area. The axis indicates total one-hop throughput measured as the sum total of bits of data sent by all nodes per second, including forwarded bits. The simulations use 1500-byte packets. Note that the total one-hop capacity scales similarly in all three situations.

The axis indicates the one-hop throughput of the network with 1500-byte packets. One-hop throughput measurements count all radio transmissions for data packets that successfully arrive at their final destinations, including packets forwarded by intermediate nodes. One-hop throughput is similar in concept to the bit-meter/second unit proposed in . Figure 10 shows that one-hop throughput scales roughly linearly with the area of network. The actual slope of the curve depends on how effectively 802.11 schedules packet transmissions. The points marked “horizontal” reflect the network and traffic configuration described in the previous subsection. The points marked “horizontal and vertical” show that the addition of vertical traffic decreases the total one-hop capacity. However, the fact that it is just a slight constant factor decrease implies that 802.11 does find a reasonably efficient schedule for interleaving the two directions.

Random traffic in a random layout: As a final step toward evaluating realistic scenarios, let us relax the “random” points in Fig. 10 show how the simulated capacity of a random network with random traffic grows with increasing network size. The random network has somewhat less capacity than the lattices, though not dramatically less; the differences result from the factors mentioned above.

Scaling Ad Hoc networks: The previous section presented a detailed analysis of the ability of each localized piece of an ad hoc network to forward traffic. This section takes a larger view, comparing a large network’s total capacity with the load that the network’s nodes might impose. The goal is to estimate the useful bandwidth that each node can expect for its own traffic. The analysis is based on scaling relationships: load increases with the number of nodes, load also increases with the distance over which each node wishes to communicate, and total one-hop capacity increases with the physical area covered by a network.

The total one-hop capacity of the network is determined by the amount of spatial reuse possible in the network. Given constant radio range, spatial reuse is proportional to the physical area of the network. Assuming that the node density is uniform, the physical area of the network, A, is related to the total number of nodes by . Therefore, the total one-hop capacity of the network, C, should be proportional to the area for some constant k. Figure 10 shows that k is approximately 1 Mbps/km2 for random network simulations.

Assume each node originates packets at a rate of. Further, assume the traffic pattern in the network has an expected physical path length of L from the source to the destination. This means that the minimum number of hops required to deliver a packet is L where r is the fixed radio transmission range. Hence the total one-hop capacity in the network required to send and forward packets both the regularity of node placement and the regularity of traffic obeys Combining this with we have patterns. Instead, assume that nodes are placed uniformly at random on a square universe, and that every node sends packets, each packet to a different randomly chosen.

Adjusted to keep the total drop rate below 20. There is no routing protocol present: each packet is forwarded along a precomputed shortest path. The average node density is 75 nodes/km2. This density is 3 times higher than in the lattices, but is required to guarantee connectivity despite an irregular layout. The extra nodes do not increase capacity, since more nodes in the same area can only interfere with each other.

We expect the total capacity of the random network, as measured by one-hop throughput, to be similar to that of a lattice with horizontal and vertical traffic. In the random network scenario, packets are sent along paths with a wide distribution of lengths, but the use of one-hop throughput as the capacity metric accounts for path
length. This makes it possible to compare the capacity of random networks with that of lattice networks.

Irregular placement leads to some areas of the universe having no nodes. This wastes potential spatial diversity and thus lowers capacity. Random choice of destinations also causes a tendency for more packets to be routed through the center of the network than along the edges. This traffic concentration means that the network as a whole is limited by the capacity of the center. The lattice configurations, in contrast, had traffic patterns that used all parts of the network evenly.

Random traffic pattern: The most common traffic pattern used in simulations of ad hoc networks has been random traffic: each source node initiates packets to randomly chosen destinations in the network. Below we show the expected path length \(L \) for such traffic.

Since a node chooses every node as its destination with equal probability, the probability that a node chooses a destination within \(x \) distance away is proportional to the number of nodes in the disc with center and radius \(x \) (We assume at the center of the network, hence there is no need to worry about boundary effect. The expected path length calculated as such will be smaller). When node density is constant, the number of nodes is proportional to the area of the disc with radius \(x \), and thus proportional to \(x^2 \); this is the rapidly than \(2 \), then the expected path length approaches a constant as the network size grows. This means per node capacity stays roughly constant.

When \(2 \), the expected path length scales as \(O \log n \). So per node capacity in the network is \(O 1 \log n \). This result is relevant to the Grid Location Service (GLS) whose location update traffic pattern is engineered to follow an \(2 \) power law.

When \(1 \) the exponent on is positive. So we can set to 0 and this yields the interesting observation that any power law traffic pattern with \(1 \) scales basically the same way with network size as random traffic patterns. Thus a random traffic pattern is the most pessimistic traffic pattern one might assume for ad hoc networks. All of these traffic patterns will cause the per node capacity to decrease rapidly with network size.

As the power law distribution moves from a very local to a very distant destination selection, the capacity scaling moves from constant per node capacity to a degradation of capacity with network size.

This leaves some hope for ad hoc networks. Some examples of networks with predominantly local traffic patterns are LAN users, the telephone system, and caching systems in the Internet at large.

Related work: Gupta and Kumar (1998) show that the per node capacity in an \(n \)-node random ad hoc network is \(1n \log n \), using a geometric analysis. They also show a global scheduling scheme which achieves that bound. In their work, a random communication pattern is assumed. Our work extends theirs by further considering the effects of different traffic patterns on the scalability of per node capacity. We also examine how ad hoc forwarding interacts with the 802.11 MAC and show that the use of 802.11 instead of a global scheduling scheme does not seem to affect the asymptotic bound on per node capacity. (Timothy et al., 1996) considers limits on capacity imposed by aggregate interference from many senders spread over a large area, concluding that such networks are scalable. He points out that capacity can be increased with minimum energy routing, and proposes an efficient distributed channel-access technique. Our work, in contrast, focuses on the capacity likely to be available with the existing 802.11 channel access algorithm, which cannot easily support minimum energy routing. We also focus on capacity limits imposed by multi-hop traffic patterns rather than by aggregate interference.

We assume that nodes are stationary. Matthias and David (2001) consider ad hoc networks of mobile nodes, showing that long term per node throughput can stay constant in a network where node movement process is ergodic with a stationary distribution uniform over the network. The basic idea is for a source node to distribute packets to as many different nodes as possible; these nodes relay the packets to the final destination whenever they get close to the destination. Therefore, the expected path length remains constant.

However, this result depends critically on the movement model. Furthermore, the fixed throughput guarantee is achieved only over very long time frames. This result, nevertheless, suggests a way to take advantage of node movement when sending packets from applications that can tolerate long delays.

Some existing studies have focused on the fairness of 802.11 in the context of ad hoc forwarding. (Thyagarajan et al., 2000) propose an algorithm that gives each flow in the network a fair allocation of.

In addition to giving each flow its fair share, maximizes the total network capacity by giving more chances to flows whose transmissions cause less interference. The proposed algorithms might improve 802.11’s efficiency in ad hoc forwarding.

CONCLUSION

This paper examines the capacity of wireless ad hoc networks via simulations and analysis from first principles. In particular, it studies 802.11 MAC interactions with ad hoc forwarding, their effect on network capacity, and the scaling behavior of per node capacity as networks grow bigger.
The ideal capacity of a long chain of nodes in isolation is \(1\) of the raw channel bandwidth obtainable from the radio. The simulated chain capacity that the 802.11 MAC achieves with a greedy sender is about \(1\), because nodes early in the chain starve later nodes.

We find that, in general, 802.11 does a reasonable job of scheduling packet transmissions in ad hoc networks. 802.11 is more efficient for orderly local traffic patterns, such as a lattice network with only horizontal flows. 802.11 is also able to approach the theoretical maximum capacity of \(O(1/n)\) per node in a large random network of \(n\) nodes with random traffic.

We argue that the key factor deciding whether large ad hoc networks are feasible is the locality of traffic. We present specific criteria to distinguish traffic patterns that allow scalable capacity from those that do not.

REFERENCES

